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Balanced Excitatory and Inhibitory Inputs to Cortical
Neurons Decouple Firing Irregularity from Rate
Modulations
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In vivo cortical neurons are known to exhibit highly irregular spike patterns. Because the intervals between successive spikes fluctuate
greatly, irregular neuronal firing makes it difficult to estimate instantaneous firing rates accurately. If, however, the irregularity of spike
timing is decoupled from rate modulations, the estimate of firing rate can be improved. Here, we introduce a novel coding scheme to make
the firing irregularity orthogonal to the firing rate in information representation. The scheme is valid if an interspike interval distribution
can be well fitted by the gamma distribution and the firing irregularity is constant over time. We investigated in a computational model
whether fluctuating external inputs may generate gamma process-like spike outputs, and whether the two quantities are actually de-
coupled. Whole-cell patch-clamp recordings of cortical neurons were performed to confirm the predictions of the model. The output
spikes were well fitted by the gamma distribution. The firing irregularity remained approximately constant regardless of the firing rate
when we injected a balanced input, in which excitatory and inhibitory synapses are activated concurrently while keeping their conduc-
tance ratio fixed. The degree of irregular firing depended on the effective reversal potential set by the balance between excitation and
inhibition. In contrast, when we modulated conductances out of balance, the irregularity varied with the firing rate. These results indicate
that the balanced input may improve the efficiency of neural coding by clamping the firing irregularity of cortical neurons. We demon-
strate how this novel coding scheme facilitates stimulus decoding.
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Introduction
In vivo cortical neurons exhibit highly irregular firing (Softky and
Koch, 1993; Holt et al., 1996; Shadlen and Newsome, 1998),
which is often represented as Poisson-like spike trains. Back-
ground synaptic input with balanced excitation and inhibition
has been suggested to generate the irregular firing, although other
mechanisms are also possible (Reyes, 2003; Durstewitz and Gab-
riel, 2007). Because firing rate is crucial for the information cod-
ing by neurons, an observer can correctly interpret the messages
of a neuron only with an accurate estimation of the firing rate.
Here, the observer can be either external or internal to the brain.
However, the estimation is difficult when spike sequence is highly
irregular. It is, therefore, unclear whether the irregularity of neu-
ronal firing plays an active role in cortical information processing
(Shadlen and Newsome, 1994, 1995; Softky, 1995; Destexhe et al.,
2003).

Estimating the firing rate will be easier if irregular neuronal
activity can be characterized by a measure that is sensitive only to

the firing irregularity, but not to the rate modulation. The coef-
ficient of variation (CV) of interspike intervals (ISIs), a widely
used measure for irregular neuronal firing (Softky and Koch,
1993), does not have such a property (Stevens and Zador, 1998;
Sakai et al., 1999; Shinomoto et al., 1999). To obtain an alterna-
tive measure, Miura et al. (2006a,b) studied a decomposition of
fluctuating neuronal firing into firing rate and irregularity when
spike generation obeys the gamma process, which is a natural
extension of the Poisson process. The gamma process has two
parameters: the mean rate � and the “shape parameter” �, which
represents how irregular the process is. A formula derived therein
to estimate the value of � from an observed sequence of ISIs does
not depend on �. In other words, the �-coordinate is orthogonal
to the � coordinate in the space of information representation.

In this study, we use this � to characterize the irregular spikes.
We attempt to examine whether the brain may actually use the
coding scheme based on the gamma process, which facilitates
estimation of the parameters by their orthogonalization. The
constancy of the firing irregularity can be the key evidence be-
cause it is essential for the coding scheme. We use Neuron simu-
lator and the whole-cell patch-clamp recording technique to in-
ject a fluctuating input current into model and real neurons,
respectively. We show that, if excitatory and inhibitory synaptic
inputs are covaried in a balanced manner, output spikes are well
described by the gamma process and the firing irregularity varies
only moderately over time regardless of rate modulations. The
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degree of the irregularity remains unchanged unless the balance
between the excitatory and inhibitory synaptic inputs is changed.
We demonstrate that this constancy of the firing irregularity im-
proves the estimation of input firing rate. Accumulating evidence
suggests that synaptic inputs are balanced in cerebral cortex (Shu
et al., 2003; Haider et al., 2006) and spinal cord (Berg et al., 2007).
Our results achieve a novel insight into possible contributions of
balanced excitation and inhibition to neural code.

Materials and Methods
Neural code using the gamma process: decoupling of firing rate and irregu-
larity. We briefly summarize the decomposition scheme proposed previ-
ously for spike trains obeying the gamma process (Miura et al., 2006a,b).
The scheme enables us to estimate the shape parameter � that is related to
the irregularity of neuronal firing, which generates a series of ISIs accord-
ing to the following gamma distribution (Cox and Lewis, 1966; Baker and
Lemon, 2000; Casella and Berger, 2002; Fellous et al., 2003):

q�T;�,�� �
�����

����
T��1e���T, (1)

where T represents the ISI, � denotes the firing rate, and �(�) is the
gamma function. The gamma process is a natural extension of the con-
ventional Poisson process, with the shape parameter � measuring the
irregularity of spike trains. When � � 1, the ISI distribution becomes an
exponential distribution that is equivalent to a Poisson process in which
the spike train is completely irregular. When � is large, the gamma dis-
tribution can be approximated by a normal distribution, with variance
decreasing with increasing �. In the limit of infinitely large �, ISIs take
only a single value. Thus, � characterizes the irregularity of spike trains.

