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The neural processes underlying tactile decisions in the human brain remain elusive. We addressed this question in a functional magnetic
resonance imaging study using a somatosensory discrimination task, requiring participants to compare the frequency of two successive
tactile stimuli. Tactile stimuli per se engaged somatosensory, parietal, and frontal cortical regions. Using a statistical model that ac-
counted for the relative difference in frequencies (i.e., Weber fraction) and discrimination accuracy (i.e., correct or incorrect), we show
that trial-by-trial relative frequency difference is represented linearly by activity changes in the left dorsolateral prefrontal cortex
(DLPFC), the dorsal anterior cingulate cortex, and bilateral anterior insular cortices. However, a circumscribed region within the left
DLPFC showed a different response pattern expressed as activity changes that were monotonically related to relative stimulation differ-
ence only for correct but not for incorrect trials. Our findings suggest that activity in the left DLPFC encodes stimulus representations that
underlie veridical tactile decisions in humans.
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Introduction
Decisions based on perceptual properties of stimuli rely on sev-
eral processing stages involving sensation, perception, and ac-
tion. In everyday life, these processes are intertwined, and we can
switch between them with remarkable speed and flexibility
(Miller and Cohen, 2001). Although the sensory stages of percep-
tual decisions have attracted attention since the early days of
cognitive neuroscience (Newsome et al., 1989; Schall and Bichot,
1998), a more recent focus has been on processes that bridge
sensation and action. An increasing focus on decision making is
now of interest to psychologists, economists, and neuroscientists
(Glimcher and Rustichini, 2004).

Candidate regions mediating a transformation of sensation to
action have been identified within a frontoparietal network,
where neurons are thought to encode abstract information re-
lated to perceptual decisions (Heekeren et al., 2004; Machens et
al., 2005). In monkeys, decision-related signals have been studied

in great detail in the tactile domain (Romo et al., 1993, 1999,
2002, 2004; Hernandez et al., 2000, 2002; de Lafuente and Romo,
2002; Romo and Salinas, 2003). As in other sensory systems, the
cortical representations of the sensory stimulus may inform per-
ceptual decisions (Platt and Glimcher, 1999; Shadlen and New-
some, 2001; Machens et al., 2005).

Ernst Heinrich Weber developed an approach to the study of
human perception for physical stimuli in a quantitative manner.
One of his key observations, often referred to as Weber’s law, was
that perception of a stimulus change depends on both the mag-
nitude of the change (�s) and the stimulus baseline intensity (s).
At threshold, the ratio of stimulus change and baseline intensity
(�s/s) is constant (Weber, 1834). Successful discrimination of
two stimuli will thus depend on the relative stimulus change, �s/s
(Dayan and Abbott, 2001). In this view, correct perceptual deci-
sions depend on how well two stimuli can be reliably discrimi-
nated. The underlying neuronal mechanisms for this decision
process are mostly unknown.

We used event-related functional magnetic resonance imag-
ing (fMRI) while subjects performed a frequency discrimination
task adapted from previous monkey experiments (Romo et al.,
1999). In our task, the difficulty of discriminating the two fre-
quencies (coded as Weber fractions) is the crucial variable that
describes the subjects’ ability to make correct decisions. We ma-
nipulated this difficulty variable to study cortical representations
for correct and incorrect decisions. Within a single trial, the pu-
tative processes involve subjects perceiving a first stimulus [fre-
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quency 1 (f1)], holding it in working memory, and executing a
decision by comparing it with a subsequent second stimulus (f2)
(Machens et al., 2005).

To assess decision-related activation, we focused on stimulus-
evoked responses to the second tactile stimulus of each pair as a
function of the corresponding Weber fraction. We asked whether
the relative stimulus difference (�s/s) is encoded by responses
within distinct brain regions as a function of decision accuracy
(i.e., correct or incorrect discrimination). We then assessed
whether this evaluation engages distinct regions within the pari-
etal cortex known to be involved in tactile discrimination [pri-
mary (SI) and secondary somatosensory cortex (SII)] (Golas-
zewski et al., 2006; Pleger et al., 2006) or in frontal regions that
may represent task-independent contributors to behavioral con-
trol (Ridderinkhof et al., 2004).

