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Neurobiology of Disease

Alzheimer’s-Type Amyloidosis in Transgenic Mice Impairs
Survival of Newborn Neurons Derived from Adult
Hippocampal Neurogenesis
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Alzheimer’s disease (AD) is characterized by severe neuronal loss in several brain regions important for learning and memory. Of the
structures affected by AD, the hippocampus is unique in continuing to produce new neurons throughout life. Mounting evidence
indicates that hippocampal neurogenesis contributes to the processing and storage of new information and that deficits in the production
of new neurons may impair learning and memory. Here, we examine whether the overproduction of amyloid-3 (A) peptide in a mouse
model for AD might be detrimental to newborn neurons in the hippocampus. We used transgenic mice overexpressing familial AD
variants of amyloid precursor protein (APP) and/or presenilin-1 to test how the level (moderate or high) and the aggregation state
(soluble or deposited) of A3 impacts the proliferation and survival of new hippocampal neurons. Although proliferation and short-term
survival of neural progenitors in the hippocampus was unaffected by APP/A 3 overproduction, survival of newborn cells 4 weeks later was
dramatically diminished in transgenic mice with Alzheimer’s-type amyloid pathology. Phenotypic analysis of the surviving population
revealed a specific reduction in newborn neurons. Our data indicate that overproduction of A3 and the consequent appearance of
amyloid plaques cause an overall reduction in the number of adult-generated hippocampal neurons. Diminished capacity for hippocam-
pal neuron replacement may contribute to the cognitive decline observed in these mice.
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Introduction

It is now widely accepted that the mammalian brain continues to
produce neurons throughout adult life. This capacity for contin-
ued neurogenesis originates from progenitor cells located in dis-
crete brain regions including the subgranular zone (SGZ) of the
hippocampal dentate gyrus (DG). Although thousands of new
neurons are produced every day in the young vertebrate hip-
pocampus (Cameron and McKay, 2001), continuing (albeit at a
much lower level) throughout adulthood, the function of these
cells remains unclear. Adult neurogenesis is confined to brain
regions with a high degree of plasticity, suggesting that these

Received Dec. 22, 2006; revised May 9, 2007; accepted May 9, 2007.

This work was supported by grants from the France Alzheimer Association and the Singer-Polignac Foundation
(L.V.), the Agence Nationale pour la Recherche and the Centre National de la Recherche Scientifique (C.R.), the
McKnight Brain Institute (D.R.B.), the John Douglas French Alzheimer's Foundation (J.L.J.), the American Health
Assistance Foundation (J.L.J.), and the National Institute on Aging (K01 AG26144-01 to J.L.J.). We thank Bob and
Julie Switzer at NeuroScience Associates (Knoxville, TN) for providing the MultiBrain Array sectioning and advice on
handling these large-format sections. We gratefully acknowledge Dennis Steindler and the McKnight Brain Institute
for supporting the completion of our study.

*LV.and J.L.J. contributed equally to this work.

Correspondence should be addressed to either of the following: Dr. Joanna L. Jankowsky, California Institute of
Technology, M.C. 156-29, Pasadena, CA 91125, E-mail: jlj2@caltech.edu; or Dr. Claire Rampon, UMR5169 Centre
National de la Recherche Scientifique, Centre de Recherches sur la Cognition Animale, Université Paul Sabatier, 118,
route de Narbonne, 31062 Toulouse Cedex 4, France, E-mail: rampon@cict.fr.

DOI:10.1523/JNEUROSCI.5564-06.2007
Copyright © 2007 Society for Neuroscience ~ 0270-6474/07/276771-10515.00/0

neurons may provide a means for encoding new information (for
review, see Aimone et al., 2006; Leuner et al., 2006; Lledo et al.,
2006; Bruel-Jungerman et al., 2007). Consistent with a role in
memory formation, several studies have reported correlative ev-
idence that survival of newborn hippocampal neurons is en-
hanced by tasks requiring the hippocampus (Gould et al., 1999;
Leuner et al., 2004; Olariu et al., 2005). Conversely, reduction in
neurogenesis by a cytostatic agent or irradiation impairs associa-
tive hippocampal-dependent learning (Shors et al., 2001, 2002;
Snyder et al., 2005; Saxe et al., 2006; Winocur et al., 2006).
Hippocampal neurogenesis decreases drastically during aging
in rodents, and this decline in neurogenic capacity has been sug-
gested to underlie cognitive impairments that accompany senes-
cence (Kuhn et al., 1996; Kempermann et al., 1998). More severe
reductions in neurogenesis might contribute to the early symp-
toms of Alzheimer’s disease (AD), including the inability to ac-
quire and store new information. AD is a progressive neurode-
generative disease characterized by selective damage of brain
regions involved in learning and memory (Price et al., 1986). The
major histological hallmarks of AD include senile plaques con-
taining amyloid-B (AB) peptide, neurofibrillary tangles contain-
ing hyperphosphorylated tau, and progressive loss of neurons in
specific areas of the brain. Little is currently known about how the
onset and progression of AD affects hippocampal neurogenesis.
Contrary to initial expectation, data from postmortem tissue sug-
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gest that the proliferation of hippocampal progenitors is in-
creased in AD (Jin et al., 2004a). This heightened proliferation
may occur in response to diminished survival of newborn cells: in
vitro data suggest that AB and its aggregates may be toxic to new
neurons (Haughey et al., 2002).

We sought to examine the impact of amyloid precursor pro-
tein (APP)/AB overproduction on hippocampal neurogenesis
using mouse models that represent two different stages in the
progression of AD. Transgenic mice overexpressing APP encod-
ing the Swedish mutation (APPswe) develop late-onset amyloid
pathology (Borchelt et al., 1997). Coexpression of the exon
9-deleted variant of presenilin 1 (PSIdE9) dramatically exacer-
bates AB production and accelerates appearance of amyloid pa-
thology (Jankowsky et al., 2004). Comparison of APPswe and
APPswe/PS1dE9 models at an intermediate age allowed us to
study neurogenesis in mice resembling presymptomatic AD, free
of plaques but destined to develop disease (APPswe), versus ani-
mals resembling late-stage AD with significant amyloid pathol-
ogy (APPswe/PS1dE9). These models allowed us to test how the
amount of AB (moderate or high) and its aggregation state (sol-
uble or deposited) impact proliferation, survival, and differenti-
ation of newborn hippocampal cells thought to be critical for the
cognitive functions lost in AD.