Our task is to estimate the sequence of instantaneous firing rates {�1,
�2,. . . , �N} that likely produces the observed sequence of ISIs {T1, T2,. . .
, TN}. It is in general very difficult to estimate the sequence of firing rates
and the shape parameter � simultaneously. If, however, � is constant over
time, we can use the method of estimating functions (Amari and
Kawanabe, 1997) to estimate the value of � from the observed ISIs with-
out knowing the time-dependent firing rates. Let the firing rate � be
distributed according to k(�) that is unknown to the observer. Then, the
probability distribution of ISIs is given by the gamma distribution q(T; �,
�) weighted by k(�):

p�T;k,�� � �
0

�

q�T;�,��k���d�. (2)

This distribution should fit the experimentally measured distribution of
ISIs. The probability that an ISI coincides with T is given as the product of
the probability that firing rate is � and the probability that T is drawn
from the ISI distribution q(T;�,�). Because the same T value can appear at
different firing rates, � must be integrated over all possible firing rates.

To estimate � without knowing the firing rates, we introduce an esti-
mating function y(T;�) that is independent of the firing rates. The func-
tion must satisfy the following condition on the expectation value:

�
0

�

p�T;k,�� y�T,��dT � 0, (3)

for arbitrary k(�). In practice, we may replace the integration over p(T;
k,�) with the following sample average:

�
i�1

N y�Ti,�� � 0, (4)

which gives a good approximation to Equation 3 if the size of data are
sufficiently large. However, for the time being, we use the integral expres-
sion for generality. Because Equation 3 holds for arbitrary k(�), it should
hold for k(�) � ��(�), where ��(�) is an infinitesimal change in the firing
rate distribution:

�
0

�

p�T;k � ��,�� y�T,��dT � �
0

�� p�T;k,��

�
�p�T;k,��

�k
��� y�T,��dT � 0. (5)

Subtracting Equation (3) from Equation (5) yields the following:

�
0

��p�T;k,��

�k
y�T,��dT � 0, (6)

for arbitrary k(�). Equation 6 implies that y(T;�) must be orthogonal to

�p�T;k,��

�k

in the functional space (i.e., the direction in which the ISI distribution
changes maximally with changes in the firing rate distribution). There-
fore, the estimating function obtained by solving Equation 5 is indeed
free from an arbitrary rate change. Therefore, solving Equation 4 using
the observed sequence of ISIs gives a rate-independent estimation of �. In
general, it is difficult to find this optimal estimating function because
Equation 6 depends on k(�) through

�p�T;k,��

�k
.

In fact, in most stochastic models of spike generation, we cannot find
y(T;�) that is independent of k(�). However, in the case of the gamma
distribution we can derive such an optimal estimating function and find
the shape parameter �̂ that gives the “best fit” for the observed spike train
(Equation 15). The derivation is complicated and lengthy, so we do not
repeat it here.

Computational models. We considered the following single compart-
ment model described by Destexhe et al. (2001), which successfully re-
created the membrane potential of neocortical pyramidal neurons sub-
ject to an intense synaptic bombardment:

Cm

dV

dt
� � gL�V � EL� � INa � IKd � IM �

1

a
Isyn,

INa � g�Nam
3h�V � ENa�,

IKd � g�Kdn4�V � EK�,

IM � g�Mp�V � EK�. (7)

The values of parameters were the same as those in Destexhe et al. (2001)
and Destexhe and Pare (1999). The point-conductance model described
by Destexhe et al. (2001) was used to generate realistic synaptic back-
ground activity. The total synaptic current, Isyn, was decomposed into a
sum of two independent conductances:

Isyn � ge�t��V � Ee� � gi�t��V � Ei�, (8)

where ge and gi are excitatory and inhibitory conductances, respectively.
The reversal potentials were set as Ee � 0 mV and Ei �-75 mV. The
dynamics of conductances of excitatory and inhibitory synapses, ge and
gi, were described by the following Ornstein–Uhlenbeck process (Uhlen-
beck and Ornstein, 1930):

	e

dge�t�

dt
� � � ge�t� � ge0� � 
e�e�t�,

	i

dgi�t�

dt
� � � gi�t� � gi0� � 
i�i�t�, (9)

where �e(t) and �i(t) are normalized Gaussian white noises with zero
means. Because �e(t) or �i(t) represents the sum of many independent
excitatory or inhibitory synaptic inputs, respectively, each stochastic
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variable obeys the Poisson distribution in the limit of infinitely many
synapses, regardless of the statistics of presynaptic spike trains. There-
fore, the variables can be approximated by Gaussian white noises with
appropriate means and variances (cf., Cateau and Reyes, 2006). The time
constants are 	e � 2.7 ms and 	i � 10.5 ms, ge0 and gi0 are the average
conductances, and 
e and 
i are the SDs. It was suggested previously that
the fluctuation amplitude of synaptic conductance is proportional to its
average magnitude (Berg et al., 2007). We set the SDs as


e �
1

2
ge0

and


i �
1

4
gi0

so that the fluctuating synaptic conductances may rarely take negative
values. Thus, ge0 and gi0 specify the statistics of the synaptic currents
completely.