Materials and Methods
Subjects
The study was approved by the Joint Ethics Committee of the Institute of
Neurology and National Hospital for Neurology and Neurosurgery Lon-
don and was performed in accordance with the Declaration of Helsinki
(1964). Ten right-handed healthy subjects (six males; age, 20 –37 years;
mean age, 29 � 6.5 years) gave their written, informed consent and
underwent two test sessions before they performed the same task during
two fMRI sessions.

Event-related fMRI
Functional and structural brain scans were acquired on a 3T head scan-
ner (Magnetom Allegra; Siemens, Erlangen, Germany). We acquired
blood oxygenation level-dependent (BOLD) volumes with a gradient-
echo T2*-weighted echo-planar imaging sequence (echo time, 30 ms;
repetition time, 2.21 s; flip angle, 90°). The thickness of each volume was
2 mm with a 3 � 3 mm 2 in-plane resolution and a slice distance of 1 mm.
Each volume consisted of 34 oblique slices (transversal– coronal tilt,
�10°), which covered the entire brain, excluding the cerebellum. A total
of 519 volumes per session were acquired continuously. We also acquired
a high-resolution anatomical image using an isotropic three-
dimensional spoiled gradient-recalled acquisition in a steady-state se-
quence with 107 sagittal-orientated slices covering the entire brain. We
used structural images across subjects to form a mean group image. For
the spatial assignment of functional signal changes, results obtained from
group analysis were superimposed onto this structural mean image.

Frequency discrimination task
The task was the same as in a previous study (Pleger et al., 2006). In brief,
subjects performed a two-alternative forced-choice frequency discrimi-
nation task. The task consisted of 70 events and 14 so-called “null
events.” These null events had the same duration as “real” events but did
not comprise tactile stimulation. The sequence of the events was chosen
randomly. During the task, subjects were instructed to fixate a small cross
in the center of a screen. Meanwhile, they discriminated between the
frequency of two electrical stimuli (f1 and f2) applied sequentially to the
right index finger (see Fig. 1, top). We used a Digitimer (Hertfordshire,
UK) DS7A stimulator for electrical finger stimulation. Disposable
surface-adhesive electrodes (Spes Medica, Battipaglia, Italy) were
mounted on the radial side of the right index finger, with the cathode to
the distal phalanx and the anode to the proximal phalanx. Stimulation
intensity was adjusted to 2.5 times the sensory threshold. Each stimulus
lasted for 1 s and was separated by an interstimulus interval of 2– 4 s
(randomly jittered in steps of 1 s). The full range of both frequencies was
between 20 and 36 Hz. The absolute difference between the two frequen-
cies for each event was 1–7 Hz. For each session, a total of 10 events were
presented for each frequency difference, resulting in 70 events. Three to
5 s after application of the second stimulus (in 1 s steps), subjects had to
indicate within 2 s whether the first or the second frequency was higher
by pressing a button with the left (nonstimulated) index finger. The
motor response was triggered by an “r” that replaced the fixation cross
until the subjects pressed the button. They were instructed to press the

button once for the first stimulus or twice for the second stimulus. No
feedback was given. Two to 3 s after the response interval (randomly
jittered in 1 s steps), the first stimulus of the next event was delivered.

Perceptual accuracy was expressed in percentage of correct discrimi-
nations across all similarity levels (�f1 � f2� � 1 � 7 Hz). To assess
whether the subjects’ performance (i.e., percentage of correct responses)
was correlated with our difficulty variable (i.e., the Weber fraction of the
frequency difference), we used the Pearson correlation analysis. The
Weber fraction (�s/s) was computed as the ratio of change in frequency
(i.e., high � low frequency) relative to the intensity of the lower fre-
quency (Nieder and Miller, 2003).

Data analysis
Functional neuroimaging. The data were preprocessed and analyzed using
the statistical parametric mapping (SPM) software package (SPM2;
Wellcome Department of Imaging Neuroscience, University College
London, London, UK). We discarded the first six volumes during which
BOLD signal reached steady state. The remaining 513 volumes entered
preprocessing. Movement artifacts were removed using realignment and
unwarping (Andersson et al., 2001). Volumes were spatially normalized
to the standard template of the Montreal Neurological Institute (MNI;
voxel size, 2 mm 3) (Friston et al., 1995). Finally, we smoothed the vol-
umes using a 10 mm (full-width half-maximum) isotropic, three-
dimensional Gaussian filter.

