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Benefits of Contrast Normalization Demonstrated in
Neurons and Model Cells
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The large dynamic range of natural stimuli poses a challenge for neural coding: how is a neuron to encode large differences at high
contrast while remaining sensitive to small differences at low contrast? Many sensory neurons exhibit contrast normalization: gain
depends on the range of stimuli presented, such that firing-rate modulation is not proportional to contrast. However, coding depends
strongly on the precision of spike timing and the reliability of spike number, neither of which can be predicted from neural gain. The
presumption that contrast normalization is associated with maintained coding efficiency remained untested. We report that, as contrast
decreases, responses are more variable and encode less information, as expected. Nevertheless, these changes can be small, and infor-
mation transmission is even better preserved across contrasts than rate modulation. The extent of contrast normalization is correlated
with the extent to which information transmission is preserved across contrasts. Specifically, normalization is associated with maintain-
ing the bits of information per spike rather than bits per second. Finally, we show that a nonadapting model can exhibit both contrast
normalization and the associated information preservation.
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Introduction
Given that a neuron can only produce a limited range of firing
rates, the sensitivity of its firing rate to stimulus strength will
determine the range of stimuli it can effectively discriminate.
There is a broad range of contrasts present in natural scenes
(Ruderman and Bialek, 1994; van Hateren, 1997) (supplemental
Fig. 1, available at www.jneurosci.org as supplemental material),
suggesting that it would be advantageous to adapt sensitivity to
the prevailing contrast (Atick and Redlich, 1992; Schwartz and
Simoncelli, 2001). Contrast normalization has long been known
to occur in the early visual system of vertebrates (Shapley and
Victor, 1978, 1981; Shapley and Enroth-Cugell, 1984; Benardete
et al., 1992; Shou et al., 1996; Benardete and Kaplan, 1997; Smir-
nakis et al., 1997; Brown and Masland, 2001; Chander and Chich-
ilnisky, 2001; Kim and Rieke, 2001, 2003; Kremers et al., 2001;
Baccus and Meister, 2002; Solomon et al., 2004; Jin et al., 2005).
Analogously, adaptation to the variance of higher-order stimulus
features is found in visual cortex (Ohzawa et al., 1985; Bonds,
1991; Heeger, 1992; Kohn and Movshon, 2003) and many other
sensory systems. For example, in the fly visual system, the firing-
rate sensitivity of H1 neurons to motion scales with motion
contrast (Brenner et al., 2000; Fairhall et al., 2001; Heitwerth

et al., 2005). Model simulations verify that this scaling optimizes
the information available at the level of firing rate (Brenner
et al., 2000).

The relationship between contrast normalization and neural
coding remains unclear, however, because information is not
coded only by firing rate. In the lateral geniculate nucleus (LGN),
for example, both the reliability and temporal precision of spikes
are essential for the encoding of high-contrast white-noise visual
stimuli (Reich et al., 1997; Reinagel and Reid, 2000; Liu et al.,
2001; Reinagel and Reid, 2002). As a result of lower signal-to-
noise ratio, one might expect responses to be less temporally
precise, less reliable from trial to trial, and less informative as
contrast decreases. It is difficult, however, to predict the magni-
tude and significance of these effects. Contrast normalization
measures firing rate properties and thus does not itself reveal the
effect of contrast on neural coding, which depends on properties
such as reliability and precision in addition to firing rate.

It is also not known whether contrast normalization requires
an active adaptation process. Response properties of neurons
change gradually after a change in contrast, and the speed of these
changes has attracted theoretical interest (DeWeese and Zador,
1998; Fairhall et al., 2001). The biophysical properties of neurons
also change with stimulus contrast (Carandini and Ferster, 1997;
Sanchez-Vives et al., 2000; Kim and Rieke, 2001; Baccus and
Meister, 2002). Conversely, there is experimental evidence that
spike-generation mechanisms play a role in contrast normaliza-
tion (Kim and Rieke, 2001, 2003; Zaghloul et al., 2005). Recent
theoretical results show that nonlinear systems can exhibit con-
trast normalization without any active changes; fixed nonlinear
properties of the cell (such as the threshold and saturation) can be
sufficient to produce contrast normalization (Borst et al., 2005;
Yu and Lee, 2005; Yu et al., 2005). In the models shown previ-

Received Nov. 11, 2005; revised May 1, 2007; accepted May 24, 2007.
This research was supported by National Institutes of Health/National Eye Institute Grant R01EY016856-02.

K.S.G. was supported by a National Science Foundation predoctoral fellowship and National Science Foundation/
Integrative Graduate Education and Research Traineeship Fellowship DGE-0333451. P.R. was supported by an Alfred
P. Sloan Foundation fellowship. We thank Pamela Magoffin for surgical assistance and Samar Mehta for assistance
with spike sorting.

Correspondence should be addressed to Pamela Reinagel, Division of Biology, Neurobiology Section, University of
California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0357. E-mail: preinagel@ucsd.edu.

DOI:10.1523/JNEUROSCI.1093-07.2007
Copyright © 2007 Society for Neuroscience 0270-6474/07/278071-09$15.00/0

The Journal of Neuroscience, July 25, 2007 • 27(30):8071– 8079 • 8071



ously to exhibit contrast normalization, optimization of infor-
mation transfer across contrasts was either not found (Yu and
Lee, 2005) or not tested. These studies used firing-rate models
that do not consider the reliability and precision of real neurons,
and information transmission was not analyzed at the level of
spike timing.