Materials and Methods

Transgenic mice

Two lines of transgenic mice were used for this study. Line C3-3 expresses
chimeric mouse APP with the Swedish mutation K670N/M671L and
humanized AB domain (Borchelt et al., 1996, 1997). Line S-9 expresses
the exon 9-deleted variant of human PS1 (Lee et al., 1997; Jankowsky et
al., 2004). Both transgenes are active in the CNS under the control of the
mouse prion protein promoter. Each line was originally made by injec-
tion of C3He] X C57BL/6] F2 hybrid oocytes and maintained by mating
transgene-positive animals with nontransgenic (NTG) C3/B6 F1 hybrids
(The Jackson Laboratory, Bar Harbor, ME) for several generations. Both
lines were subsequently backcrossed for 9—11 generations to be congenic
on the C57BL/6] background. Mice for this study were generated from a
final backcross of double-transgenic C3-3 APPswe B6n11/S-9 PS1dE9
B6n9 males with NTG C57BL/6] females to yield Bén10 offspring.

5-Bromo-2-deoxyuridine injection and tissue preparation

Eighty male mice derived from the two transgenic lines described above
were used for this study. Four genotypes were generated from the final
APP/PS1 male X C57BL/6] female backcross (APP/PS1, APP, PS1, and
NTG); we examined 20 mice of each genotype. Starting at 6 months of
age, all mice received an intraperitoneal injection once daily for 12 con-
secutive days with 50 mg/kg 5-bromo-2-deoxyuridine (BrdU; Sigma, St.
Louis, MO) dissolved in 0.9% NaCl. One day after the final injection, half
of the mice were anesthetized and perfused transcardially with PBS, fol-
lowed by 4% paraformaldehyde. The remaining animals were similarly
perfused 30 d later.

Brains were then postfixed overnight in 4% paraformaldehyde at 4°C
and cryoprotected with 30% sucrose. One hemisphere from each animal
was used for analysis. Hemibrains were embedded 25 per block in a solid
matrix, and coronal sections (40 wm thick) were cut throughout the
rostrocaudal extent of the hippocampus (MultiBrain processing by Neu-
roScience Associates, Knoxville, TN). Sections were stored in cryopro-
tectant at —20°C until use.

AB immunochemistry

Free-floating multibrain sections were rinsed extensively in PBS contain-
ing 0.25% Triton X-100 (PBST) before quenching endogenous peroxi-
dases with 3% H,0, in 10% methanol/PBS. Sections were incubated in
100% formic acid for 1 min and washed twice with distilled water. They
were blocked in PBST with 5% normal goat serum (NGS) for 30 min,
followed by overnight incubation at room temperature in polyclonal
rabbit anti-Af3 peptide (Zymed, San Francisco, CA) diluted 1:1000 in

Verret et al. @ Specific Loss of Newborn Neurons in APP/PST Mice

PBST with 0.1% sodium azide (PBST-Az) and 5% NGS. The next day,
sections were rinsed in PBST and incubated for 90 min at room temper-
ature in biotinylated goat anti-rabbit antiserum (Vector Laboratories,
Burlingame, CA) diluted 1:500 in PBST. Sections were again rinsed with
PBST before being incubated for 90 min at room temperature in avidin—
biotin—peroxidase complex (Elite kit; Vector Laboratories) diluted 1:500
in PBST. Peroxidase immunolabeling was developed for 10 min at room
temperature in 0.05 M Tris-HCI buffer, pH 7.6, containing 0.025% 3,3'-
diaminobenzindine-HCI (DAB; Fluka, Buchs, Switzerland) and 0.003%
H,0,. The reaction was stopped by rinses in PBST-Az. Sections were
mounted onto subbed slides, dehydrated through alcohols, and
coverslipped.

Ki67 immunohistochemistry

Sections were rinsed extensively in PBST before overnight incubation at
room temperature with rabbit anti-human Ki67 antibody (NCL-Ki67p;
Novocastra Laboratories/Vision BioSystems, Newcastle upon Tyne, UK)
diluted 1:500 in PBST containing 5% NGS, 1% bovine serum albumin
(BSA), and 0.5% Tween 20. The next day, sections were washed in PBST,
blocked in PBST/NGS/BSA/Tween 20, and incubated for 90 min at room
temperature in biotinylated goat anti-rabbit antiserum diluted 1:500 in
PBST (Vector Laboratories). Sections were washed several times with
PBST, before incubating with avidin—biotin—peroxidase complex di-
luted 1:400 in PBST. Peroxidase immunolabeling was developed for 10
min at room temperature in 0.05 M Tris-HCl buffer, pH 7.6, containing
0.025% DAB, 0.003% H,0,, and 0.06% nickel ammonium sulfate. The
reaction was stopped by two rinses in PBST-Az. Sections were mounted
onto subbed slides, counterstained with Nuclear Fast Red (Vector Labo-
ratories), dehydrated through alcohols, and coverslipped.

BrdU immunochemistry

For single labeling of BrdU, sections were rinsed extensively in PBST
before quenching endogenous peroxidases. Then, sections were incu-
bated in 2N HCI for 40 min at room temperature to denature DNA and
neutralized in 0.1 M borate buffer, pH 8.5. Sections were blocked in PBST
with 5% NGS for 30 min, followed by overnight incubation at room
temperature in monoclonal rat anti-BrdU (OBT-0030; Harlan Seralab,
Loughborough, UK) diluted 1:400 in PBST-Az and 5% NGS. The next
day, sections were rinsed several times in PBST and incubated for 90 min
at room temperature in biotinylated goat anti-rat antiserum (Vector
Laboratories) diluted 1:400 in PBST. Sections were again rinsed with
PBST before being incubated for 90 min at room temperature in avidin—
biotin—peroxidase complex (Elite kit; Vector Laboratories) diluted 1:400
in PBST. Peroxidase immunolabeling was developed as above. Sections
were mounted onto subbed slides, counterstained with Nuclear Fast Red
(Vector Laboratories), dehydrated through alcohols, and coverslipped.