To assess the effect of frequency discrimination per se, we distin-
guished between trials and null events at the first (within-subject) level in
several stick functions encoding the presentation of stimuli. The first
stimulus of each pair was represented by one stimulus function. For the
second stimulus, we used two stimulus functions that coded the onsets of
stimuli that were correctly or incorrectly discriminated. In addition, two
separate regressors (i.e., one each for correct and incorrect discrimina-
tions) represented the parametric modulation of the stimulus functions
for the second stimulus with the difficulty variable of present interest
(i.e., with the relative perception of the frequency difference between
both stimuli coded as a Weber fraction, �s/s). This variable was com-
puted as the ratio of the change in frequency (i.e., high � low frequency)
relative to the intensity of the lower frequency (Nieder and Miller, 2003).
The motor response after the second stimulus was represented by an-
other stimulus function. All stimulus functions were convolved with a
hemodynamic response function to form regressors for our design ma-
trix (i.e., convolution model).

By specifying contrasts on the associated parameter estimates, we were
able to test for the main effect of discrimination accuracy (i.e., correct or
incorrect), the main effect of relative stimulus difference (i.e., Weber
fraction, averaged over correct and incorrect discriminations), and fi-
nally the interaction between accuracy and relative stimulus difference
(i.e., the difference in activity specific to the relative stimulus difference,
for correct vs incorrect trials).

All of our inferences were made at the second (between-subject) level
by entering the appropriate contrast into one-way ANOVA. The effect of
frequency discrimination was assessed by comparing the real events and
null events across subjects using the one-way ANOVA (threshold, p �
0.0001, uncorrected). The main effect of our difficulty variable (i.e.,
Weber fraction) is shown in Figure 3 at two thresholds, p � 0.0001
uncorrected and p � 0.05 family-wise error corrected across the entire
brain. The interaction between Weber fraction and accuracy is shown in
Figure 4 at p � 0.001 uncorrected and p � 0.05 family-wise error cor-
rected across the entire brain. All reported coordinates correspond to the
anatomical MNI space as used in SPM2.

To assess the orthogonality between the regressors, in other words the
independence between conditions (first stimulus, second stimulus cor-
rect discrimination, second stimulus incorrect discrimination, motor
response), we averaged the correlation coefficients between conditions
across the two sessions. These values were then averaged across subjects.
In fact, by modeling first and second stimuli separately for correct and
incorrect discriminations, our regression became decorrelated [first vs
second stimulus correct, r � 0.16 � 0.03 (average � SD); first vs second
stimulus incorrect, r � 0.09 � 0.04; second stimulus correct vs motor
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response, r � 0.24 � 0.02; second stimulus incorrect vs motor response,
r � 0.13 � 0.05].

Results
Frequency discrimination task
Subjects first practiced the frequency discrimination task in two
consecutive test sessions to achieve a stable baseline performance
before the two fMRI sessions (mean correct responses across all
stimuli � SE: first test session, 73.62 � 3.2%; second test session,
72.94 � 2.68%; fMRI, 75.88 � 2.16% across both sessions). The
range of both frequencies within each session was between 20 and
36 Hz. We included seven levels of absolute stimulus difference
between the first and the second stimulus of each trial (�s �
lowest. . . highest frequency � 1. . . 7 Hz) but coded them as
relative stimulus differences “�s” in proportion to different back-
ground intensities “s” (i.e., as Weber fractions; see Materials and
Methods). We randomly varied the frequency for both stimuli for
each subject, which guaranteed a stable attention level through-
out each session. However, for each subject, the number of pre-
sentations of each frequency was identical during two consecu-
tive test sessions and the after two fMRI sessions.