Materials and Methods
Surgical preparation. Cats were anesthetized initially with ketamine HCl
(20 mg/kg, i.m.), followed by sodium pentothal (2– 4 mg � kg �1 � h �1,
i.v., supplemented as needed). Animals were ventilated using an endo-
tracheal tube. Electrocardiogram, electroencephalogram, temperature,
expired CO2, and oxygen in blood were continually monitored. All sur-
gical and experimental procedures were in accordance with National
Institutes of Health and United States Department of Agriculture guide-
lines and were approved by the University of California, San Diego Insti-
tutional Animal Care and Use Committee.

Electrical recording. We report results from 41 LGN relay cells recorded
from the A laminas of the LGN of anesthetized cats. Parylene-coated
tungsten electrodes (AM Systems, Everett, WA) were inserted through a
0.5-cm-diameter craniotomy over the LGN. Recordings were amplified,
filtered, and digitized at 10 kHz sampling rate (CED micro 1401 and
Spike2, version 5.12a; Cambridge Electronic Design, Cambridge, UK).
Waveforms were analyzed off-line to isolate single-unit responses (Fee et
al., 1996).

Visual stimulation. Stimuli were spatially uniform and presented on a
custom-built light-emitting diode array. To create matched stimuli at all
contrasts, we began with a random binary stimulus of 125 frames/s for
10 s. The same binary sequence was scaled about the mean to obtain three
contrast conditions (11, 33, and 100%, in which contrast is defined as the
SD of the luminance over the mean.) Stimuli of the three contrasts were
interleaved and presented between 10 and 128 times each. We analyzed
only the last 5 s of the response to each 10 s stimulus. The mean lumi-
nance was the same for all contrasts and was well within the photopic
range (55 cd/m 2). These stimuli produced the fast but not the slow form
of adaptation for most cells in our population (data not shown) (cf.
Baccus and Meister, 2002). We also presented cells with a 1 s, binary
stimulus at 10 different contrasts, repeated 40 times at each contrast
(used in Fig. 2e,f ).

Comparisons between cell types. To classify cell types, spatiotemporal
receptive fields were mapped using reverse correlations of responses to a
white-noise (m-sequence) stimulus. Most cells were also classified as X or
Y based on observations of null phases or frequency doubling of contrast
reversing stimuli modulated at 1, 2, or 4 Hz. We used both contrast-
reversing sine gratings and contrast-reversing bipartite field stimuli. The
latter consisted of two hemifields sinusoidally modulated in counter-
phase; the vertical division between the hemifields was varied, presenting
10 cycles for each location of the division. The population of 41 cells
consisted of 18 ON cells (5 X ON, 9 Y ON, and 4 ON cells unclassified
with respect to X/Y), 21 OFF cells (10 X OFF, 7 Y OFF, and 4 OFF cells
unclassified with respect to X/Y), and two Y cells that exhibited ambigu-
ous (possibly ON/OFF) responses. The latter two cells could not be fit
with our linear–nonlinear model and were not included in analyses in-
volving gain, but the cells were included for other analyses such as reli-
ability, precision, and information rate.

Estimation of neural gain with a linear–nonlinear cascade. For each cell
at each contrast, we began by estimating the filter as the spike-triggered
average. The filters for the three contrasts were normalized by the ampli-
tude of their first peaks. The stimulus was convolved by the correspond-
ing filter to create a generator potential, g(t). We compared this generator
potential with the observed probability of spiking at each time bin. For
each cell, we fit the observed input– output function at 100% contrast to
the following sigmoid equation:

y � exp�A � e�Gx�S�. (1)

In Equation 1, the variables A, G, and S describe the amplitude, slope, and
horizontal offset of the nonlinear function, respectively. We then fit the
input– output functions at the other two contrasts holding the amplitude

( A) constant for all contrast conditions for each cell. We excluded a
dataset from our analysis if there were �100 spikes observed in the re-
sponse, but even cells with low firing rates could usually be included by
simply recording more trials to obtain sufficient numbers of spikes. We
also excluded a dataset from additional analysis if it could not be well fit
by a sigmoid (if the R 2 value associated with the sigmoid fit was �0.90).
For each cell at each contrast, we then define the gain as G from Equation
1. Our results did not depend critically on how the filters were scaled;
similar results were found by normalizing by the peak-to-peak amplitude
of the spike-triggered average.

This method of estimating gain has the advantage that it allows for
differing shapes of the nonlinearity, which we observed in our data. In
our population of cells, the horizontal offset ( S) increased as contrast
increased for some cells, decreased for others, and remained constant for
still others. The offset change was not correlated with information pres-
ervation (data not shown).

Nevertheless, to assess whether our method of gain estimation impor-
tantly influenced our conclusions, we replicated our entire analysis using
an alternative framework for estimation of the gain, namely, fixing the
nonlinear function at all contrasts and scaling the filters as needed to
match the empirical relation between g(t) and the observed probability of
spiking (Chichilnisky, 2001). The two approaches are conceptually sim-
ilar but subject to different practical limitations. Our results were quali-
tatively the same in both analyses (data not shown).

Spike-count variability measure. The trial-by-trial variability in spike
count was measured by the Allan Factor (AF):

AF �
� Ni � Ni�1)2 �

2�
, (2)

where Ni is the spike count in trial i, � is the mean spike count over all
trials, and � . . . � denotes the average result across all consecutive trials
at one point in time in the repeated flickering stimulus. The Allan Factor
was computed separately for all nonoverlapping 5 ms windows of the
stimulus, and we report the average over these windows. In windows with
no spikes in any trial (� � 0), AF is undefined.

