Critical Involvement of cAMP/DARPP-32 and Extracellular Signal-Regulated Protein Kinase Signaling in L-DOPA-Induced Dyskinesia

Emanuela Santini, Emmanuel Valjent, Alessandro Usiello, Manolo Carta, Anders Bergkvist, Jean-Antoine Girault, Denis Hervé, Paul Greengard, and Gilberto Fisone

Impairments in Fast Axonal Transport and Motor Neuron Deficits in Transgenic Mice Expressing Familial Alzheimer’s Disease-Linked Mutant Presenilin 1

Orly Lazarov, Gerardo A. Morfini, Gustavo Pigino, Archana Gadadhar, Xiangjun Chen, John Robinson, Hanson Ho, Scott T. Brady, and Sangram S. Sisodia

Corrections: In the article “Muscarinic Control of Long-Range GABAergic Inhibition within the Rhinal Cortices” by John Apergis-Schoute, Aline Pinto, and Denis Pare´, which appeared on pages 4061–4071 of the April 11, 2007 issue, there was an error in the calibration bar of the currents of Figure 7. The correct values should be 40 pA for A1, 20 pA for A2 and A3, and 16 pA for B1 and B2.

In the article “Learning-Induced Plasticity in Auditory Spatial Representations Revealed by Electrical Neuroimaging” by Lucas Spierer, Eric Tardif, Holger Sperdin, Micah Murray, and Stephanie Clarke, which appeared on pages 5474–5483 of the May 16, 2007 issue, an error was identified in the manner in which colors were described for Figure 4. In the legend for Figure 4, the description of panel c should read “Over the 252-299 ms poststimulus period, different maps again described AEPs in response to the R500 and R385 conditions during the post-training but not pretraining session (framed in blue and red).” In addition, the first full paragraph on page 5479 should read “Over the 252-299 ms poststimulus period, different maps described AEPs in response to the R500 and R385 conditions during the post-training but not pretraining session. These maps are framed in blue and red, respectively, in Figure 4a. The global dissimilarity between these maps is 0.469. After the fitting procedure, analysis of map presence over this period revealed significant interactions between session and map (F(1,9) = 5.17; p = 0.049) and between stimulus lateralization and map (F(1,9) = 8.15; p = 0.019). Additional ANOVAs were therefore conducted for each session, separately. For the pretraining session, there was a main effect of map (F(1,9) = 5.33; p = 0.046). Neither the main effect of stimulus lateralization nor the interaction between factors reached the 0.05 significance criterion. This pattern of results indicates that the map framed in red predominated responses during the pretraining session (Fig. 4c, bar graphs). For the post-training, there was a significant interaction between stimulus lateralization and map (F(1,9) = 9.77; p = 0.012), whereas neither main effect reached our 0.05 significance criterion. Similar to the effects over the 195-250 ms interval, this pattern indicates that during the post-training session, the map framed in blue predominated responses to the R500 lateralization, whereas the map framed in red predominated responses to the R385 lateralization (Fig. 4c, bar graphs).”

Persons interested in becoming members of the Society for Neuroscience should contact the Membership Department, Society for Neuroscience, 1121 14th St., NW, Suite 1010, Washington, DC 20005, phone 202-962-4000.

Instructions for Authors are available at http://www.jneurosci.org/misc/itoa.shtml. Authors should refer to these Instructions online for recent changes that are made periodically.

Brief Communications Instructions for Authors are available via Internet (http://www.jneurosci.org/misc/ifa_bc.shtml).

Submissions should be submitted online using the following url: http://sfn.manuscriptcentral.com. Please contact the Central Office, via phone, fax, or e-mail with any questions. Our contact information is as follows: phone, 202-962-4000; fax, 202-962-4945; e-mail, jn@sfn.org.