We may define the effective reversal potential, Vr, as the potential at
which the net average synaptic current vanishes:

I�syn � ge0�Vr � Ee� � gi0�Vr � Ei� � 0. (10)

By solving the above equation with respect to Vr, we obtain

Vr � � 75
gi0

ge0 � gi0
. (11)

In what follows, we use the parameter pair ( ge0, Vr) instead of ( ge0, gi0) to
specify the statistics of the external input. The conductance parameter
can be reversed as

gi0 � �
Vr

Vr � 75
ge0.

If we increase ge0 with Vr fixed, gi0 also increases in proportion to ge0. In
addition, Vr is determined by the ratio of ge0 and gi0. Thus, ge0 gives the
scale factor in our model. Note that ge and gi obey stochastic equations, so
their values fluctuate over time and samples even if we fix the values of
( ge0, Vr).

We conducted numerical simulations of the single compartment
model by using the Neuron simulator (Carnevale and Hines, 2006), and
estimated the firing rate and � from the obtained data at various values of
ge0 and Vr. In the present simulations, ge0 varies from 0.012 to 0.048 �S
and Vr from �62 to �50 mV. The simulations were performed long
enough to ensure the convergence of firing rate and irregularity � to
steady values.

Whole-cell patch-clamp recordings. Wistar rats (postnatal days 17–24)
were deeply anesthetized with diethyl ether gas and then decapitated.
Cortical slices (400 �m thick) were prepared with a microslicer (PRO-7;
Dosaka, Kyoto, Japan). After 30 min incubation at 31°C and at least 1 h
recovery at room temperature, each slice was transferred to a submerged-
type recording chamber continuously circulated with normal artificial
CSF (ACSF; 32°C) which consisted of (mM) 124 NaCl, 2.5 KCl, 1.2
KH2PO4, 26 NaHCO3, 1.2 MgSO4, 2.5 CaCl2, and 25 D-glucose, and was
saturated with 95% O2 and 5% CO2 gas.

Whole-cell patch-clamp recordings were obtained from pyramidal
neurons in rat sensorimotor cortex, using patch pipettes (7–15 M�)
filled with (in mM) 140 K-gluconate, 2 NaCl, 1 MgCl2, 10 HEPES, 0.2
EGTA, 2 5	-ATPNa2, 0.5 GTPNa2, and 10 biocytin, pH 7.4, (Isomura et
al., 2003; Fujiwara-Tsukamoto et al., 2004; Tsubo et al., 2007). The mem-
brane potentials of neurons were recorded with a current clamp amplifier
(Axoclamp 2B; Molecular Devices, Union City, CA) in a conventional
bridge mode. Recorded signals were digitized at 50 kHz with an analog–
digital interface (Digidata 1322A; Molecular Devices). An analog com-
putation amplifier (SM-1; Cambridge Conductance, Cambridge, UK)
was also used to inject fluctuating conductance input Isyn described in the
previous section. To block the spontaneous input via AMPA, NMDA,
and GABAA receptors, a mixture of 6-cyano-7-nitroquinoxaline-2,

3-dione (CNQX; 20 �M), DL-2-amino-5-phosphonopentanoic acid (DL-
AP5; 25 �M), and bicuculline methiodide (BMI; 10 �M) was respectively
added to the ACSF and bath-applied to the cortical slices. All three an-
tagonists were purchased from Sigma (St. Louis, MO).

In each trial, a fluctuating current Isyn in Equation 8 was injected for
10 s by using the dynamic-clamp method (Robinson and Kawai, 1993;
Sharp et al., 1993). Statistics of the fluctuating input for a trial is specified
by the scale factor ge0 and the excitation/inhibition balance Vr in Equa-
tions 10 and 11. Trials were separated by 20 s intertrial intervals. For a
given parameter set ( ge0, Vr), three trials were repeated by using different
seeds for random number generation. The median of the firing rates and
irregularities � for three trials were plotted in the figures. All experiments
were performed in accordance with animal protocols approved by the
Experimental Animal Committee of the RIKEN Institute.

The coefficient of variation. In some simulations and experiments, we
compare our measure � with a conventional measure for irregular neu-
ronal firing, CV (the coefficient of variation), defined as follows:

CV �
��T � T� �2

T�
, (12)

where T denotes an ISI and the horizontal bars represent averaging over
samples (Softky and Koch, 1993). For a completely regular spike train in
which all ISIs are the same, CV becomes 0. For highly unpredictable spike
trains generated by a Poisson process, it becomes 1.