The Allan Factor is closely related to the more commonly used Fano
Factor, but instead of calculating the variance as the average squared
difference in spike count with respect to the average spike count across all
trials, the numerator is the average difference in spike count with respect
to the spike count during the preceding trial. The Allan Factor is pre-
ferred because it is less sensitive than the Fano Factor to slow changes in
neural activity over the course of long recordings. All trends reported
remained the same, however, if the Fano Factor was used instead of the
Allan Factor (data not shown).

Responses to repeated stimuli were divided into nonoverlapping 5 ms
bins. [Trends were the same using 10, 50, 100, 250, 500, and 1000 ms bins
(data not shown).] The Allan Factor was computed from the distribution
of spike counts across trials separately in each time bin, and these values
were averaged across time bins for each cell within each contrast
condition.

We performed an alternative analysis using firing events (Berry et al.,
1997), such that, instead of calculating the Allan Factor from the number
of spikes within each bin, the calculation was performed on the number
of spikes within each peristimulus time histogram (PSTH) peak. We
either averaged the Allan Factors across firing events and compared the
average across contrasts, or compared the Allan Factors between con-
trasts on a peak-by-peak basis (data not shown). Both yielded similar
results to the time-binned method.

It is known that variability is low when instantaneous firing rate is high
because of the regularizing effects of refractoriness (Kara et al., 2000). To
test whether the observed increase in mean firing rate (see Fig. 2e) or in
rate modulation (see Fig. 2f ) was sufficient to explain the observed de-
crease in variability at high contrast (see Fig. 4a), we also compared the
Allan Factors for a subset of time bins from each contrast that fell within
a narrow range of firing rates. This range was chosen separately for the
high–medium and high–low contrast comparisons, because often there
was no one firing rate sufficiently represented at all three contrasts. We
required a minimum n � 10 samples at each contrast. We used 5 ms bins,
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such that, at most, one PSTH peak was contained within a bin. Because
the mean rates could not be perfectly matched between two contrasts, we
erred in the direction of including higher firing rate bins for the lower
contrast, so that our bias if any would be to attribute less variability to
low-contrast responses. Even when firing rate was matched, the Allan
Factor of the cells increased as contrast decreased ( p � 0.0001). We
obtained similar results when comparing the variability of individual
firing events (PSTH peaks) that contained the same average number of
spikes (data not shown).

A minority of cells had super-Poisson variability (Allan Factor � 1),
which was attributable to bursting (Kara et al., 2000). We use interspike
interval criteria to identify these bursts, which we attribute to low-
threshold calcium channels (Lu et al., 1992). We define the burst proba-
bility as the ratio of the burst frequency over the response frequency, in
which a response is either a burst or a single spike. Across all of our
conditions (41 cells � 3 contrasts), 33 of 123 had burst probability �5%;
this subset included all 20 conditions for which AF � 1.05 (supra-
Poisson variability).

Temporal precision measures. For each cell at each contrast condition,
we measured the trial-to-trial jitter in spike trains by the width of the
peak of the average cross-correlation between sequential trials. The
cross-correlation reveals the probability of a spike in one trial at times
immediately surrounding the time of a spike in the preceding trial. Be-
cause the timing of spikes is relatively reproducible in these data (tem-
poral jitters on the order of milliseconds) and the time between spikes is
relatively long (tens to hundreds of milliseconds), we observe sharp peaks
centered at t � 0 in the cross-correlation between trials. We defined
precision as the half-width of this peak at half-maximum. Thus, if spike
times had a normal distribution of � about the mean time, our measure
would assign a precision of (�2 � ln(0.5) � � 2) 1/2. For analysis of
temporal jitter, we included only those peaks that were sufficiently sam-
pled (enough spikes) to accurately estimate the peak width. Specifically,
our criteria were that the cross-correlation curve was sufficiently smooth
to allow unambiguous identification of the peak, and this peak was at t �
0. To determine smoothness in an automated way, the cross-correlogram
was smoothed with a five-point moving average, and the smoothness is
defined as 1 minus the summed squared error between the smoothed and
raw correlograms. We used a criterion of smoothness � 0.75, which
eliminated from this analysis all correlograms that were too noisy to
accurately estimate the peak.

Because all measures of temporal precision have advantages and lim-
itations, we repeated our entire analysis using several different measures,
with similar results. For example, we also determined the average width
of identified firing events (PSTH peaks) within each contrast and com-
pared this measure of precision across contrasts. In another analysis, we
compared the peak widths between contrasts on a peak-by-peak basis,
which relied on our ability to identify corresponding PSTH peaks in the
responses to the same stimulus time course presented at different con-
trasts. Both yielded similar results to the cross-correlation method (data
not shown). We note that all of these definitions of precision are sensitive
to the duration of the firing event as well as the jitter in the time of onset.
Thus, our estimate is an upper bound on the precision of the timing of
the first spike in each discrete firing event.

Contrast normalization index. The greater the change in contrast, the
larger change in gain (sensitivity) would be required to compensate.
Thus, we express the magnitude of gain change relative to the magnitude
of contrast change and call this the contrast normalization index �:

� �
G lower/Ghigher � 1

Chigher/Clower � 1
, (3)

where G is neural gain, and C is stimulus contrast. This index has the
property that � � 0 if there is no change in gain, and � � 1 if the gain
decreased by the same factor that the contrast increased.