First, we tested whether the subjects’ performance (i.e., per-
centage of correct discriminations) was correlated with our diffi-
culty variable (i.e., Weber fraction). Pearson correlation analysis
confirmed that our difficulty variable was indeed a meaningful
characterization of behavioral performance (i.e., percentage of
correct discriminations) (Fig. 1, bottom). Subjects made more
correct decisions for large (e.g., �s � 7 Hz, s � 20 Hz) relative to

small (e.g., �s � 1 Hz, s � 20 Hz) frequency differences, in
proportion to the base frequency (r � 0.63; p � 2.6 � 10�10).

Event-related fMRI
Cortical responses to tactile discrimination per se were estimated
using a standard event-related linear convolution model compar-
ing discrimination trials with null trials (see Materials and Meth-
ods). In line with recent findings, we found activations in SI
(Recanzone et al., 1992; Hernandez et al., 2000; de Lafuente and
Romo, 2002; Harris et al., 2002) and SII (Francis et al., 2000;
Romo et al., 2002) contralateral to the stimulated index finger, as
well as supplementary motor area/dorsal cingulate cortex (Romo
et al., 1993), premotor cortex (Hernandez et al., 2002; Romo et
al., 2004), posterior parietal cortex (Grefkes and Fink, 2005),
insular cortex (Pleger et al., 2006), and prefrontal cortex (Romo
et al., 1999) in both hemispheres (Fig. 2) (supplemental Table 1,
available at www.jneurosci.org as supplemental material).

To assess differences in cortical activation between correct
and incorrect discriminations (main effect of discrimination ac-
curacy), we compared correct and incorrect responses to the sec-
ond stimulus regardless of our difficulty variable (i.e., Weber
fraction). No brain area showed such a significant effect of accu-
racy per se in this comparison. We next examined the main effect
of our difficulty variable (i.e., the impact of Weber fraction on
BOLD responses), regardless of whether responses were correct
or incorrect. Crucially, for each subject, trials with correct and
incorrect responses covered the full range of similarity levels (�s).
We found positive correlations in the left dorsolateral prefrontal
cortex (DLPFC), in the dorsal anterior cingulate cortex (dACC),
and in the anterior insula cortices (Fig. 3).

Finally, we tested whether the relationship between BOLD
responses and Weber fraction show different expressions for cor-
rect compared with incorrect discriminations, as indicated by a
significant interaction of accuracy and relative frequency differ-
ence. A single region in the left DLPFC showed such a discrimi-
natory pattern, with a linear increase in activity with relative fre-
quency difference for correct (mean contrast estimate � 90%
confidence interval, 14.22 � 2.94; t � 7.96) but not for incorrect
decisions (�1.73 � 2.94; t � 0.97) (Fig. 4). We found no brain
regions that expressed the opposite pattern, a larger correlation
between BOLD responses and relative stimulus difference for
incorrect trials compared with correct trials.

Discussion
The goal of this study was to investigate the neural processes
underlying perceptual decisions in the tactile domain, using a
two-alternative forced-choice frequency discrimination task.
Specifically, we asked which brain areas encode the following: (1)
the discrimination accuracy, (2) the relative frequency difference
(i.e., Weber fraction), and critically, (3) the interaction between
accuracy and relative frequency difference. In our task, the crucial
difficulty variable is the relative frequency difference, coded as a
Weber fraction [i.e., as the difference between two successive
stimuli (�s) in proportion to the magnitude of the base frequency
(s)] (Weber, 1834). We found that this difficulty variable of rela-
tive frequency was positively correlated with the percentage of
correct discriminations and with activity in the left DLPFC
(Brodmann’s area 10). Interestingly, this parametric response
profile of the left DLPFC was expressed specifically for correct but
not for incorrect judgments.

