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A cardinal pathological lesion of Alzheimer’s disease (AD) is the deposition of amyloid � (A�) in the brain. We previously reported that
exposing transgenic mice harboring APPswe/PS1�E9 transgenes to an enriched environment resulted in reduced levels of A� peptides
and deposition, findings that were correlated with an increase in the expression of TTR, encoding transthyretin (TTR). TTR is expressed
at high levels in the choroid plexus and known to bind A� peptides and modulate their aggregation in vitro and in vivo. To explore the
impact of TTR expression on A� levels and deposition in vivo, we crossed ceAPPswe/PS1�E9 transgenic mice to mice with genetic
ablations of TTR. We now report that the levels of detergent-soluble and formic acid-soluble levels of A� and deposition are elevated in
the brains of ceAPPswe/PS1�E9/TTR�/� mice compared with age-matched ceAPPswe/PS1�E9/TTR�/� mice. Moreover, A� deposi-
tion is significantly accelerated in the hippocampus and cortex of ceAPPswe/PS1�E9/TTR�/� mice. Our results strongly suggest that
TTR plays a critical role in modulating A� deposition in vivo.
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Introduction
Alzheimer’s disease (AD) is associated with progressive memory
loss and severe cognitive decline. These clinical features are asso-
ciated with deposition of 40 – 42 amino acid �-amyloid (A�) pep-
tides in the cerebral cortex and hippocampal formation. A� pep-
tides are liberated from amyloid precursor proteins (APP), by the
concerted action of BACE 1 (Vassar et al., 1999; Yan et al., 1999)
and “�”-secretase (Sisodia and St George-Hyslop, 2002; De
Strooper, 2003). Early onset, familial forms of the disease (FAD)
are caused by expression of mutant variants of APP, presenilin 1
(PS1), or presenilin 2 (PS2) (Price and Sisodia, 1998).

We previously reported that APPswe/PS1�E9 transgenic mice
exposed to an “enriched” environment exhibited reduced A� in
the cortex and hippocampus compared with APPswe/PS1�E9
mice maintained in standard housing conditions (Lazarov et al.,
2005). Extending these findings, our high density DNA microar-
ray profiling studies revealed that expression of TTR, a gene en-
coding transthyretin (TTR), was significantly upregulated in the
brains of the enriched APPswe/PS1�E9 transgenic mice. TTR, a

homoterameric protein of 127 amino acid subunits, is synthe-
sized in the liver and by epithelial cells of the choroid plexus
(CSF). Serum TTR is involved in the transport of thyroxine
(Schreiber et al., 1990; Chanoine et al., 1992) and plasma retinol-
binding protein complexed to vitamin A (Monaco, 2000). A se-
ries of biochemical and in vivo studies have revealed that TTR
may also play a role in modulating A� aggregation both in vitro
and in vivo. For example, A� forms stable complexes with TTR in
vitro and prevents aggregation/amyloid formation (Schwarzman
et al., 1994), whereas expression of human TTR in Caenorhabditis
elegans rescues the morphological and behavioral alterations in
worms expressing human A� peptides in the muscle (Link,
1995). Finally, microarray studies of hippocampi from 6-month-
old Tg2576 transgenic mice (Stein and Johnson, 2002), or cortical
tissue from Tg2576/PS1 P264L/P264L mice analyzed well before the
onset of A� deposition (Wu et al., 2006), have revealed markedly
elevated levels of TTR transcripts. These studies suggested that
TTR gene expression was induced in response to overproduction
of A� peptides (Stein and Johnson, 2002) and that overexpressed
TTR would sequester A� species and thus preclude their subse-
quent aggregation and deposition.

To explore the impact of TTR expression on A� levels and
deposition in vivo, we crossed mice that harbor FAD-linked APP-
swe and PS1�E9 transgenes (Jankowsky et al., 2001) to mice with
homozygous deletions of TTR. Brain A� levels and amyloid dep-
osition in ceAPPswe/PS1�E9/TTR�/� or ceAPPswe/PS1�E9/
TTR�/� mice were examined as a function of age. We now
report that amyloid deposition is accelerated and A� levels are
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significantly elevated in the brains of ceAPPswe/PS1�E9/
TTR�/� compared with ceAPPswe/PS1�E9/TTR�/� mice at
all ages examined. Our results strongly suggest that TTR plays a
critical role in modulating A� deposition in vivo.