Mutual information measures. We calculated the visual information in
spike trains by a direct entropy method (Strong et al., 1998), imple-
mented exactly as by Reinagel and Reid (2000). Briefly, we represented
LGN responses as time-binned spike trains. In our analysis, we varied 	

from 1 to 16 ms; results for 	
 � 2 ms are shown. The value in a time bin

was set to zero if no spikes occurred during that time interval or one if a
single spike occurred during that time interval. Because of the refractory
period of the cells, the occurrence of two spikes in the same 2 ms time bin
was so rare as to be negligible.

We analyzed the information in words (short strings of bins) and
varied the number of bins in the words, L. For each word length, we
measured two forms of word entropy: the average noise entropy,
�Hnoise�, which reflects the trial-to-trial variability of words when the
stimulus was fixed, and the average total entropy, �Htotal�, which re-
flects the variability of words across all stimuli in the ensemble. The
mutual information between the visual stimulus and the spike train is
defined as I � �Htotal� � �Hnoise�. Finally, we define the coding
efficiency of the cell as the mutual information divided by the total en-
tropy (I/Htotal).

In detail, Hnoise(t) was calculated from the distribution of words at a
fixed time t relative to stimulus onset across all repeated trials of the same
sample of the stimulus. We performed a separate calculation of Hnoise(t)
for many different values of t (separated by one bin). We then averaged
over t to get the average noise entropy �Hnoise�. We performed equally
many separate calculations of Htotal(i), but the set of words was instead
selected using a different time t from each trial. Twice the number of
words were used for each single estimate of Htotal(i) to compensate for
the approximately twofold difference in entropy. We averaged over i to
get the average total entropy �Htotal�. We computed information as a
function of word length. Results are shown for a word length of 1 bin (2
ms), but all trends were the same at all word lengths tested.

For each entropy estimate, we determined how our estimate of H
converged as we used increasing fractions of the data and then corrected
for finite data size according to the method of Strong et al. (1998). We fit
a second-order polynomial to 1/(fraction of data) versus the entropy
estimate. We used this polynomial to extrapolate to infinite data only if
the resulting correction was �10% and the second-order term �1%. If
data did not meet these criteria, a linear fit was used to correct for finite
data size (maximum 15% correction), and we indicate our reduced con-
fidence in these data by open symbols in Figures 5 and 6. All of our results
were qualitatively unchanged if we did not perform correction for finite
data size (data not shown). Once the information rate was estimated in
this way, we separately analyzed the results in units of raw information
rate (bits per second), information per spike (bits per spike, by dividing
the information rate by the firing rate), or coding efficiency, defined as
the fraction of the entropy of the cell that carries visual information
(I/�Htotal�).

Nonadapting LGN model. Model cells were implemented as described
by Keat et al. (2001) (Fig. 1, schematic). Briefly, the model first convolves
the stimulus with a linear filter. The generator potential is equal to the
convolved stimulus plus noise; the amplitude and time constant of this
noise are defined by the model parameters �a and 
A, respectively. A
spike is generated whenever the generator signal crosses a threshold, �.
Each time a spike occurs, a negative afterpotential is added to the gener-
ator potential, such that the threshold is crossed repeatedly during sus-
tained excitatory stimuli. The amplitude, time constant, and variability
in the amplitude of the negative afterpotential are defined by the model
parameters B, 
P, and �b, respectively. We generated a set of model cells
using all possible combinations of the following parameters: � � 0.1; B �
3, 5, or 7; 
P � 20, 35, or 50; 
A � 20; �a � 0.01, 0.16, 0.31, or 0.61, �b �
0.02, 0.15, or 0.28; F � FX or FY. The filter functions, FX and FY, were
taken from the X ON and Y OFF cat LGN data of Keat et al. (2001), their
Figure 8c.

We note that this model was chosen because it was more successful at
replicating the dependence of neural responses on contrast than other
models we tested. In particular, we found that a linear–nonlinear Poisson
refractory model also exhibited contrast normalization and changes in
spike-count reliability (data not shown), but that model failed to repli-
cate changes in temporal precision and latency that are captured by the
model we use here. A more detailed discussion of the modeling results
will be presented elsewhere (Gaudry and Reinagel, 2007).
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Results
We recorded responses of LGN neurons to full-field flickering
binary white-noise stimuli with each of three contrasts: 100, 33,
or 11% (see Materials and Methods). We determined that this
range is representative of temporal contrasts found in natural
stimuli (supplemental Fig. 1, available at www.jneurosci.org as
supplemental material). The responses of one representative cell
are shown in Figure 2. Consistent with previous reports (Reinagel
and Reid, 2000; Liu et al., 2001), the high-contrast white-noise
stimulus elicited sparse responses with discrete firing events sep-
arated by periods with no spiking activity (Fig. 2a). When the
same stimulus sequence was scaled to lower contrasts, the firing
events appear to be weaker and noisier, as expected (Fig. 2b,c).
Nevertheless, even at 11% contrast, there are discrete and precise
peaks in the time-varying firing rate (Fig. 2d). For this cell, both
firing rate (Fig. 2e) and rate modulation (Fig. 2f) increase with
contrast. Nevertheless, the rate modulation of the LGN neurons
does not increase linearly, consistent with the predictions of con-
trast gain control (Shapley and Victor, 1978; Benardete et al.,
1992). The term “contrast gain control” refers to a specific phe-
nomenon in the vertebrate retina that encompasses not only gain
changes (contrast normalization) but also changes in temporal

dynamics and spatial summation, which are not explored here. In
this work, we restrict our analysis and conclusions to one aspect
of contrast gain control, namely contrast normalization in the
temporal dimension. If we can identify principles relating con-
trast normalization (i.e., normalization to input variance) to gen-
eral properties of neurons, such principles could be applicable to
a wide variety of sensory neurons, including those at later stages
of processing, in other species, and in other sensory modalities.