Determination of cell phenotype by triple immunolabeling
BrdU/NeuN/S100. Sections used for triple-immunofluorescent labeling
of BrdU with markers of postmitotic neurons (NeuN) and astrocytes
(S100B) were pretreated and denatured as above before being blocked in
amix of 5% NGS and 0.1% BSA in PBST for 30 min at room temperature.
Sections were then incubated overnight at room temperature in a mix-
ture of anti-BrdU antibody (1:800), monoclonal mouse anti-NeuN (1:
5000, MAB377; Chemicon, Temecula, CA), and rabbit anti-S10083 (1:
5000, 37a; Swant, Bellinzona, Switzerland) in PBST-Az containing 5%
NGS. The next day, sections were rinsed several times in PBST before
being incubated for 90 min at room temperature in a mixture of second-
ary reagents: biotinylated goat anti-rat antiserum (1:400; Vector Labora-
tories), Alexa 488-conjugated highly cross-adsorbed goat anti-mouse
IgG (1:250; Invitrogen, Carlsbad, CA), and Alexa 647-conjugated goat
anti-rabbit IgG (1:250; Invitrogen) in PBST. Sections were rinsed again
and finally incubated in streptavidin—tetramethylrhodamine isothiocya-
nate (TRITC; 1:1000 in PBST; Beckman Coulter, Fullerton, CA). Sec-
tions were mounted onto subbed slides, coverslipped using Mowiol, and
stored at 4°C.

BrdU/DCX/NeuN. Sections used for triple-immunofluorescent label-
ing of BrdU with markers of immature neuronal precursors [doublecor-
tin (DCX)], and postmitotic neurons (NeuN) were processed for antigen
retrieval (10 mM sodium citrate buffer, pH 6.0, for 30 min at 95-100°C)
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before DNA denaturation as described above. Sections were then blocked
with 2% normal donkey serum, 1% BSA, and 0.05% Tween 20 in PBST
for 60 min. They were then incubated overnight at room temperature in
a mixture of anti-BrdU (1:400) and goat anti-DCX (1:200, C-18; Santa
Cruz Biotechnology, Santa Cruz, CA) in PBST. The next day, sections
were rinsed and incubated for 90 min at room temperature in a mixture
of biotinylated donkey anti-rat antiserum (1:1000; Jackson ImmunoRe-
search, Suffolk, UK) and Alexa 488-conjugated donkey anti-goat IgG
(1:250; Invitrogen) in PBST. Sections were again rinsed in PBST and
incubated for 90 min at room temperature in streptavidin—-TRITC (1:
1000) in PBST. After rinses in PBST, sections were incubated for 24 h at
4°C in monoclonal mouse anti-NeuN (1:2000) in PBST. Sections were
rinsed once more and finally incubated in Alexa 647-conjugated highly
cross-adsorbed donkey anti-mouse IgG (1:250) in PBST.

In every study, incubation of brain tissue without the primary anti-
bodies served as negative controls for immunohistochemistry.

Quantification of Ki67+ cells

Quantification of Ki67-immunoreactive (Ki67+) cells was conducted
from a 1-in-12 series of peroxidase-labeled sections spaced at 480 um
spanning the rostrocaudal extent of the hippocampus. Four mice from
each genotype were sampled using DAB-developed sections stained for
Ki67. Slides were coded before analysis; the experimenter was blind to
genotype until all samples were counted. The corresponding surface area
of the granule cell layer (GCL)/SGZ sampled for counting was measured
using the Mercator stereology system (Explora Nova, La Rochelle,
France). The reference volume was determined as the sum of the traced
areas multiplied by the distance between sampled sections (480 wm). The
density of Ki67+ cells was then calculated by dividing the number of
Ki67+ cells by GCL sectional volume. The total number of Ki67-positive
cells was estimated by multiplying these densities by the reference
volume.

Quantification of BrdU+ cells

Quantification of BrdU-immunoreactive (BrdU+) cells was conducted
from a one-in-six series of peroxidase-labeled sections spaced at 240 um
spanning the full rostrocaudal extent of the hippocampus. Slides were
coded before analysis; the experimenter was blind to genotype until all
samples were counted. Every BrdU+ cell within the GCL and adjacent
SGZ, defined as a two-cell body-wide zone along the border between the
GCL and the hilus, was counted through a 40X oil-immersion objective.
Nuclei intersecting the uppermost focal plane were excluded from the
count to avoid oversampling. The corresponding surface area of GCL/
SGZ sampled for counting was measured using the Mercator stereology
system (Explora Nova). The reference volume was determined as the sum
of the traced areas multiplied by the distance between sampled sections
(240 pm). The density of BrdU-positive cells was then calculated by
dividing the number of BrdU-positive cells by GCL sectional volume.
The total number of BrdU-positive cells was estimated by multiplying
these densities by the reference volume.

Measure of BrdU+ cell migration within the GCL

The migration of BrdU-immunoreactive cells was quantified in mice
harvested 30 d after the final BrdU injection. Four mice were randomly
chosen for analysis for each of three genotypes (APP, APP/PS1, and
NTG). Fifty BrdU+ cells were counted for each animal using DAB-
developed sections stained for BrdU as described above. The GCL and
underlying SGZ were divided into four separate regions (SGZ and inner,
middle and outer thirds of the GCL). The fraction of BrdU+ cells found
in each subregion of the DG was then calculated and compared between
genotypes.

Phenotypic quantification of BrdU+ cells

To determine the relative distribution of phenotypes adopted by new-
born cells after 30—42 d of survival, a one-in-six series of sections (240
pum spacing) through the rostrocaudal extent of the hippocampus was
triple labeled for BrdU, NeuN, and S100f as described above. Five ran-
domly selected animals were sampled from each of the four genotypes;
fifty BrdU-labeled cells from each animal were randomly selected from
the DG for phenotypic analysis. Coexpression of NeuN or S10083 was
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assessed for each BrdU + cell using a confocal laser-scanning microscope
(TCS SP2; Leica, Heidelberg, Germany). BrdU+ cells were analyzed for
colocalization with either NeuN or S1003 at 0.5 wm step intervals over
their entire z-axis using a 100X oil-immersion objective. Labeled cells
were rotated in orthogonal planes (x and y) to verify double labeling. All
analyses were done in sequential scanning mode to prevent crossover
between channels. The mean percentage of BrdU+ cells colabeled with
NeuN or S100 was calculated for each genotype. The mean number of
cells for each phenotype was obtained by multiplying the average fraction
for each phenotype by the individual BrdU+ cell count for each animal
(i.e., NeuN in NTG was calculated as the average product of 58.4% X the
total BrdU+ cell count for each NTG animal).