In perceptual two-alternative decisions, it is assumed that the
decision is the result of continuously accumulating noisy stimu-
lus information until one of the two response criteria is reached

Figure 1. Frequency discrimination task and perceptual performance. Top, Schematic draw-
ing of one single trial of the task. Within each trial, subjects received two frequency stimulations
(f1 and f2) to the right index finger, each for 1 s, separated by a variable interstimulus interval.
The range of frequencies for both stimuli was between 20 and 36 Hz. The application of f2 was
followed by a delay period. Then subjects had to indicate within 2 s whether f1 or f2 was higher
by pressing a button with the left (nonstimulated) index finger once for f1 or twice for f2.
Bottom, Distribution of correct decisions across the Weber fractions (�s/s; �s � high � low
frequency � 1. . . 7 Hz; s � lower frequency � 20. . . 36 Hz). Correlation analysis showed that
subjects made more correct decisions for large (e.g., �s � 7 Hz, s � 20 Hz) relative to small
frequency differences in proportion to the lower frequency (e.g., �s � 1 Hz, s � 20 Hz).
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(Smith and Ratcliff, 2004). Our finding that the level of activity in
the DLPFC encoded the relative stimulus difference (i.e., our
difficulty variable) suggests that this region may accumulate crit-
ical decision-relevant stimulus information. It is of interest that

decision-relevant stimulus representa-
tions in tactile discriminations engage the
left DLPFC, a region that is often assumed
to contribute to behavioral control (Kerns
et al., 2004; Ridderinkhof et al., 2004;
Rushworth et al., 2004).

In monkeys, neuronal recordings from
cells within a frontoparietal network dur-
ing discrimination of frequency differ-
ences have provided insights into the con-
figuration of the evoked neuronal
responses during tactile decisions. The fir-
ing rate of neurons within this network
during stimulus periods contains suffi-
cient information necessary to solve the
task (Romo et al., 1993, 1999, 2004; Her-
nandez et al., 2000, 2002). Although the
presence of tactile stimuli per se activated a
similar frontoparietal network described
by these monkey experiments, we found
signal changes correlated with the diffi-
culty variable Weber fraction, regardless of
whether trials were correct or not, in the
left DLPFC, in the bilateral insular corti-
ces, and in the dACC. The latter activation
was expressed in Brodmann’s area 6/32, a
region thought to index preresponse con-
flicts (Ridderinkhof et al., 2004). This sug-
gests that these activations may relate to
the encoding of increasing uncertainty
about the decision.

Several complementary accounts as-
cribe specific functions to the ACC (and its
anatomical subdivisions) (Ridderinkhof et
al., 2004) as mediating error detection
(Falkenstein et al., 1991; Dehaene et al.,
1994; Holroyd et al., 1998), detection of
behavioral conflicts (Botvinick et al., 1999;
Mayr et al., 2003), or control of effort in
self-generated acts (Kerns et al., 2004). The

DLPFC, on the other hand, is believed to encode on-line infor-
mation necessary for perceptual identification (Everling et al.,
2002; Heekeren et al., 2004) and generation of a subsequent ap-
propriate response (Paus et al., 1993; Paus, 2001). Task-related
interactions between the functions of these medial and lateral
frontal structures have been reported in lesion patients (Gehring
and Knight, 2000) and healthy human subjects (Kerns et al.,
2004), indicating that interactions between the DLPFC and the
ACC may both contribute to behavioral control and guidance
(Ridderinkhof et al., 2004).

In addition to the dACC, we found activations related to the
relative frequency difference (for both correct and incorrect dis-
criminations) within the insula in both hemispheres. An anatom-
ical feature of the somatosensory system and insular cortex is the
complex network of fibers that link functional subregions (Bur-
ton and Kopf, 1984), although specific knowledge about these
pathways in humans is limited. In monkeys, a ventrally directed
tactile processing pathway leads from SI to the frontal cortex and
the temporal lobe limbic structures via relays in SII and the insu-
lar cortex (Friedman et al., 1986; Preuss and Goldman-Rakic,
1989).

In touch or pain perception, the insula has been described as
part of an “interoceptive” network that may code distinct aspects

Figure 2. Cortical regions involved in frequency discrimination (contrast: discrimination trials � “null trials”). Significant
signal changes were found in the SI and SII contralateral to the stimulated index finger. In addition, we found activation in the
supplementary motor cortex (SMA), the premotor cortex (PMC), the posterior parietal cortex (PPC), the anterior insula, and the
prefrontal cortex (PFC) of both hemispheres (MNI coordinates and t scores are listed in supplemental Table 1, available at
www.jneurosci.org as supplemental material). LH, Left hemisphere; RH, right hemisphere.