Contrast normalization in LGN neurons
We measured the gain of LGN neurons by fitting the data to a
linear–nonlinear cascade, to test whether cells matched their gain
to the stimulus contrast. Contrast normalization in the retina has
been extensively studied in this framework (Hunter and Koren-
berg, 1986; Chander and Chichilnisky, 2001; Chichilnisky, 2001;
Kim and Rieke, 2001; Rieke, 2001; Baccus and Meister, 2002). In
the analysis shown here, we estimated a linear filter F(t) for each
cell in each contrast condition by the normalized spike-triggered
average stimulus (see Materials and Methods). Filters obtained
from one Y OFF cell during high-contrast stimuli (red) and
medium-contrast stimuli (blue) are shown in Figure 3a. We
found a range of absolute latencies and filter durations, but filter
durations in the range of 50 ms were typical in our data. This is
somewhat faster than other reports in the literature (Benardete
and Kaplan, 1999), but these data are not in conflict. The absolute
latency and duration of the filter depends on details of the exper-
imental preparation (species and temperature for in vitro retinal
studies) and the stimulus (luminance, contrast, and temporal
bandwidth), which differ among these studies.

By scaling the linear filters to the same amplitude at all con-
trasts, we can estimate the gain, G, of the neuron from the slope of
a sigmoidal input– output function (nonlinearity) that is empir-
ically measured from the data (Fig. 3b) (for details and alternative
analyses, see Materials and Methods). The gain indicates the ex-
tent to which the probability of firing of the neuron will increase
for a given increase in stimulus strength. Therefore, a higher gain
corresponds to an increased neural sensitivity.

When the stimulus contrast was decreased, we found that the
gain of the neurons increased (all symbols are above unity line in
Fig. 3c), indicating that the sensitivity (slope of the input– output
function) increased. Nevertheless, the gain changed by less than
the change in contrast. In other words, a threefold drop in con-
trast was not compensated by an exactly threefold boost in gain
(thin line, compare with circles and diamonds) and likewise for a
ninefold change in contrast (dotted line, compare with triangles).
We defined a contrast normalization index, �, such that � � 0 if
there was no gain change and � � 1 if the gain of the neuron
increased by the same factor that the stimulus contrast decreased
(see Materials and Methods). The average contrast normaliza-
tion, �, was 	0.5, consistent with previous reports in the retina
and LGN (Shapley and Enroth-Cugell, 1984; Benardete et al.,
1992; Chander and Chichilnisky, 2001; Kim and Rieke, 2001;
Kremers et al., 2001; Baccus and Meister, 2002; Zaghloul et al.,
2005). Some individual cells exhibited almost no gain change
(� 
 0), whereas others came close to compensatory scaling (� 

1). Even within cell type, there was considerable variability across
cells.

Several studies have reported that different cell types of the
early visual system differ in the degree of contrast gain control.
Previous studies in the retina, for example, found stronger con-
trast gain control in Y cells than X cells of the cat retina (Shapley
and Victor, 1978). Contrast gain control was reported to be
stronger for OFF than ON cells in salamander retina but stronger

Figure 1. Schematic of generative model used to predict spike trains from stimuli. We sim-
ulated neural responses with a model originally described by Keat et al. (2001). First row, The
stimulus, s( t), is convolved with a filter, F( t), to produce g( t). Second row, A noise signal is
added to g( t) to produce the generator potential, h( t). The parameters 
A and �a determine
the time constant and amplitude of this noise term. Bottom rows, When the generator potential
crosses a threshold, �, a spike occurs. Each time a spike occurs, a negative afterpotential is
added to the subsequent generator potential. The parameters B, 
P, and �b determine the
amplitude, the time constant, and variability in the amplitude of the negative afterpotential.
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for ON cells in primate retina (Chander and Chichilnisky, 2001).
Both rapid and slow forms of contrast gain control were stronger
in the primate magnocellular pathway than in the parvocellular
pathway (Benardete et al., 1992; Benardete and Kaplan, 1999;
Kremers et al., 2001; Solomon et al., 2004). In our dataset, the
distributions of contrast normalization indices were not signifi-
cantly different between X and Y cells for any pair of contrasts
compared. We found that OFF cells had stronger contrast nor-
malization than ON cells. In high- to medium-contrast compar-
isons, � was 0.56 � 0.25 for OFF cells versus 0.37 � 0.20 for ON
cells ( p � 0.028); in high- to low-contrast comparisons, � was
0.41 � 0.20 for OFF cells versus 0.25 � 0.12 for ON cells ( p �
0.014); the difference was not statistically significant when com-
paring medium- to low-contrast ( p � 0.12).

Variability in number and timing of spikes
Contrast normalization is thought to help maintain sensitivity
under different contrast conditions. However, the gain change
(which depends on the sensitivity of firing rate to stimuli) cannot
predict changes in the temporal precision of responses or the trial-
by-trial variability in spike number, both of which are important for
determining the rate of information transmission in the LGN (Reich
et al., 1997; Reinagel and Reid, 2000; Liu et al., 2001).