Materials and Methods
Transgenic mice. The ceAPPswe/PS1�E9 transgenic mouse line #57
(Jankowsky et al., 2001) was obtained from The Jackson Laboratory (Bar
Harbor, ME). Mice with a targeted insertion into exon 2 of the TTR gene
(Episkopou et al., 1993) were obtained from Dr. William Blaner (Colum-
bia University, New York, NY).

Tissue processing. The mice were deeply anesthetized with a mixture of
ketamine and xylazine and then decapitated. Isolated brains were bi-
sected longitudinally, and hemispheres were separated and frozen on dry
ice. The left hemisphere was used for examination of cerebral A� quan-
tification by ELISA or protein expression by Western blot analysis. The
right hemisphere was kept intact for immunohistochemistry (see below).

Sandwich ELISA analysis, immunocytochemistry, and Western blot
analysis. The levels of cerebral A� were detected using ELISA protocols
described previously (Suzuki et al., 1994; Turner et al., 1996). Immuno-
staining of sections, confocal imaging, and quantification of amyloid
deposition were performed as described by Lazarov and et al. (2005). For
Western blot analysis, brains were homogenized in detergent-containing
buffer and subject to Western blot analysis as described previously (Laz-
arov et al., 2005). APP and APP-C-terminal fragments (CTFs) were de-
tected using Ab369, raised against the APP C terminus (Xu et al., 1997).
Full-length and soluble APP derivatives were detected with Ab22C11, a
monoclonal antibody raised against the extracellular domain of APP
(Hilbich et al., 1993), whereas the soluble derivative derived from APP-
swe was detected with Ab192swe (Haass et al., 1995). TTR was detected
with rabbit anti-mouse TTR antibody (Sousa et al., 2007). Mouse anti-
�-tubulin was used to normalize for protein loading.

Statistical analysis. Data are expressed as mean values � SEM. Stu-
dent’s t test and ANOVA tests were applied to study the relationship
between the different variables. Values of p � 0.05 were considered to be
significant.

Results
Increased levels of cerebral A� levels in brains of hemizygous
TTR-deficient mice harboring ceAPPswe/PS1�E9 transgenes
The ceAPPswe/PS1�E9 transgenic mouse line #57 (Jankowsky et
al., 2001) harbors cointegrated APPswe and PS1�E9 transgenes
are driven by the mouse prion promoter (PrP). The APPswe
transgene encodes a chimeric mouse-human APP695 harboring
a human A� domain and mutations (K595N, M596L) linked to
Swedish FAD pedigrees (APPswe), and the human PS1�E9 trans-
gene is linked to familial AD (Borchelt et al., 1996, 1997; Lee et al.,
1997). The bigenic ceAPPswe/PS1�E9 were crossed with TTR-
deficient mice (Episkopou et al., 1993) to generate ceAPPswe/
PS1�E9/TTR�/� or ceAPPswe/PS1�E9/TTR�/� mice. Al-
though we obtained a number of ceAPPswe/PS1�E9/TTR�/� in
the course of breeding, we chose not to evaluate A� levels and
deposition in these animals to avoid indirect effects of TTR-
deficiency that could confound our interpretations. For example,
TTR-deficient mice exhibit significantly elevated expression of
mRNA encoding peptidylglycine �-amidating monooxygenase,
the rate-limiting enzyme in neuropeptide maturation, and hence,
leads to elevated levels of neuropeptide Y (NPY) (Nunes et al.,
2006). NPY acts on energy homeostasis by increasing white adi-
pose tissue lipoprotein lipase and decreasing thermogenesis. In-
deed, TTR-deficient mice exhibit decreased body temperature,
increased carbohydrate consumption, and preference (Nunes et
al., 2006), and we observed that both TTR�/� and ceAPPswe/
PS1�E9/TTR�/� mice are lethargic and exhibit increased body
weight relative to their hemizygous TTR (or ceAPPswe/PS1�E9/
TTR�/�) or TTR�/� (or ceAPPswe/PS1�E9/TTR�/�) litter-

mates (S.H.C. and S.S.S., personal observations). In addition, the
limbic forebrain of TTR-deficient mice exhibits significantly ele-
vated levels of noradrenaline (Sousa et al., 2004), a catecholamine
neurotransmitter that has been shown to modulate A� burden in
a transgenic mouse model of AD (Kalinin et al., 2007). Finally,
because retinol and thyroid hormones are essential for normal
mammalian brain physiology and are particularly critical during
development (Porterfield and Hendrich, 1993) and because TTR
is the only thyroid hormone-binding protein found at a substan-
tial level in the CSF (Herbert et al., 1986), it is possible that TTR
reduction could cause developmental abnormalities.