Instant by instant Bayesian decoding with gamma distributions of ISIs.
As mentioned with Equation 1, our decomposition scheme is valid when
ISIs obey the gamma distribution. Based on this probability density, we
can calculate the probability that sequence of ISIs {T1, T2, . . . } are ob-
served for a given temporal profile of firing rate, where Ti denotes the ith
ISI in the spike train. As we show later, � can be estimated by using
Equation 15 without knowing the firing rate profile. Then, using the
estimated value, we can discriminate different stimuli that lead to differ-
ent temporal profiles of firing rate by comparing the probabilities that
these profiles may underlie an observed output spike train.

Consider the simplest case where the firing rate is constant over time,
that is, the neuron receives a stationary input. The probability density
that a spike train has spikes at {t1, t2, . . . , tn} until time t is as follows:

P�
t1,t2,. . .,tn�,t;�,�� � �
i�1

n�1

q�ti�1 � ti;�,���
t�tn

�

q�t	;�,��dt	,

(13)

where ti�1 � ti represents the ith ISI. The last integral represents the
probability that there is no spike after tn until t. Given the times of spikes
{t1, t2, . . . , tn}, we can compare different firing rates �1 and �2 by calcu-
lating P({t }, t; �1, �) and P({t }, t; �2, �). The firing rate that gives a larger
probability is more probable. From the Bayes’ theorem (MacKay, 2003;
Gelman et al., 2004), the posterior probability can be written as follows:

P�stimulus � i,t� �

P�
t1,t2,. . .,tn�,t,�i,��

P�
t1,t2,. . .,tn�,t,�1,�� � P�
t1,t2,. . .,tn�,t,�2,��
,�i � 1,2� (14)

where we assume that the previous probabilities that stimulus 1 or 2 is
presented are even. The posterior probability can be calculated at an
arbitrary time t. Usually, the posterior probability increases with time for
the correct � until it finally reaches unity, because the evidence accumu-
lates as the number of output spikes is increased. A decision can be made,
for example, when the posterior probability exceeds some threshold close
to unity.

Similarly, we can treat a more complicated case with a time-dependent
firing rate � (t). At a first glance, the calculations of the posterior proba-
bility look complicated. However, all we have to do is to rescale the time
axis of dynamics from t to 	 (Brown et al., 2001; Kass and Ventura, 2001):
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	 � �
0

t

��t	�dt	

Then, the previous probabilities are obtained by replacing t with 	 in
Equation 11.

Results
We proposed a novel scheme to characterize irregular neuronal
firing with its decomposition into firing irregularity and firing
rate. The scheme is valid if spike sequences are generated by the
gamma process, and keeps the firing irregularity constant over
time when the firing rate may vary arbitrarily. To test this coding
scheme, we injected in vivo-like fluctuating synaptic inputs into
in vitro and model cortical neurons and induced highly irregular
firing in these neurons. We tested whether the ISI histograms can
be well fitted by gamma distributions. Then, we investigated the
condition in which the firing irregularity remains unchanged or
varies only moderately when the output firing rate is changed
significantly. We measured the irregularity of neuronal firing us-
ing the shape parameter and tested the reliability of this measure
in characterizing the firing irregularity.

Estimation of shape parameter � from a spike train
The shape parameter �̂ that best fits an observed spike train can
be obtained through the method of estimating functions in the
information-geometry (Amari and Kawanabe, 1997; Miura et al.,
2006a,b). The optimal parameter value is given as a solution to
the following equation (see Materials and Methods):

1

N � 1 �
i�1

N�11

2
log(

TiTi�1

(Ti�Ti�1)
2)��(2�̂)��(�̂)�0, (15)

where Ti denotes the ith ISI in the spike train and �(�) denotes
the digamma function defined as

���� � �	���/����.

Note that the above expression does not depend on the distribu-
tion of firing rate k(�). Therefore, solving Equation 15 does not
require the information about the firing rate. In deriving Equa-
tion 15, we constructed pairs of consecutive ISIs, (T1, T2), (T3,
T4), etc., and assumed that we can assign the same firing rate to
the members of each pair, that is, �1 � �2, �3 � �4, etc. This
assumption resulted in the quadratic forms of ISIs inside the
logarithm of Equation 15. However, the estimation error of � is
relatively small even if the consecutive firing rates are different
(Miura et al., 2006b). If the ISI distribution deviates largely from
the gamma distribution, � does not have a clear-cut meaning.
However, results of our in vitro and other in vivo (Barbieri et al.,
2001; Brown et al., 2001) studies showed that the gamma process
always fits the ISIs reasonably well and the deviations from the
gamma distributions are small. Therefore, we may still define the
firing irregularity with �̂, or the solution to Equation 15, because
such deviations change the value of �̂ continuously and moder-
ately. Thus, � is a useful measure for the firing irregularity of in
vivo and in vitro data in various practical situations.