When a visual stimulus is presented repeatedly, there is some
variability from trial to trial in the number of spikes within any
time bin of the response. It is known that this spike-count vari-
ability (Fano Factor, i.e., variance divided by mean) is lower dur-
ing high instantaneous firing rates, which can be explained by the
regularizing effects of refractoriness (Berry and Meister, 1998;
Keat et al., 2001; Uzzell and Chichilnisky, 2004; Zaghloul et al.,
2005). Given that both mean rate (in some cells) and response
modulation (in all cells) increased with contrast, we predicted a
decrease in variability at high contrast. Nevertheless, this was not
guaranteed to be the case; changes in the refractoriness of the

system could either enhance or reduce the
expected change (Berry and Meister, 1998;
Kara et al., 2000).

To quantify the variability in spike
count, we calculated the Allan Factor of
neural responses in the high- (100%),
medium- (33%), and low- (11%) contrast
conditions. Like the more familiar Fano
Factor, the Allan Factor has a value of zero
for a deterministic process, increases as
variability increases, and has a value of one
for a Poisson process (see Materials and
Methods). Consistent with previous ob-
servations (Kara et al., 2000; Reinagel and
Reid, 2000), most LGN neurons had sub-
Poisson variability at high contrast (Allan
Factor � 1). Responses to lower-contrast
stimuli had more spike-count variability
(Allan Factor increased in 80 of 82 com-
parisons; p � 0.001 by Wilcoxon’s sign rank
test). Nevertheless, most cells remained sub-
Poisson even at 11% contrast (Fig. 4a). This
finding, based on within-cell comparisons, is
consistent with recent results based on pop-
ulation comparisons in the primate retina
(Uzzell and Chichilnisky, 2004). We did not,
however, find significant differences be-
tween ON and OFF cells with respect to
spike-count variability or its dependence on

contrast, as were reported by Uzzell and Chichilnisky (2004).
We measured the variability of spike timing by the temporal

jitter of spikes across trials (see Materials and Methods). In our
data from 100% contrast stimuli, temporal jitter was �2 ms for
61% of cells and �1 ms for 29% of cells, comparable with the
precision reported previously for high-contrast white-noise stim-
uli (Reinagel and Reid, 2002). As the contrast decreases, the de-
creasing signal-to-noise ratio might be expected to produce in-
creasing jitter in spike timing. Compared with the jitter at high
contrast, nearly all cells had more temporal jitter at 33% contrast
(20 of 24 comparisons; p � 0.002) and still more at 11% contrast
( p � 0.002) (Fig. 4b). These results agree with population results
from the primate retina (Uzzell and Chichilnisky, 2004) that
spike time precision increases with effective contrast, but we did
not find significant differences between ON and OFF cells with
respect to precision or the dependence of precision on contrast,
as were reported by Uzzell and Chichilnisky (2004). Note that, in
our data, most cells still had temporally precise responses (�10
ms jitter) even at the lowest contrast. In a few cells (7%), submil-
lisecond precision was retained even at 11% contrast.

Contrast normalization preserves information
In most cells, responses to lower contrast had a lower firing rate
and an increased variability in both spike timing and spike num-
ber. Thus, one might expect a decrease in the information rate, as
measured by the mutual information between a stimulus and a
neural response (Berry et al., 1997; Reich et al., 1997; Reinagel
and Reid, 2000; Liu et al., 2001; Freed, 2005). Depending on the
detailed structure of the neural code, information transmission
could be more or less robust to contrast changes.

Therefore, we measured the mutual information I for each cell
at all three contrasts (Strong et al., 1998; Reinagel and Reid, 2000)
(see Materials and Methods). The information rate was signifi-
cantly lower at lower contrasts, whether measured in bits per

Figure 2. Dependence of responses on contrast. Responses of one Y ON cell to full-field flicker of different temporal contrasts.
a, Raster of responses to 64 repeats of the same 100% contrast stimulus. b, c, Responses to the same stimulus sequence scaled to
33 and 11% contrast, respectively. d, Time-varying firing rates (FR) in 2 ms time bins from data in a– c. e, Dependence of firing rate
on contrast. f, Effect of contrast on the modulation in firing rate (SD of the firing rate across time bins, calculated using 1 ms bins).
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second (supplemental Fig. 2, available at www.jneurosci.org as
supplemental material) or in bits per spike (symbols are below
the solid diagonal line in Fig. 5a), yet the information rate did not
decrease by the same factor as the contrast (symbols are above
their respective dashed lines). The mutual information remained
substantial at 11% contrast for some cells (as high as 30.8 bit/s or
3.1 bits/spike). The extent to which information was preserved at
low contrast varied considerably in our population, with no cor-
relation to cell type.

It has long been known that contrast normalization mitigates
the effect of contrast at the level of firing rate. Specifically, the
modulation of the firing rate over time does not decrease by the
same factor that contrast decreases. We asked whether the con-
servation of information rate was comparable, on a cell-by-cell
basis, with the conservation of firing-rate modulation. To com-
pare the information transmission of the same cell at two con-
trasts, we used the ratio of the information in bits per spike at the
lower contrast condition divided by that at higher contrast con-
dition (“information ratio”). Similarly, to compare the firing rate

modulation (see Fig. 2f), we define a “rate modulation ratio”
between the two contrasts. First, we find that the extent of infor-
mation conservation is highly correlated with the extent of mod-
ulation conservation, as one might expect. Second, we find infor-
mation is conserved at least as well as modulation is. Indeed, we
find that information coded per spike was slightly but signifi-
cantly more contrast independent than was the modulation of
firing rate (most symbols are above the diagonal line in Fig. 5b)
( p � 0.05 for filled symbols). (For additional statistics of corre-
lations among information rate, coding efficiency, firing rate,
spike-count variability, and temporal jitter, see Materials and
Methods.)