To examine the influence of TTR expression on cerebral
steady-state levels of A�, we generated mice that harbored ceAPP-
swe/PS1�E9 transgenes on a TTR�/� background. Cohorts of
these animals were aged for either 3, 4, 5, or 7 months. A� levels
in detergent and formic acid extracts of hemibrains of either
ceAPPswe/PS1�E9/TTR�/� or ceAPPswe/PS1�E9/TTR�/�
mice were quantified using sandwich ELISA analysis. We show
that 5-month-old ceAPPswe/PS1�E9/TTR�/� mice exhibit ele-
vated steady-state levels of detergent soluble A�X-40 and A�X-42

compared with 5-month-old ceAPPswe/PS1�E9/TTR�/� mice
(Fig. 1A and B, respectively), but the differences failed to reach
significance. In contrast, the levels of detergent soluble A�X-40

and A�X-42 peptides were significantly elevated in the brains of
7-month-old ceAPPswe/PS1�E9/TTR�/� compared with ce-
APPswe/PS1�E9/TTR�/� mice (Fig. 1A,B). These studies sug-
gested that a fraction of A� peptides that would otherwise aggre-
gate and deposit remain in a detergent extractable state when
TTR gene dosage is reduced. Most notably, the levels of formic
acid-soluble A�X-40 (Fig. 1C) and A�X-42 (Fig. 1D) peptides were
significantly elevated in the brains of the ceAPPswe/PS1�E9/
TTR�/� compared with ceAPPswe/PS1�E9/TTR�/� mice at
both the 5 and 7 month time points, findings that would argue in
support for a role of TTR in preventing A� aggregation and sub-
sequent deposition.

Figure 1. Genetic reduction of TTR elevates steady-state levels of cerebral A� in the brains of
ceAPPswe/PS1�E9 mice. A, B, Levels of detergent-soluble A�X-40 and A�X-42 in brain extracts
of ceAPPswe/PS1�E9/TTR�/� and ceAPPswe/PS1�E9/TTR�/� mice at 7 month time
point. C, D, Levels of formic acid-soluble A�X-40 and A�X-42 in brain extracts of ceAPPswe/
PS1�E9/TTR�/� and ceAPPswe/PS1�E9/TTR�/� mice at 5 and 7 month time points. The
asterisk indicates a significant difference from ceAPPswe/PS1�E9/TTR�/� at p � 0.05 (3– 4
animals/group). Error bars represent SE.
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Genetic reduction of TTR leads to
accelerated A� deposition in ceAPPswe/
PS1�E9 mice
To examine the influence on reduced ex-
pression of TTR on amyloid deposition,
brain sections from ceAPPswe/PS1�E9/
TTR�/� and ceAPPswe/PS1�E9/
TTR�/� mice were probed with A�-
specific 3D6 antibodies (Kim et al., 2001),
and bound antibodies were detected by
fluorescently labeled secondary antibod-
ies. Confocal images of amyloid burden
were quantified by morphometric
methods.

Although we failed to detect any signif-
icant difference in the levels of A� deposi-
tion between genotypes at the 3 and 4
month time points, we observed a dra-
matic and significant elevation in amyloid
deposition in the cortex of ceAPPswe/
PS1�E9/TTR�/� at 5 and 7 months com-
pared with ceAPPswe/PS1�E9/TTR�/�
mice (Fig. 2A, compare f and g with b and
c, respectively). Similarly, amyloid deposi-
tion in the hippocampus of 7-month-old
ceAPPswe/PS1�E9/TTR�/� was clearly
elevated compared with ceAPPswe/
PS1�E9/TTR�/� mice (Fig. 2A, com-
pare h and d, respectively). Morphometric
analysis confirmed that ceAPPswe/
PS1�E9/TTR�/� exhibited significantly
higher amyloid burden in the cortex (Fig.
2Ba) and hippocampus (Fig. 2Bb) com-
pared with ceAPPswe/PS1�E9/TTR�/�
mice at the 5- and 7-month-old time
points. We then costained brain sections
from 5-month-old mice with thioflavin S
and 3D6 antibodies (Fig. 2C). These stud-
ies revealed that thioflavin S staining in
ceAPPswe/PS1�E9/TTR�/� was elevated
compared with the ceAPPswe/PS1�E9/
TTR�/� mice, and that this staining was
at the core of the amyloid deposits in both
cases.