The relative number of mature and immature neurons among the
surviving BrdU-labeled cell population was measured in APP/PS1 and
NTG mice from a one-in-six series of sections triple labeled for BrdU,
NeuN, and DCX. Five randomly selected animals were sampled for each
genotype; fifty BrdU+ cells from each animal were randomly chosen in
the DG for analysis. Coexpression of NeuN or DCX was assessed for each
BrdU-labeled cell using a confocal laser-scanning microscope, and the
mean number of cells for each phenotype was calculated as described
above for NeuN/S100. Optical images were obtained for figures using
Leica confocal software and processed with Adobe Photoshop 7.0
(Adobe Systems, San Jose, CA).

Statistical analysis

Cell count-by-genotype interactions were evaluated by one-way ANOVA
using Systat version 11.0 software (Systat Software, Richmond, CA).
Tukey’s t test was used for post hoc analysis to identify significant pairwise
differences.

Results

Amyloid pathology is specific to APP/PS1 mice at 6 months

of age

Transgenic mice expressing the Swedish variant of APP overpro-
duce AB and develop amyloid deposits late in life, between 20 and
24 months of age (Borchelt et al., 1996). The introduction of a
second transgene associated with familial AD, the exon 9 deletion
mutation of PS1, dramatically increases the production of A3
and substantially accelerates the onset of amyloid pathology
(Jankowsky et al., 2004). Plaques first appear in APPswe/PS1dE9
double-transgenic mice between 4 and 5 months of age and
worsen with time. In contrast, the expression of PS1dE9 by itself
causes no overt pathology and only slightly elevates the levels of
endogenous AB. We took advantage of this spectrum of Af pro-
duction and amyloid onset to examine the effect of both moder-
ate (APPswe) and high (APPswe/PS1dE9) overproduction of AB
on the proliferation and survival of newborn hippocampal cells.
This approach allowed us to test the effect of APP/AB on neuro-
genesis in mice of the same age that represented two different
points in the progression of the pathology. As confirmed by A
immunohistochemistry, only double-transgenic APP/PS1 mice
harbor amyloid pathology in the hippocampus at 6 months of age
chosen for analysis (Fig. 1A). Neither NTG nor APP or PS1
single-transgenic mice show any amyloid pathology at this age
(Fig. 1B).

Although loss of mature neurons is not a common feature of
APP transgenic mice, the neurotoxic properties of Af in vitro
(Yankner et al., 1989) may become apparent in vivo when pre-
sented to especially vulnerable cell populations such as newborn
neural progenitors (Haughey et al., 2002). Our study therefore
examined hippocampal progenitor proliferation, survival, and
differentiation in APP and APP/PS1 transgenic mice to test the
potential for A neurotoxicity in vivo.
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Proliferation of hippocampal progenitor cells is unchanged
by transgenic expression of mutant APP and/or PS1

To evaluate neural progenitor cell proliferation in the DG of APP,
PS1, APP/PS1, and NTG animals, we counted the number of cells
expressing the proliferation marker Ki67, which is present in cells
during the active phases of the cell cycle (G, S, G,, and mitosis)
but absent from cells in G, (Scholzen and Gerdes, 2000). We
studied exclusively male mice to avoid the confounding effects of
estrus in female animals and used transgenic lines that had been
backcrossed for >10 generations onto the C57BL/6] background
to limit variability caused by competing background strains.

We used nonbiased stereology to estimate the number of
Ki67+ cells in each animal from a 1-in-12
series spanning the entire rostrocaudal ex-
tent of the hippocampus. The vast major-
ity of cells labeled with Ki67 were found
within the SGZ of each group, consistent
with the location of self-renewing type 1
and 2 progenitor cells (Kempermann et
al., 2004). We found that the number of
Ki67+ cells was similar across the four ge-
notypes (NTG, 474.0 = 68.9; PS1,477.0 =
42.8; APP, 423.0 = 32.6; APP/PSI,
510.0 = 75.9) (Fig. 2). There were no sig-
nificant differences between genotypes,
indicating that transgene expression did
not affect the proliferation rate of hip-
pocampal progenitor cells in the DG.

Figure2.
Ki67 immunostaining in the DG is similar in all four genotypes. Nuclear Fast Red was used as a counterstain to identify morpho-
logical boundaries of the GCL and SGZ. Scale bars, 30 um. E, The number of Ki67 + cells in the DG was counted for each genotype
(mean == SEM; n = 4for each group). The number of Ki67 + cells is similar across all four genotypes; overproduction of APP/A 3
had no significant effect on progenitor cell proliferation in the SGZ.

Short-term survival of newborn cells is
not altered by overproduction of A3
In wild-type animals, the highest rate of newborn cell loss in the
DG occurs within the first 2 weeks after cell division (Dayer et al.,
2003; Kempermann et al., 2003). To determine whether the early
survival of newborn hippocampal cells was affected by A over-
production, we administered BrdU once daily for 12 consecutive
days to label cells undergoing mitosis during this period. Early
survival was assessed in mice killed 1 d after the final BrdU injec-
tion. Cells labeled in this manner represent a mixture of actively
proliferating cells and committed postmitotic cells.

Newborn BrdU-immunoreactive (BrdU+) cells were distrib-
uted throughout the SGZ of the DG in all four genotypes (Fig. 3).
The absolute number of BrdU+ cells in the DG was comparable
across the four groups of mice (NTG, 1559.4 *= 82.6; PS1,
1902.0 £ 116.0; APP, 1684.0 = 217.7; APP/PS1, 1539.6 = 163.0)
(Fig. 3, Table 1), indicating that transgene expression did not
affect the immediate survival of newborn cells in the hippocam-
pus. Thus, generation and short-term survival of adult newborn
cells remains intact in APP and APP/PS1 mice despite higher-
than-normal levels of AB in both genotypes and widespread amy-
loid pathology in the latter.