It is widely assumed that contrast normalization serves to
maintain the fidelity of neural coding across contrasts. This con-
clusion does not necessarily follow because information trans-
mission depends strongly on the temporal precision and trial-by-
trial reliability of responses, which also change with contrast. We
exploited the diversity among cells to test whether neurons with
stronger contrast normalization were better able to preserve in-
formation transmission across contrasts. We find that the mag-
nitude of contrast normalization, �, is significantly correlated
with the conservation of information across contrasts in terms of
bits per spike (Fig. 5c) (R 2 � 0.43 for filled symbols; p � 0.001).
This correlation (R 2 � 0.32; p � 0.001) was also found when
information was calculated using longer words of 8 bins (16 ms).

Normalization is specifically associated with contrast-
independent coding efficiency (in terms of entropy or spikes) as
opposed to contrast-independent coding rate (in terms of abso-
lute information rate). Above we reported a correlation between
normalization and the conservation of information rates in units
of bits per spike. We interpret bits per spike as an estimate of the
energy cost of information transmission. The extent of contrast
normalization was comparably well correlated with the conser-
vation of coding efficiency (bits of mutual information per bits of
entropy; R 2 � 0.29; analysis not shown). The raw rate of infor-
mation transmission (bits per second) was also relatively contrast
independent in some cells (see supplemental data, available at
www.jneurosci.org as supplemental material), but the degree of
conservation of information rate in bits per second was not cor-
related with the degree of normalization (R 2 � 0.05; p � 0.05;
data not shown).

The primary results of this study are stated above and shown
in Figure 5c. For completeness, we report here several other
trends and correlations in our data. The fractional coding effi-
ciency (I/�Htotal�) declined significantly with contrast but re-
mained as high as 0.39 at low contrast for some cells (supplemen-
tal Fig. 2c, available at www.jneurosci.org as supplemental
material). The coding efficiency of some cells declined only mod-
estly with contrast (efficiency ratios of up to 0.93), whereas others
declined dramatically (ratios as low as 0.18). The efficiency ratio
was higher on average than the information ratio, indicating that
efficiency was even more invariant to contrast. The information
rate in bits per second was highly correlated with the firing rate
modulation (R 2 � 0.62; p � 0.0001). The spike-count variability
(Fig. 4a) was inversely related to firing rate and therefore nega-
tively correlated with information rate (R 2 � 0.37; p � 0.001).
The temporal jitter of spike times (Fig. 4b) was not significantly
correlated with information rate per second (R 2 � 0.05; p � 0.07)
but was significantly negatively correlated with both the informa-
tion per spike (R 2 � 0.26; p � 0.0001) and the coding efficiency
(R 2 � 0.26; p � 0.0001).

Figure 3. Gain changes with contrast. a, Linear filters fit to high- (red curve) and medium-
(blue curve) contrast responses from one Y OFF cell. The filters were normalized by the ampli-
tude of their first peak. b, Observed probability of spiking versus the generator potential, g(t),
for the same cell as in a. The curves show the best-fit sigmoids (Eq. 1). The gain at the high
contrast was 0.63 times that at medium contrast. c, Summary of gain changes in all cells. Each
symbol compares the gain of one cell between 100 and 33% contrast (E), 33 and 11% contrast
(�), or 100 and 11% contrast (‚); the gain at the higher contrast is shown on the horizontal
axis. Constant gain (no gain control) is indicated by the thick, solid line (x � y). The thin, solid
line indicates a threefold gain change (E, �). Dashed line indicates ninefold gain change (‚).
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Normalization in a nonadapting model
The results presented above are consistent with the hypothesis
that cells actively adapt their sensitivity to optimize information
transfer, but nonlinear systems with fixed parameters can also
exhibit contrast normalization (Borst et al., 2005; Yu and Lee,
2005; Yu et al., 2005). We implemented a nonlinear model (see
Fig. 1) that has been shown to successfully reproduce responses of
LGN neurons to white-noise stimuli (Keat et al., 2001). We cre-
ated a large population of model cells by varying the model pa-
rameters (see Materials and Methods). We then presented the
model with the same stimuli presented to LGN neurons above.
The parameters for each model cell remained fixed across all
contrasts to determine whether parameter changes were required
for contrast normalization to occur.

We find that, for this nonadapting
model, the gain, G, increased as the con-
trast decreased (Fig. 6a). Depending on
parameters, some model cells showed little
or no contrast normalization (� 
 0),
whereas the gain of other model cells in-
creased by nearly the same factor that the
contrast decreased (� 
 1). Thus, the
range of contrast normalization we found
in the LGN can also be produced by a fixed
nonlinear system.

Contrast normalization arises in the
model in part from a compression caused
by spiking threshold. In addition, refracto-
riness acts to saturate the firing rate during
the excitatory periods of the high-contrast
stimuli, which effectively decreases the
gain at high contrast. Noise opposes this
influence to linearize neural responses. As
noise increases, the instantaneous firing
rate is less explained by the stimulus fluc-
tuations (gain is reduced), and this effect is
more pronounced at low contrasts.