Genetic reduction of TTR does not alter
APP processing in ceAPPswePS1�E9
mice
To assess whether alterations in APP pro-
cessing might account for the observed
elevations of A� levels in ceAPPswe/PS1�E9/TTR�/�, we
prepared detergent-soluble extracts from these animals and
ceAPPswe/PS1�E9/TTR�/� mice and subjected these prepara-
tions to Western blot analysis. To confirm the TTR genotype,
extracts were probed with an anti-TTR antibody. We demon-
strate that an �14 kDa TTR antibody-immunoreactive polypep-
tide is present in extracts from brains of ceAPPswe/PS1�E9/
TTR�/�, and this species is absent in extracts from ceAPPswe/
PS1�E9/TTR�/� mice (Fig. 3A, lanes 1 and 2, respectively). The
�14 kDa immunoreactive species is also present in extracts from
brains of ceAPPswe/PS1�E9/TTR�/� mice at all ages examined
(Fig. 3, lanes 3, 5, 7), and the levels are clearly lower in brains of
ceAPPswe/PS1�E9/TTR�/� mice at all ages (Fig. 3, lanes 4, 6, 8).

Analysis of Western blots using Ab369 failed to disclose any dif-
ferences in the levels of full-length APP (APP-FL) or membrane-
tethered APP C-terminal derivates (APP-CTFs) in extracts pre-
pared either from ceAPPswe/PS1�E9/TTR�/� (Fig. 3B, lanes 3,
5, 7) or ceAPPswe/PS1�E9/TTR�/� (Fig. 3B, lanes 1, 4, 6, 8)
mice. Furthermore, we failed to observe any differences in total
levels of full-length APP and soluble derivatives using Ab22C11,
raised against the extracellular domain of APP, or soluble Swed-
ish �APPs detected by Ab192swe between ceAPPswe/PS1�E9/
TTR�/� and ceAPPswe/PS1�E9/TTR�/� mice at all time
points. These results suggest that genetic reduction of TTR in
ceAPPswe/PS1�E9 mice does not result in a discernable impact
on APP processing at steady state.

Figure 2. Increased amyloid deposition in the cortex and hippocampus of ceAPPswe/PS1�E9/TTR�/�. A, Immunohisto-
chemical analysis of brain sections of APPswe/PS1�E9/TTR�/� (a– c, cortex, 4, 5, and 7 month; d, hippocampus, 7 month) and
ceAPPswe/PS1�E9/TTR�/� (e, f, cortex, 4, 5, and 7 month; h, hippocampus, 7 month) mice immunolabeled with anti-A� 3D6
antibodies. Scale bar, 200 �m. B, Quantitative analysis of volume of amyloid burden in the cortex (a) and the hippocampus (b) of
APPswe/PS1�E9/TTR�/� versus APPswe/PS1�E9/TTR�/� mice. Volume is in arbitrary units (mean voxel count � SE). The
asterisk indicates a significant difference from ceAPPswe/PS1�E9/TTR�/� at *p � 0.05; **p � 0.01 (4 animals/group). Error
bars represent SE. C, Thioflavine S-stained amyloid deposits in the cortex of 5-month-old ceAPPswe/PS1�E9/TTR�/� versus
5-month-old ceAPPswe/PS1�E9/TTR�/� mice. Costaining of brain sections with 3D6 antibodies (a, d) and thioflavine S (b, e)
and overlap (c, f ). Scale bar, 50 �m.
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Discussion
A series of preceding biochemical and transgenic mouse studies
have provided compelling evidence that TTR plays a role in mod-
ulating A� aggregation and deposition. For example, A� forms
stable complexes with TTR and inhibits aggregation in vitro
(Schwarzman et al., 1994), and expression of human TTR rescues
the morphological and behavioral alterations in C. elegans that
express human A� (Link, 1995). Indeed, studies have revealed
that the levels of brain TTR were significantly lower in human AD
patients compared with age-matched controls and negatively
correlated with the abundance of amyloid plaques (Serot et al.,
1997; Merched et al., 1998). Supporting these lines of evidence,
DNA microarray studies in transgenic mice have revealed that
expression of TTR mRNA is markedly elevated well before the
onset of amyloid deposition (Stein and Johnson, 2002; Costa et
al., 2006), suggesting that upregulation of TTR is a physiological
response to elevated A� levels that in turn blocks their aggrega-
tion. To these studies, we demonstrated that relative to APPswe/
PS1�E9 mice maintained in standard housing conditions, APP-
swe/PS1�E9 transgenic mice exposed to an “enriched”
environment exhibited reduced A� deposition in the cortex and
hippocampus (Lazarov et al., 2005), a setting in which steady-
state levels of TTR transcripts were elevated in the brain. Collec-
tively, these latter data provided support for the notion that TTR
plays an important role in regulating A� deposition in vivo.