Late survival of newborn cells is dramatically impaired in the
hippocampus of double-transgenic APP/PS1 mice

After exiting the cell cycle, as many as 80% of the newly generated
cells in the adult DG will die within 4 weeks (Kempermann et al.,
2003). The surviving cells differentiate into neurons or glia.
Whereas cell fate can be specified within 1 d after cell division, it
is nearly 2 weeks before the processes of newborn neurons first
reach their target field in CA3 and 4—7 weeks before they become
functionally integrated into the hippocampal circuitry and indis-
tinguable from older granule cells (Hastings and Gould, 1999;
van Praag et al., 2002; Jessberger and Kempermann, 2003; Over-
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Figure 1. Amyloid plaques are specific to APP/PST mice at 6 months of age. Inmunohisto-

chemistry against A3 reveals widespread amyloid pathology in 6-month-old APP/PS1 mice (A),
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street et al., 2004; Zhao et al., 2006). Within this critical time
window, the formation of new hippocampal circuits and the sur-
vival of new neurons are sensitive to neuronal activity in the local
environment (Tozuka et al., 2005; Ge et al., 2006; Overstreet-
Wadiche and Westbrook, 2006; Tashiro et al., 2006). Given that
altered hippocampal neurotransmitter levels in the AD brain are
suggestive of changes in neuronal activity (Gsell et al., 2004; Lanc-
tot et al., 2004), we evaluated the survival of newborn cells in the
hippocampus of our transgenic mice during this critical window
for survival.

Stereological analysis of BrdU+ cells in mice killed 30 d after
labeling revealed a significant and specific decrease in the number
of surviving newborn cells in APP/PS1 mice (APP/PS1, 181.8 =
26.9 vs NTG, 311.4 = 25.0; p < 0.001) (Fig. 4, Table 1). In con-
trast, no significant differences in BrdU+ cell number were
found between either group of single-transgenic mice and their
NTGsiblings (PS1,331.2 = 17.0; APP, 234.4 = 15.7). Thus, more
newborn BrdU+ cells were eliminated in APP/PS1 mice than in
any other genotype. Compared with the number of BrdU+ cells
present 1 d after the final injection, only 11.8% of newborn cells
survived through the month in APP/PS1 mice compared with
20% in NTG mice.

Neurons are specifically reduced among surviving newborn
hippocampal cells in mice overproducing Af3

Our initial experiments measuring cell survival in the AD trans-
genic mice reveal that the number of newborn cells in the hip-
pocampus is significantly diminished by 4 weeks after cell divi-
sion in APP/PS1 double-transgenic mice. However, this analysis
did not characterize which cell types were missing. Our next ex-
periments therefore investigated the phenotype of the surviving
newborn cells in the DG to determine whether the reduction in
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Figure3.  Short-term survival of newborn cells in the adult DG is not affected by APP/A3 overproduction. A-D, One day after
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absolute number of BrdU -+ cells in the DG is shown for each genotype (mean == SEM; n = 1012 per group). Overproduction of
APP/A reduced the number of labeled cells surviving 30 d after the final BrdU injection in APP/PS1 double-transgenic animals
(**¥p < 0.001vs NTG; *#p << 0.001 vs PST; ANOVA with Tukey's post hoc). Neither APP nor PS1 by themselves had any effect on
the survival of newborn DG cells compared with NTG (APP vs PS1, *p << 0.05).

Table 1. Number of BrdU-immunoreactive cells in the dentate gyrus 1d (short-term survival) and 4 weeks (late
survival) after the last BrdU injection

Number of BrdU+ cells

Genotype Short-term survival Late survival

NTG 1559.4 = 82.6 (n = 10) 311.4 £ 25.0(n=10)

PS1 1902.0 = 116.0(n=9) 331.2 £17.0(n=10)

APP 1684.0 = 217.7(n = 12) 2344 + 157" (n=10)
APP/PST 1539.6 == 163.0 (n = 10) 181.8 = 26.9%%%# (5 = 12)

Dataare mean = SEM. Significance values indicated for individual pairs are as follows: ***p < 0.001 versus NTG; ***p < 0.001 versus PS1; *p < 0.05 versus
PS1 (ANOVA with Tukey's post hoc).
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their NTG siblings (APP, 96.6 *= 14.4;
APP/PS1,65.5 = 7.6 vs NTG, 181.9 * 6.5;
p <0.001) (Fig. 5, Table 2). Neuronal sur-
vival was not affected by expression of PS1
alone: neither the fraction nor the absolute
number of BrdU+ cells coexpressing
NeuN was significantly different between
PS1 and their NTG siblings (Table 2). In
contrast to the marked neuronal deficit in
the APP and APP/PSI mice, we found no
difference in the fraction or number of
surviving newborn glial cells (BrdU+/
NeuN—/S1008+) across these genotypes.
However, PS1 mice showed an increased
number of newly generated astrocytes
compared with NTG (Fig. 5, Table 2).

Evidence that loss of newborn neurons
in APP/PS1 mice occurs relatively late
in maturation

At least three different hypotheses could
explain the decreased number of surviving
new cells and the lower proportion of neu-
rons among that population in our APP/
PS1 mice. First, there could be fewer new-
born cells adopting a neuronal fate.
Alternatively, a normal proportion of
newborn cells may be choosing a neuronal
fate but may take longer than normal to
fully differentiate. Finally, there could be a
normal proportion of cells adopting a
neuronal fate, and these cells could be dif-
ferentiating properly but then die as they
mature. All three scenarios would result in
the diminished number of postmitotic
BrdU+/NeuN+ newborn neurons ob-
served in our initial phenotypic analysis.
To distinguish between these possibilities,
we performed additional phenotypic anal-
yses to measure the proportion of new-
born cells that had become postmitotic
neurons (marked by NeuN) compared
with the population of immature neuro-
nal precursors [marked by DCX
(Couillard-Despres et al., 2005)]. DCX is a
microtubule-stabilizing factor expressed
early in neuronal differentiation. A subset
of DCX+ cells remains proliferative as

BrdU+ cell number in APP/PS1 mice is caused by a specific loss
of neurons or whether neurons and glia are equally susceptible to
APP/AB overproduction. We used triple immunohistochemistry
to identify BrdU+ cells in the DG and determined what fractions
coexpressed either the postmitotic neuronal marker NeuN or the
astrocytic marker S100f3.

Four weeks after the final injection of BrdU, a significantly
lower fraction of BrdU+ cells coexpressed the neuronal marker
NeuN in APP single-transgenic and APP/PS1 double-transgenic
mice compared with NTG controls (APP, 41.2 * 4.4%; APP/PS1,
36.0 = 3.9% vs NTG, 58.4 = 4.0%; p < 0.05 and p < 0.01,
respectively) (Table 2). In absolute numbers (determined by
multiplying the neuronal fraction by the total number of surviv-
ing BrdU+ cells), both APP and APP/PS1 mice harbor signifi-
cantly fewer newborn neurons (BrdU+/NeuN+/S1003—) than

neural-restricted progenitors (Filippov et al., 2003; Kempermann
et al., 2004). DCX expression is downregulated concomitantly
with the appearance of the neuron-specific nuclear protein NeuN
(Brown et al., 2003; Rao and Shetty, 2004).