For the present purposes, it is not im-
portant how the parameters affect the ex-
tent of contrast normalization. To test
whether the normalization found in this
nonadapting nonlinear model is associ-
ated with a functional benefit at the level of
information transmission, it is sufficient
to find parameter settings that produce a
range of normalization indices compara-
ble with that found in LGN neurons and
test for covariation of this with the infor-
mation ratio. A detailed exploration of
how contrast normalization arises in this
model will be presented elsewhere
(Gaudry and Reinagel, 2007).

Like LGN cells, the information rate of
the model cells also decreased when the
contrast decreased (Fig. 6b). Again, the
magnitude of this decline in information
depended on the model parameters, such
that some model cells lost nearly all infor-
mation at low contrasts, whereas other
model cells transmitted nearly the same
information across contrasts. Across our
population of model cells, we find that
contrast normalization is correlated with

the information ratio (Fig. 6c) (R 2 � 0.74; p � 0.0001). This
correlation is remarkably similar to the one observed in LGN cells
(compare blue, black, and green symbols with gray symbols).
Therefore, contrast normalization without active adaptation is a
viable candidate mechanism for how LGN neurons preserve in-
formation transmission across contrasts.

Discussion
Contrast dependence of neural reliability and precision
It is well known that contrast normalization exists in the early
visual system and boosts responsiveness at low contrast. How-
ever, in addition to firing rate, information transmission depends
critically on the consistency of spike timing and spike number. It
was not known how these properties would change with contrast

Figure 4. Variability decreases with increasing contrast. a, Spike-count variability (Allan Factor). Each symbol indicates the
result for the responses of one LGN neuron to 100% contrast (x-axis) versus either 33% (E) or 11% (‚) contrast ( y-axis). b,
Spike-timing jitter (see Materials and Methods). Symbols as in a.

Figure 5. Visual information in LGN responses. a, Each symbol indicates the mutual information, in units of bits per spike, of
one LGN cell at two contrasts. Results are compared between 100 and 33% contrast (E, F), 100 and 11% contrast (‚, Œ), and
33 and 11% contrast (�, �). Filled symbols indicate cases in which the correction for finite data size was small and linear for
both contrasts (see Materials and Methods). Information rates were significantly higher at higher contrast ( p � 0.01 for both 100
to 33% and 100 to 11%). b, The ratio of information rates (in bits per spike) is plotted against the ratio of rate modulation (as
defined in Fig. 2f ). Symbols as in a. c, Each symbol indicates the information ratio for a given cell versus the contrast normalization
index, �, in the same data (symbols as in a).
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or whether these changes could be predicted on the basis of gain
changes. We show that both spike count and spike timing are
more variable as contrast decreases. These findings are consistent
with the observation in retinal ganglion cells that noise is con-
stant across contrasts (Demb et al., 2004), such that the relative
amplitude of fluctuations in the membrane potential related to
synaptic release (noise) becomes inconsequential for larger depo-
larizations. Nevertheless, many LGN cells have sub-Poisson vari-
ability and high temporal precision even at the lowest contrast
tested. Average spike-timing jitter at low contrast was less than 2
ms in one-third of our cells. Therefore, reliable, precise spiking
and efficient coding are not idiosyncratic to high-contrast visual
stimuli.

Evidence that normalization improves
information transmission
It is generally assumed that contrast normalization serves a role in
making transmission of information efficient, but this need not
be the case, because normalization does not take into account the

effects of contrast on timing precision and spike-count reliability.
The intrinsic heterogeneity of our neural population allowed us
to test this hypothesis and demonstrate that contrast normaliza-
tion is correlated with the ability of the a neuron to preserve
information transmission across contrasts (Fig. 5). Moreover, it
is an open question whether neurons are optimized for the abso-
lute rate of transmission (bits per second) or for the metabolic
efficiency of transmission (bits per spike). We found that contrast
normalization is correlated to the preservation across contrasts of
information transmission in bits per spike; there was no signifi-
cant correlation with the information rate in bits per second (data
not shown).

Role of active adaptation questioned
It is often argued that neurons must adapt to contrast because
they lack the dynamic range to discriminate both weak stimuli
(low contrast) and strong stimuli (high contrast) simultaneously.
Indeed, our results show that contrast normalization is associated
with maintenance of neural coding efficiency, as predicted on
theoretical grounds. Moreover, information transmission is bet-
ter preserved than rate modulation, perhaps because of the addi-
tional changes in neural dynamics that are also associated with
contrast gain control (Shapley and Victor, 1978; Victor, 1987,
1999).

Our modeling results challenge the assumption that an active
process of adaptation is required for this function: at least one
nonadapting model can exhibit normalization that is correlated
with information preservation. Our model provides a formal
summary of effects such as noise and refractoriness occurring in
all of the cells and synapses from the photoreceptor to the LGN
relay cell. The biophysical mechanisms underlying functional
contrast normalization may occur in any or all of these cells. For
example, studies investigating the cellular mechanism of contrast
normalization suggest that such normalization arises in retinal
bipolar cells (Rieke, 2001; Beaudoin et al., 2007), and mecha-
nisms related to refractory periods (e.g., sodium channel inacti-
vation) have been invoked to account for discrepancies between
contrast normalization in the subthreshold and spiking re-
sponses of ganglion cells (Kim and Rieke, 2001, 2003; Zaghloul et
al., 2005; Beaudoin et al., 2007).
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