The explicit derivation of the optimal estimator is somewhat
complicated. However, it is easy to validate it. If we have many,
but finite, samples of ISIs, we may replace the averaging over ISIs
in Equation 15 with the following integration over the true prob-
ability distribution p(Ti, Ti � 1):

1

N � 1 �
i�1

N�11

2
log� TiTi�1

�Ti � Ti�1�
2�

� �
0

��
0

�1

2
log� T1T2

�T1 � T2�
2�p�T1,T2;��dT1dT2

��
0

��
0

��
0

�1

2
log� T1T2

�T1 � T2�
2�q�T1;�,��q�T2;�,��k���dT1dT2d�

� � ��2�� � ����. (16)

In deriving the last equation, we used the explicit formula of the
gamma distribution given in Equation 1 and rescaled the integra-
tion variables as �Ti3Ti (i � 1,2). The changes in the integration
variables eliminate � dependence of the integrand other than
k(�), allowing us to integrate variable � using

�
0

�

k���d� � 1.

Thus, Equation 15 is justified for the gamma process with an
arbitrary k(�).

Fitting the ISI distributions of in vitro cortical neurons
To see the relationship between the irregularity of neuronal firing
and the value of �, we constructed artificial spike trains by gen-
erating ISIs according to various gamma distributions. Figure 1
displays typical examples of such spike trains at different firing
rates and irregularities. Even if the spike counts are the same in
different spike trains, their irregularities can be quite different.
The value of � becomes unity for a completely random spike train

Figure 1. Examples of spike trains with various firing rates and irregularities (artificial data).
Spike trains are made up of ISIs generated according to the gamma distribution, which is
specified by two parameters: firing rate and irregularity (see Materials and Methods). The firing
rates are 40 Hz (left) and 15 Hz (right). The irregularities are 9 (top), 3 (middle) and 1 (bottom).
Even if spike counts in different spike trains are the same, their irregularities can be different.
The case with � � 1 corresponds to the well hypothesized Poisson process. As � increases, a
spike train becomes more regular.
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generated by a Poisson process. As the
value is increased, spike trains become
more regular (Fig. 1). The value becomes
infinitely large for a completely periodic
spike train. Thus, � indicates the regularity
of spike trains in a continuous manner.

We injected fluctuating current Isyn

into cortical neurons by the whole-cell
patch-clamp technique to measure firing
rate and � of output spikes. In each re-
cording trial, the fluctuating input was in-
jected for 10 s. Figure 2, a and c, shows
examples of spike trains recorded from
two cortical neurons. We examined
whether the ISIs obtained in experiments
are distributed according to gamma distri-
butions, the most crucial assumption in
our scheme. To this end, we estimated the
value of � for each spike train from the
ISIs. To investigate the stability of the
value of �, we calculated the value sepa-
rately in the initial half and last half of a
single spike train. The two segments
yielded almost the same value. This dem-
onstrates that � (firing rate as well) re-
mains constant in time as long as the pa-
rameters characterizing the fluctuating
input ( ge0 and Vr) are fixed. We found that
the ISI histograms were well fitted by the
gamma distributions, with � being the av-
erage of the two values. Although the spike
sequences look highly irregular, both spike
trains exhibited � values larger than unity,
demonstrating that they are more regular
than the Poisson spike train. Why the gamma distribution fits the
ISI data better than the Poisson distribution partly resides in the
fact that the former inhibits the occurrence of short ISIs. This
property enables us to take the relative refractory period of neu-
ronal firing into account.

Constant firing irregularity under balanced excitation
and inhibition
We conducted numerical simulations of a computational model
of neocortical pyramidal neurons and calculated the value of � in
the spike output to synaptic inputs obeying various statistics
(Materials and Methods). The model we used is the single com-
partment model described by Destexhe et al. (2001), which suc-
cessfully recreated the membrane potential fluctuations of in vivo
neocortical pyramidal neurons subject to a continuous synaptic
bombardment. Figure 3, a and b, plots the firing rate and irregu-
larity � obtained from the computational model at various values
of ge0 and Vr, respectively, where ge0 is the scale factor of excita-
tory and inhibitory synaptic conductances, and Vr the effective
synaptic reversal potential in a balanced state. These parameters
determine the statistical properties of the fluctuating input cur-
rent. In particular, Figure 3b reveals that the value of � depends
greatly on that of Vr, but not much on that of ge0. Thus, the results
of our simulations predict that increasing ge0 with Vr kept con-
stant increases the firing rate, while keeping the value of � in a
narrow range. In Figure 3b, the value of � is not strictly constant
as ge0 is varied. However, the ranges of � values for different
values of Vr have no significant mutual overlaps in the range of ge0

values tested. Thus, we may say that � remains nearly constant

when the value of Vr is fixed and that of ge0 is changed. In contrast,
the values of � are significantly different at different values of Vr.
In fact, as shown later, stimulus decoding is quite successful un-
der the assumption that � remains constant regardless of cell’s
firing rate. We note that the explicit range of � values is not really
important for the present coding scheme. Because � is a dimen-
sionless parameter, only the differences in its value between dif-
ferent input situations are meaningful.