Confocal analysis of triple BrdU/DCX/NeuN fluorescent im-
munolabeling confirmed the reduction in BrdU+/NeuN+ neu-
rons (here marked as BrdU+/DCX—/NeuN+) in the APP/PS1
mice. Consistent with our previous experiment, we found that
the proportion of postmitotic BrdU+/DCX—/NeuN+ neurons
in APP/PS1 and NTG mice (29.6 * 5.9 vs 52.3 = 3.2%; p < 0.01)
(Table 3) was similar to the proportion of BrdU+/NeuN-+/
S100B— cells measured previously in these mice (APP/PSI,
36.0 = 3.9%; NTG, 58.4 = 4.0%; see data above). Unlike our
previous study of NeuN and GFAP, when double labeling for
NeuN and DCX was measured, we found that the percentage of
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Table 2. Phenotypic distribution of BrdU-immunoreactive cells in the dentate gyrus 4 weeks after BrdU injection: astrocytes (5100 3+) versus neurons (NeuN+)

Fraction of BrdU + cells expressing

Mean number of cells

Neither BrdU~+/NeuN+/ BrdU+/NeuN—/ BrdU+/NeuN—/
Genotype NeuN (%) $1003 (%) marker (%) $1008— $1008+ $1008—
NTG 584+ 4.0 128 £28 288 =45 1819 + 6.5 39.9 =32 897 = 7.1
PS1 452+ 36 205 47 339+ 16 149.7 = 9.7 67.9 + 3.5 1123 =57
APP 412+ 447 188 =33 394+ 4.6 96.6 &= 14.4%xxH 441+ 30 924+ 6.2
APP/PS1 36.0 + 3.9%* 212 + 6.1 48 +34 65.5 + 7.6%*x# 386 = 5.7 77.8 = 115

BrdU-positive cells were phenotyped by colabeling with markers specific for neurons (NeuN) or astrocytes (S100/3). The percentage of each phenotype as a fraction of the total BrdU+ population (left columns) and the corresponding
absolute number of cells (right columns) are indicated. Significance values indicated for individual pairs are as follows: *p << 0.05, **p << 0.01,and ***p << 0.001 versus NTG; *p < 0.05 and *p < 0.001 versus PS1; *#p < 0.01 versus NTG,

APP, and APP/PS1 (ANOVA with Tukey's post hoc).

surviving BrdU+ cells expressing neither
marker was greater in the APP/PSI1
(59.6 = 7.5%) than in their NTG siblings
(39.5 = 2.3%; p < 0.05). A known fraction
of this BrdU+/DCX—/NeuN— popula-
tion reflects newly generated astrocytes
(BrdU+/NeuN—/S100B8+), which we
have shown is not affected in the APP/PS1
mice (Table 2). The remaining population
of BrdU+ cells is likely to include oligo-
dendrocytes, microglia, and progenitor
cells.

The main goal of the experiment was to
examine the effect of APP/AB overpro-
duction on the percentage and mean
number of surviving immature neurons
(BrdU+/DCX+/NeuN—). As a percent-
age of the total BrdU+ population, imma-
ture BrdU+/DCX+/NeuN— neurons
were equally represented in APP/PS1 and
NTG mice (APP/PS1, 10.8 = 3.4%; NTG,
9.7 = 2.3%) (Table 3). Recall, however,
that there are significantly fewer total
BrdU+ cells surviving at this time point in

Number of BrdU+ cells

i '
F ]
I

_ merged

merged
*

M Astrocytes (BrdU+/NeuN-/S10003+)
(BrdU+/NeuN+/S1008-)
M Neither (BrdU+/NeuN-/S100B-)

siblings. When the corresponding mean
number of BrdU+/DCX+/NeuN— cells
is calculated for each animal (by multiply-
ing the fraction of BrdU+/DCX+ cells by
the total number of BrdU+ cells surviving
at this time), we find significantly fewer
immature neurons in APP/PSI mice
(19.6 £ 2.9) compared with NTG animals
(30.2 = 2.4; p < 0.05) (Fig. 6, Table 3).
During adult neurogenesis, expression
of DCX starts as neuroblasts are generated, peaks during the sec-
ond week and is downregulated concomitantly with the appear-
ance of the postmitotic neuronal marker NeuN (Brown et al.,
2003; Rao and Shetty, 2004). This time course corresponds ex-
actly with the BrdU injection and harvest schedule of our early
survival experiments, which labeled newborn cells ranging in age
from 1 to 13 d after division (Fig. 3). Given the absence of BrdU+
cell loss at this stage compared with the dramatic decrease in
labeled cells measured 30 d later, our data suggest that the early
DCX+ stage is not affected by APP/AB overexpression. Instead,
the decrease in DCX+ cells measured in cells 30—42 d after divi-
sion likely occurred relatively late in the process of maturation, at
the tail end of the DCX+ stage. Our data show a much greater
deficit in more mature newborn neurons in APP/PS1 mice that is
best explained by the specific death of these cells as they approach
neuronal maturation (NeuN+). Our data in mice overproducing

Figure5.
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Overproduction of APP/A3 specifically diminishes survival of newborn neurons in APP and APP/PS1 mice. A-C, E-G,
Confocal analysis was used to score the coexpression of NeuN (green; €, G) and S1003 (blue; B, F) in BrdU + cells (red; 4, E) from
each genotype. D, H, Arrows in the merged images indicate BrdU -+ /NeuN -+ neurons (D, H), the asterisk identifies a BrdU+/
$1003+ astrocyte (H), and arrowheads indicate BrdU+ cells coexpressing neither marker (D). /, Distribution of phenotypes in
BrdU+ cells by genotype. Compared with NTG, a significantly smaller number of BrdU + cells colabel with NeuN (green) in the
hippocampus of both APP and APP/PS1 transgenic mice (***p << 0.01 vs NTG; ANOVA with Tukey's post hoc). In contrast, the
number of newborn $1003+ astrocytes (blue) and newborn cells expressing neither neuronal nor glial markers (red) is un-
changed by overproduction of APP/AB. Error bars indicate SEM.

APP/AP are thus most consistent with a specific loss of newborn
neurons relatively late in the process of maturation.