Figure 3. Cortical regions showing activity increases as a function of the relative frequency difference (i.e., main effect of
Weber fraction, contrast: Weber fraction across correct and incorrect discriminations � baseline). All activations are projected on
a coronal (left), axial (middle), and sagittal (right) MRI slice. LH, Left hemisphere. Weighing the stimulus function of all trials
according to the relative frequency difference (i.e., Weber fraction) revealed activation in the left DLPFC [�21, 51, 24 (x, y, z); t �
6.4; Brodmann’s area 10], the dACC [�9, 30, 39 (x, y, z); Brodmann’s area 6; t � 7.24; and �6, �24, 39 (x, y, z); Brodmann’s area
32; t � 5.72], and in both anterior insular cortices [LH: �51, 15, �18 (x, y, z); t � 6.08; right hemisphere: 48, 27, �3 (x, y, z);
t � 5.17]. In all plots, yellow regions show activity thresholded at p � 0.0001 uncorrected, whereas red regions show the
corresponding activity at p � 0.05, family-wise error corrected across the entire brain.

Figure 4. Cortical regions coding the relative frequency difference (i.e., Weber fraction) for
correct compared with incorrect discriminations (interaction contrast: Weber fraction� correct
trials � Weber fraction � incorrect trials). All activations are projected onto a coronal (left),
axial (middle), and sagittal (right) MRI slice. LH, Left hemisphere. The figure shows a region
in the DLPFC [Brodmann’s area 10; peak voxel: �21, 60, 27 (x, y, z); t � 6.31; p � 0.005
family-wise error corrected across the entire brain] that showed positive correlations with the
Weber fraction of the stimulus difference only for correct (mean contrast estimate � 90%
confidence interval, 14.22 � 2.94; t � 7.96) but not for incorrect discriminations (�1.73 �
2.94; t � 0.97).
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of the physiological condition of all body tissues. This supports
awareness of feeling states from the body (like the sense of touch),
which may be important for higher-level body representations
(Craig, 2002; Critchley et al., 2005). In the present study, we
found that the anterior insula increased its activity linearly with
the relative frequency difference. This suggests that sensory in-
put, first processed in somatosensory cortices (Craig, 2003), may
be encoded and remapped within the insula (Burton and Sinclair,
2000) to contribute to a neuronal representation of crucial stim-
ulus information.

Our key observations are that trial-by-trial relative stimulus
differences (i.e., Weber fractions) are represented linearly by ac-
tivity in the left DLPFC, dACC, and bilateral anterior insular
cortices, whereas a spatially distinct area within the DLPFC
showed an interaction of accuracy and relative stimulation dif-
ference. Activity in this DLPFC region increased linearly with the
relative frequency differences only for correct but not for incor-
rect discriminations (Fig. 4). In our task, for any single trial,
subjects first perceive a stimulus and hold it in working memory
(Machens et al., 2005). It has been shown in previous monkey
studies that during this period, the firing rate of neurons in the
inferior convexity of the prefrontal cortex monotonically relates
to the maintained stimulus frequency. This suggests a basic rep-
resentation of one-dimensional sensory stimulus quantities in
working memory (Romo et al., 1999). In our task, subjects were
required to make a decision based on comparing the second stim-
ulus against the memory trace left by the first stimulus (Brody et
al., 2002). During this process, we found that BOLD responses in
the left DLPFC linearly increased as a function of the relative
frequency difference but only for correct decisions. This supports
the idea that correct perceptual decisions depend on the accumu-
lation of meaningful stimulus information until sufficient infor-
mation for a response is obtained (Ratcliff and Hacker, 1981;
Gold and Shadlen, 2001; Smith and Ratcliff, 2004; Philiastides et
al., 2006). In the incorrect trials, we found no relationship be-
tween BOLD responses and the relative frequency difference.
This suggests that errors originate from the inability to generate
an adequate representation of stimulus frequency. We conclude
that the findings highlight a crucial role for the left DLPFC in
encoding the relative frequency difference of tactile stimuli that
inform correct tactile decisions. More generally, the findings in-
dicate a central contribution of the DLPFC to sensory-based de-
cision making.
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