To investigate whether the computational model actually gen-
erates ISIs obeying a gamma distribution, we compared the ISI

Figure 2. Examples of spike trains and their ISI histograms for two neurons recorded by whole-cell patch-clamp technique. a,
A spike train recorded from a neuron by the whole-cell patch-clamp technique in response to the fluctuating synaptic input Isyn

whose parameter set is ( ge0, Vr) � (0.024 �S, �44 mV). The fluctuating input Isyn was injected for 10 seconds. b, The ISI
histogram for the spike train shown in a. The ISI histogram is well fitted by the gamma distribution (bold line) with �� 1.68. The
fact that � for the former part of a spike train is almost the same as that for the latter part demonstrates high reproducibility of �.
c, A spike train recorded from another neuron in response to the fluctuating synaptic input Isyn whose parameter is (0.012 �S,�44
mV). d, The ISI histogram for the spike train shown in c. The ISI histogram is well fitted by the gamma distribution (bold line) with
� � 3.09.

Figure 3. a, b, Firing rate (a) and irregularity � (b) for a computational model of neocortical
pyramidal neurons with various ge0 and Vr. The firing rate and � were computed from ISIs
obtained by simulating the computational model on Neuron simulator. The input parameters
were chosen to cover the following ranges: ge0 was varied from 0.012 to 0.048 �S and Vr from
�62 to�50 mV. Here, ge0 is the scale factor of the synaptic conductances and Vr is the effective
synaptic reversal potential (Materials and Methods). The value of � depended significantly on
Vr, but not much on ge0. If ge0 is increased keeping Vr constant, � stays within a narrow range
whereas the firing rate is greatly increased.
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histograms to the gamma distributions with the estimated values
of �. All histograms for Vr � �53 mV exhibit single peaks at the
mid range of ISIs, and the optimal fitting curves correspond to
similar values of � (Fig. 4a– c). The unimodal shapes of these
distributions can be well fitted by the gamma distributions. The
histograms for Vr � �62 mV are monotonic functions of ISI that
peak at the leftmost bin (Fig. 4d–f). Again, the optimal distribu-
tions have approximately the same values of �. In contrast, the ISI
distributions for different values of Vr show different shapes with
different � values. We may conclude that the gamma distribu-
tions well represent the ISI distributions generated by the com-
putational model.

We examined the prediction of the model in in vitro cortical
neurons (n � 16). Figure 5 plots the firing rate and � for two
neurons recorded by whole-cell patch-clamp technique with var-
ious ge0 and Vr. When ge0 is increased while keeping Vr constant,
the firing rate is largely increased, but the manipulation changes
the value of � only moderately. For example, the firing rate of cell
1 at the maximum value of ge0 is three times larger than that at the
minimum value of ge0 for Vr � �41 mV. This tendency is con-
sistent with that of the numerical results.

We tested whether the ISI distributions obey gamma distribu-
tions in the neurons displayed in Figure 5. Figure 6, a and b, plots
the ISI histograms of cell 1 at Vr � �41 and �46 mV, respec-
tively. Because the data available for this analysis were limited, we
combined the data sets recorded at different values of ge0 to con-
struct these histograms. The ISIs were normalized by the corre-
sponding mean ISIs so that the shape of the distributions may be
specified only by �. This manipulation is justified if the ISI dis-
tribution represents a gamma distribution (as seen below). The
histograms exhibit single peaks and are well represented by

gamma distributions. Figure 6, c and d,
shows similar plots of the ISIs for cell 2 at
Vr � �40 and �44 mV, respectively. We
find that gamma distributions fit the his-
tograms reasonably well.

Because of neuron-to-neuron varia-
tions in the membrane excitability, the
range of Vr that produces moderate rate
changes differs in different neurons. Nev-
ertheless, the tendency that � depends on
Vr rather than on ge0 was commonly ob-
served in all recorded neurons. The firing
rate and � plotted for all 16 neurons re-
corded in this study at various values of ge0

and Vr confirmed this tendency (Fig. 7). In
fact, the mean of the slopes of � in Figure
7b determined by least-square fitting with
a straight line is given as �1.4 (�S�1),
which is not significantly different from 0
( p � 0.1). However, the mean slope of the
firing rate in Figure 5a is given as 540 (Hz/
�S), which is significantly different from 0
( p 
 0.05), showing an obvious increas-
ing behavior. However, Figure 7, c and d,
shows that increasing Vr with ge0 kept con-
stant increases both firing rate and � si-
multaneously. Thus, the spiking irregular-
ity � can be kept constant only when Vr is
kept unchanged.

Continuous modulations of firing rate
do not affect firing irregularity

In the previous section, we have shown that � is nearly constant in
the condition where the rate of neuronal firing is regarded as
constant within each trial, but the rate might vary from trial to
trial. However, in a realistic situation, the firing rate can vary over
time depending on the stimulus intensity. Results of previous
experiments suggested that excitatory and inhibitory synaptic in-
puts to cortical neurons are always balanced (Shu et al., 2003;
Haider et al., 2006; Berg et al., 2007). Although the details of this
balanced synaptic input should be further elucidated, it may be
the case that the growth of excitation is followed immediately by
that of inhibition in the cortical dynamics.