Newborn neurons migrate normally within the GCL of APP
and APP/PS1 mice

Recent studies suggest that the functional integration of newborn
granule cells is sensitive to extrinsic signals in their local environ-
ment. Thus, proper migration within the GCL into an area with
the requisite environment may be important for newborn neu-
rons to mature and survive. To evaluate whether improper mi-
gration contributes to the reduced number of postmitotic new-
born neurons in APP/PS1 mice, we examined the position of
surviving BrdU+ cells within the GCL. We found that migration
of BrdU+ cells within the GCL did not vary between genotypes.
In each group, the majority of 30- to 42-d-old BrdU+ cells were
found within the SGZ (NTG, 34.3%; APP, 42.3%; APP/PS1,
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Table 3. Phenotypic distribution of BrdU-immunoreactive cells in the dentate gyrus 4 weeks after BrdU injection: postmitotic neurons (NeuN +) versus immature neuronal

precursors (DCX+)
Fraction of BrdU + cells expressing Mean number of cells
Neither BrdU+/DCX+/ BrdU+/ BrdU+/DCX—/
Genotype DCX (%) NeuN (%) marker (%) NeuN— DCX—/NeuN—+ NeuN—
NTG 9.7 %23 52332 395+23 302 £24 162.9 = 13.0 123.0+98
APP/PS1 108 =34 29.6 = 5.9** 59.6 = 7.5% 19.6 = 2.9* 53.8 = 8.0%** 108.6 = 16.0

BrdU-positive cells were phenotyped by colabeling with markers specific for postmitotic neurons (NeuN) orimmature neuronal precursors (DCX). The percentage of each phenotype as a fraction of the total BrdU+ population (left columns)
and the corresponding mean number of cells is indicated. Significance values indicated for individual pairs are as follows: *p << 0.05, **p << 0.01, and ***p << 0.001 versus NTG (ANOVA with Tukey's post hoc).
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Figure 6.

newborn cells express neither marker (red) in APP/PST and NTG mice. Error bars indicate SEM.

32.3%) and the inner third of the GCL (NTG, 42.2%; APP,
30.8%; APP/PS1, 38.3%). The remaining BrdU+ cells had
reached the middle (NTG, 13.8%; APP, 15.4%; APP/PS1, 16.4%)
and outer (NTG, 9.8%; APP, 11.5%; APP/PS1, 12.9%) thirds of
the GCL in equal proportions across genotypes. Thus, the relative
distribution of newborn cells within the DG was unaffected by
APP/AB overexpression, suggesting that other factors such as
direct neurotoxicity, modification of the surrounding environ-
ment, or diminished production of requisite survival factors may
be at play.

Discussion

In the current study, we show that hippocampal neurogenesis is
dramatically impaired in transgenic mice overproducing AB. We
find that although proliferation and early survival of hippocam-
pal progenitor cells are unaffected by transgenic APP/Af, the late
survival of newborn cells 4—6 weeks later is significantly dimin-
ished. Although recent reports have demonstrated altered neuro-
genesis in various models of AD, our study makes an important
advance in identifying the specific reduction in newborn neurons
among the surviving population and demonstrating that these
cells succumb to APP/AB overproduction relatively late in mat-
uration. Only 12% of newborn cells remain 1 month after cell
division in APP/PS1 animals compared with 20% in NTG mice.
Of these cells, more than half express markers of postmitotic

B Neither (BrdU+/DCX-/NeuN-)
(BrdU+/DCX+/NeuN-)

B Post-mitotic neurons (BrdU+/DCX-/NeuN+)

Overproduction of APP/A3 exacerbates cell death of newborn neurons as they approach maturity. A-C, Confocal
analysis was used to score the coexpression of NeuN (blue; €) and DCX (green; B) in BrdU + cells (red; A) in APP/PSTand NTG mice.
D, The arrowhead in the merged image identifies a BrdU +/DCX+/NeuN— immature neuron. E, The number of BrdU+ cells
coexpressing the immature neuronal precursor marker DCX (green) is smaller in APP/PS1 than in NTG mice (*p < 0.05; ANOVA
with Tukey’s post hoc). The decrease in BrdU + cells coexpressing the postmitotic neuronal marker NeuN (blue) in APP/PS1 mice
is even more dramatic than the loss of DCX + cells (***p << 0.001; ANOVA with Tukey's post hoc). In contrast, a similar number of

neurons in NTG mice compared with
one-third in APP/PS1 animals. We also
demonstrate that the amount and/or ag-
gregation state of AS is critical to this ef-
fect: neurogenesis is halved in predeposit
mice but is even more dramatically re-
duced after the appearance of amyloid.

Previous studies of cultured primary
neurons demonstrated that AB or its ag-
gregates are neurotoxic in vitro (Yankner
et al., 1989; Pike et al., 1993), and more
recent work shows that this toxicity is con-
centration dependent (Haughey et al,
2002). Whereas this in vitro evidence sup-
portsa direct effect of A on neuronal sur-
vival, other factors may contribute to the
impaired neurogenesis we observe in vivo.
Microglial activation, loss of cholinergic
input, and altered levels of growth factors
are all associated with diminished adult
neurogenesis, and each has been reported
in transgenic models for AD (Benzing et
al,, 1999; Matsuoka et al, 2001;
Savonenko et al., 2005; Wu et al., 2006).
Additional studies are needed to deter-
mine whether newborn granule neurons
are actively killed by APP/Ap, or are un-
able to survive because of changes in the
brain associated with APP/A[3 overexpression.