In the present study, we tested the hypothesis that lowering
brain levels of TTR, a protein that can sequester A� peptides and
prevent fibril formation, would accelerate amyloid deposition in
APPswe/PS1��9 mice, and we now offer several important in-

sights. First, we demonstrate that the levels of detergent-soluble
A� peptides are elevated in the brains of ceAPPswe/PS1�E9/
TTR�/� compared with ceAPP/PS1�E9/TTR�/� mice at all
time points tested. Although these studies would suggest that
lowering TTR levels might affect APP processing, we have not
observed any alterations in APP metabolism in steady-state
Western blot studies. Our interpretation of the finding of ele-
vated soluble A� levels in APPswe/PS1�E9/TTR�/� mice is that
these species are either oligomeric assemblies that are not depos-
ited or represent the amorphous nonfibrillar assemblies that are
present in the “penumbra” of the thioflavin-positive deposits. In
any event, our confocal immunofluorescence and morphometric
studies reveal that amyloid burden both in the cortex and hip-
pocampus of ceAPPswe/PS1�E9/TTR�/� was dramatically in-
creased compared with ceAPPswe/PS1�E9/�/� mice from the 5
month time point onwards. These morphological studies were
validated by sandwich ELISA analyses in which we observed that
the levels of formic acid-soluble A�X-40 and A�X-42 peptides are
markedly elevated in the brains of the ceAPPswe/PS1�E9/
TTR�/� mice at all time points. Collectively, our immunohis-
tochemical and biochemical studies convincingly demonstrate
that genetic reduction of TTR elevates A� deposition in the
brains of ceAPPswe/PS1�E9/TTR�/� mice.

The nature of the interaction(s) between TTR and A� and the
mechanism(s) by which TTR alters the aggregation of A� in vivo
are not fully understood. Liu and Murphy (2006) reported that
TTR significantly decreased the rate of aggregation in a strong
concentration-dependent manner. Moreover, the region near
tryptophan 41 of TTR is involved in binding to A� aggregates by
Trp fluorescence quenching experiments (Liu and Murphy,
2006), a finding consistent with studies showing that peptide
fragments containing Trp41 of TTR bind to A� (Schwarzman et
al., 2005). Although the domain(s) within A� that bind to TTR
are not known, future efforts to obtain high-resolution informa-
tion pertaining to the nature of A�-TTR interactions would be of
considerable interest.

Finally, the sites within the brain where A� binds to TTR have
not been fully resolved. Recent studies using laser dissection mi-
croscopy and PCR studies have clearly demonstrated that TTR
transcripts are excluded from the brain parenchyma but re-
stricted to choroid plexus (Sousa et al., 2007). These findings
would argue that A�40/42, produced in the brain parenchyma, is
subject to efflux into the CSF (Seubert et al., 1992; Shoji et al.,
1992) where the peptides encounter TTR that is secreted from the
choroid plexus and subsequently sequestered. Although this lat-
ter notion is attractive, it is important to note that TTR is not the
only protein that binds A� in CSF. Indeed, evidence has accumu-
lated that �-1-antichymotrypsin, apolipoprotein J, and apoli-
poprotein E, proteins present in CSF, can also bind A� in vitro
and, in certain cases, in vivo (Abraham et al., 1988; Ghiso et al.,
1993; Strittmatter et al., 1993), and the respective contributions
of each of these proteins to A� clearance remains to be estab-
lished. Notwithstanding the importance of these latter species to
A� metabolism in vivo, our data supporting a role for TTR in
modulating A� deposition suggest that approaches aimed at en-
hancing A� sequestration and clearance with TTR as a template
would be of significant therapeutic value.
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