To study such a situation, below we change the firing rate of
postsynaptic neuron by modulating the amplitude of ge0 (accord-
ingly, that of gi0) periodically, with Vr kept at �44 mV. The
conductances ge(t) and gi(t) fluctuate around the mean values
ge0(t) and gi0(t) obeying Equation 9 (see Materials and Methods),
where the mean values were defined as follows:

ge0�t� � 0.021 � 0.009sin�2
t/T�,

gi0�t� � �
Vr

Vr � 75
ge0�t���S�, (17)

where T, the period of the sinusoidal modulation, was chosen in
a range of 100 –1600 ms. The values are much longer than the
time constants of synaptic conductances in Equation 9 (	e � 2.7
ms and 	i � 10.5 ms), so the time-varying modulation is suffi-
ciently slow and should not cause the excitation and inhibition to
go in and out of balance depending on the phase. The value of ge0

was modulated between 0.012 and 0.03 �S. Figure 8 shows the
firing rate, � and CV of cortical neurons recorded with the peri-

Figure 4. The ISI histograms obtained from the computational model. They were fitted by gamma distributions (thick curves).
a–f, The effective reversal potential was set as Vr ��53 mV (a– c) or �62 mV (d–f ). The distributions exhibit different shapes
that correspond to different values of �: � 2.6 in (a– c) or � 1.1 in (d–f ).
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odically modulated input. For comparison, we recorded the re-
sponses of the same neurons to stationary inputs, in which Vr was
fixed within a range of �40 to �44 mV and ge0 was set to one of
the following values: 0.012, 0.018, 0.024, 0.03 �S. We note that
the values of firing rate and � were kept well between the two gray
lines that designate the value ranges obtained for stationary in-

puts with Vr � �44 mV. In contrast, the values of CV do not stay
within the range delimited by the gray lines. These results dem-
onstrate that � is robust against the modulations in firing rate,
whereas CV is strongly influenced by the modulations.

Why does CV not describe the firing irregularity properly
when the firing rate changes with time? In general, CV tends to be
large when the firing rate changes with time (Stevens and Zador,
1998; Sakai et al., 1999; Shinomoto et al., 1999, 2005a). In fact, we
can mathematically prove that the expectation value of CV is
always larger than unity for an inhomogeneous Poisson process
with a time-varying firing rate (Tuckwell, 1988; Shinomoto and
Tsubo, 2001). To see this clearly, spike trains were generated by
Poisson process such that the mean firing rate changes discontin-
uously at time 0 (Fig. 9). By construction, both � and CV should
be 1 for the (stationary) Poisson processes at negative and posi-
tive times. However, if we compute � and CV for the whole spike
train, � is 1 but CV is

�17

8
� 1.46.

This overestimation of CV is attributable to the fact that the SD is
calculated around the “global” average of ISIs over the entire
spike train. Thus, CV cannot properly capture a local irregularity

Figure 5. Firing rate and irregularity � recorded from two neurons by whole-cell patch-
clamp technique with various ge0 and Vr. The format is the same as in Figure 3. When ge0 was
increased keeping Vr constant, � changed only moderately, but the firing rate increased greatly.
This tendency coincides with that of the computational model.

Figure 6. a– d, The ISI histograms recorded in vitro from cell 1 (a, b) and cell 2 (c, d). The
thick curves represent optimal fits by gamma distributions. In a and b, Vr ��41 and �46 mV,
respectively. In c and d, Vr � �40 and �44 mV, respectively.

Figure 7. Firing rate and irregularity � recorded from 16 in vitro neurons by whole-cell
patch-clamp technique. Here, geo (�S) is the scale factor of the synaptic conductances and Vr

(mV) is the effective synaptic reversal potential. a, Firing rate at fixed Vr values (�40 or �44).
The value of geo was chosen from 0.012 to 0.03. Solid and dashed lines show the data recorded
from different neurons at Vr ��40 and �44, respectively. The thick line represents the mean
and SD at each value of ge0. b, The irregularity � for the fixed values of Vr (� �40 or �44).
When ge0 was increased keeping Vr constant, the firing rates tended to increase greatly whereas
� was changed moderately. The mean slopes of � obtained by least-square fitting are not
significantly different from 0 ( p � 0.1), whereas those of firing rates are significantly different
( p 
0.01). The firing rates were generally higher for Vr � �40 than for Vr � �44 ( p 

0.05). Some neurons did not fire for Vr ��44, for which � was not plotted. The values of � for
Vr � �40 were generally higher than those for Vr � �44 ( p 
 0.05), suggesting that
neurons fire regularly if Vr is close to threshold. The thick line represents the mean and SD at each
value of ge0. c, Firing rate for fixed ge0 (0.03 or 0.012). When Vr was increased keeping ge0

constant, the firing rate was increased. The thick line represents the mean and SD at each value
of Vr. d, The irregularity � for fixed values of ge0 (0.03 or 0.012). When Vr was increased keeping
ge0 constant, the irregularity � was increased. The thick line represents the mean and SD at each
value of Vr.
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of spiking when the firing rate is not constant. In contrast, � is
robust against the rate modulation because its effect (i.e., the
scaling of neighboring ISIs), is locally cancelled out in the loga-
rithm in Equation 15 (Miura et al., 2006a,b). This property of �
makes it more adequate than CV for measuring the irregularity of
neuronal firing.