Although several recent studies have examined hippocampal
neurogenesis in other models of APP transgenic mice, ours is the
first to use congenic lines that had been backcrossed to C57BL/6]
for >10 generations. Careful control of the parental lines allowed
us to examine effects of APP/AB overexpression on a consistent
genetic background. This strategy produces mice that derive
>99.8% of their genome from the backcross strain (C57BL6/])
but can retain up to 20 cM of flanking sequence from the original
parental lines (Bolivar et al., 2001; de Ledesma et al., 2006). Im-
portantly, however, the use of congenic lines meant that the con-
tribution of each parental strain is consistent from one mouse to
the next (~99.8% C57BL6/], 0.2% C3HeJ). In contrast, past
studies used hybrid or outbred backgrounds in which the pro-
portion of two or more parental strains can vary significantly
between animals (Haughey et al., 2002; Wen et al., 2002, 2004;
Dong et al., 2004; Wang et al., 2004; Chevallier et al., 2005; Don-
ovan et al.,, 2006). Because different strains display distinct pro-
liferation, survival, and differentiation dynamics, there can be
substantial variation in hippocampal neurogenesis depending on
the genetic background (Kempermann et al., 1997; Hayes and
Nowakowski, 2002). Our use of congenic mice avoided these
confounds in demonstrating a strong effect of APP/AS on hip-
pocampal neurogenesis.
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In addition to genetic background, the various APP trans-
genes used in previous studies of hippocampal neurogenesis may
contribute to their differing outcomes. Five studies using differ-
ent APP transgenic or knock-in lines reported alterations of hip-
pocampal neurogenesis in the mutant animals. The timing, di-
rection, and nature of the changes varied substantially, including
reduced proliferation and survival (Haughey et al., 2002), in-
creased proliferation and neurogenesis (Jin et al., 2004b), re-
duced proliferation before and after onset of amyloid pathology
(Dong et al., 2004), reduced proliferation specifically after onset
of amyloid plaques (Donovan et al., 2006), and no change in
proliferation unless mutant PS1 is coexpressed (Zhang et al.,
2007). Our findings suggest yet another conclusion: diminished
survival with no change in proliferation. Each report used mice
expressing slightly different forms of APP under distinct promot-
ers. The length, amount, location, and aggregation properties of
AP can vary substantially between lines (Meyer-Luehmann et al.,
2006), with potentially divergent effects on hippocampal
neurogenesis.

Varying outcomes in neurogenesis have also been reported in
mice expressing mutant forms of PS1. We demonstrated that
expression of PS1dE9 alone did not affect hippocampal neuro-
genesis. In contrast, previous reports have described altered neu-
rogenesis in other transgenic (Wen et al., 2004), hemizygous
knock-in (Wang et al., 2004), and transgenically rescued knock-
out PS1 mice (Chevallier et al., 2005). Presenilins are mainly
known as the catalytic subunits of y-secretase (De Strooper et al.,
1998; Haass and De Strooper, 1999; Wolfe et al., 1999), and PS1
mutations associated with AD clearly retain this function. In con-
trast, inherited mutations in PS1 may impact other interactions
critical for alternative functions. For example, Chevallier et al.
(2005) demonstrated that the dE9 mutation expressed in our PS1
transgenic mice does not alter 3-catenin stability as dramatically
as other PS1 variants. More recent data suggest that presenilins
act as calcium leak channels in the endoplasmic reticulum (Tu et
al., 2006) and that the PS1dE9 mutation leads to a gain of func-
tion, whereas other mutants induce loss of function. Aberrant
activity of the dE9 variant in such nonenzymatic interactions may
explain why neurogenesis is unaffected in our PS1dE9 mice and
underlie the disparate data obtained from other PS1-modified
mice.

Variations in labeling procedure used to assess hippocampal
neurogenesis constitute another limitation to comparing reports
in this field. The frequency, dose, and survival time after BrdU
injection vary across studies, with many preparations labeling
only a fraction of dividing cells (Cameron and McKay, 2001).
Our injection protocol used multiple low-dose BrdU injections
to label a reliable number of newborn cells from which to mea-
sure long-term survival. As a result of this multiday protocol, our
measure of early survival, assessed 1 d after the final injection of
BrdU, actually reflects a range of cells born 1-12 d earlier and
includes both proliferative and postmitotic cells. The variation in
cell age would have been of greater concern had we observed any
change in the number of labeled cells at this time. Instead, our
results show no difference between genotypes in this early surviv-
ing population. Additional analysis of actively dividing cells
within this population using the mitotic marker Ki67 show no
difference in precursor proliferation with overexpression of APP/
A. Together, these findings suggest that changes in neuronal
number observed 30 d later occur long after cell division.

The timing of neuronal loss in our APP and APP/PS1 mice is
consistent with the period during which newborn granule cells
start extending processes into CA3 (Hastings and Gould, 1999;
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van Praag et al., 2002; Zhao et al., 2006), developing synaptic
specializations of mature neurites (Zhao et al., 2006), and becom-
ing functionally integrated into local neuronal networks (van
Praag et al., 2002; Jessberger and Kempermann, 2003; Esposito et
al., 2005; Ge et al., 2006; Kee et al., 2007). Survival during matu-
ration may depend on the degree of functional integration into
the pre-existing circuitry. Moreover, activity of surrounding neu-
rons influences survival and maturation of newborn progenitors
through tonic GABA activation even before they receive synaptic
input (Ge et al., 2006; Overstreet-Wadiche and Westbrook,
2006). Both GABAergic and glutamatergic signaling required for
successful maturation and integration of newborn neurons are
compromised by late stages of AD (Gsell et al., 2004; Lanctot et
al., 2004). Although not studied in our transgenic lines, the deg-
radation of these neurotransmitter systems in other mouse mod-
els of AD (Bell et al., 2006) suggests loss of newborn neurons in
our APP/PS1 mice may be caused by damage to the microenvi-
ronment required for their development and survival.

Recent findings have suggested that formation of some types
of memory rely on the continuous production of new hippocam-
pal neurons throughout adulthood (for review, see Leuner et al.,
2006; Bruel-Jungerman et al., 2007). Although not all studies
agree about which tasks are impaired, they collectively support
the idea that continued adult neurogenesis is required to main-
tain the full range of hippocampal-dependent functions. Based
on this observation, the reduction in neuronal survival observed
in our APP and APP/PS1 mice likely has dramatic functional
consequences. However, this deficit appears before learning im-
pairments in standard- and episodic-like water maze tests
(Savonenko et al., 2005), suggesting that diminished neurogen-
esis is one of several factors contributing to late-onset cognitive
decline. Given this possibility, strategies to improve survival of
newborn neurons, such as environmental enrichment or physical
exercise, may help to delay cognitive decline in mouse models for
AD. Accordingly, recent studies show that such interventions
lead to significant behavioral improvement in APP and APP/PS1
mice (Arendash et al., 2004; Adlard et al., 2005; Jankowsky et al.,
2005; Wolf et al., 2006; Costa et al., 2007).

In conclusion, our data indicate that neuronal replacement in
the adult hippocampus is dramatically altered by Alzheimer’s
pathology. Our study demonstrates that overproduction and
subsequent aggregation of A3 can severely limit the survival of
newborn hippocampal neurons. That this deficit becomes more
severe in mice with high levels of AB and fulminant plaque pa-
thology suggests that there may be a period early in the disease
during which hippocampal neurogenesis is still intact and might
be preserved through therapeutic intervention.
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