Decoding signals from neuronal responses
The previous results have shown that a balanced increase of ex-
citatory and inhibitory synaptic inputs keeps the irregularity of
postsynaptic spikes approximately constant. In other words, the
firing pattern roughly obeys a gamma process in the balanced
regime. Below, we demonstrate how this knowledge of the spike
generating process may improve our ability to decode signals
from neuronal firing. We consider the discrimination of two con-
stant stimuli from output spike trains when their firing rates are
different (Fig. 10a). A similar test was considered in Wiener and
Richmond (2003). We used the spike data recorded in vitro in
Figure 5 to mimic the stimulus discrimination by in vivo neurons.
Stimulus 1 or 2 was represented by current injection with ge0 �

0.04 �S or 0.025 �S, respectively. In both cases, Vr was �41 mV.
Note that the output spike trains for the two currents obey the
gamma distributions with almost the same � values (�2.47), but
with different rates. Thus, we can discriminate the inputs accord-
ing to the probabilities that the observed ISIs are generated
from the different distributions. We attempted to discrimi-
nate the two stimuli by calculating the posterior probability
that given an output spike train stimulus 1 or 2 was presented.
We performed these calculations instant by instant based on
the gamma distributions (see Materials and Methods). Figure
10b shows the resultant posterior probability of stimulus 1
when it is actually presented. Note that 1 minus this probabil-
ity gives the posterior probability of stimulus 1 when stimulus
2 is presented. The posterior probability of the correct dis-
crimination on average increased with time or the accumula-
tion of output spikes. The decoding performance was optimal
if we knew the optimal value of � in advance (solid line). If,
however, we adjusted the decoder to a Poisson process (� � 1),
the performance was much worse (dot-dash-line). Thus, we
can discriminate the stimuli quite efficiently by estimating �
from the output spikes. The different performances emerge
from the fact that the ISI distributions with different � values
have different shapes and assign different posterior probabil-
ities to each value of ISI.

Discussion
We have proposed a novel scheme to characterize irregular neu-
ronal firing based on the fact that the firing irregularity can be
decoupled from the firing rate if the spike sequence obeys a
gamma distribution. We have tested whether this coding scheme
may be valid for cortical neurons by injecting in vivo-like fluctu-
ating inputs to them. We have shown that the highly irregular
firing of these neurons actually exhibit the ISI distributions obey-
ing the gamma distribution. Moreover, the firing irregularity
measured from the ISI distributions remained constant over
time. We found that balanced excitatory and inhibitory synaptic
input is essential for this coding scheme.

Figure 8. Firing rate (top), � (middle), and CV (bottom) for stationary (left) and periodically
modulated inputs (right). Left, The firing rate, �, and CV were calculated from the ISIs recorded
by whole-cell patch-clamp technique for synaptic inputs with constant parameters: Vr ��40
or �44 mV and ge0 � 0.012, 0.018, 0.024, or 0.030 �S. Right, The same quantities were
calculated for inputs with varying parameters: Vr � 44 mV and ge0 was controlled as ge0( t) �
0.021 � 0.009 sin(2 
t/T ), where T (100, 200, 400, 600, 800, 1200, or 1600 ms) denotes the
period of the sinusoidal modulation. In each trial, the fluctuating current Isyn was injected for 10
seconds (0 
 t 
 10 s). The gray lines show the ranges of statistics (firing rate, �, and CV) for
stationary inputs with Vr � �44 mV. The irregularity for the modulated inputs stays in the
range for any period, whereas CV does not. Only � is robust against the rate modulation.

Figure 9. � and CV for inhomogeneous Poisson process (artificial data). The firing rate
changes at time � 0. The locally computed values of � and CV are 1, corresponding to station-
ary Poisson processes in the negative and positive time domains. If they are computed for the
whole spike train, � is unity whereas CV becomes larger than unity. Thus, � can properly
capture the local firing irregularity even if the firing rate does not remain constant over the
whole spike train.

Miura et al. • Balanced Inputs Decouple Firing Irregularity from Rate J. Neurosci., December 12, 2007 • 27(50):13802–13812 • 13809



Computational merit of the novel coding scheme
Neuronal information processing significantly relies on the firing
rate. For instance, cortical neurons may change their firing rates
depending on sensory stimuli from the environment or the mo-
tor responses prepared and executed in response to such stimuli.
It is, therefore, crucial for decoding neural information to esti-
mate the instantaneous firing rate of temporally localized spikes.
If neurons fire rhythmically, we can easily obtain an accurate
estimation of the instantaneous firing rate by taking the inverse of
an ISI. However, if the spiking pattern is highly irregular, the
estimation, or even the definition of the instantaneous firing rate
is not trivially easy, and the estimated value may not be fully
reliable. The constant firing irregularity shown in this study sig-
nificantly improves the reliability of the firing rate estimation. If
the firing irregularity also varied with time, the estimation of the
firing rate would become much more difficult. In fact, it is an

ill-defined problem to simultaneously estimate two parameters
(firing rate and irregularity) from observed data (ISIs). In some
cases, the estimation of the firing rate can be very difficult even
when the irregularity of neuronal firing remains constant
(Koyama and Shinomoto, 2005).

Because the output spike trains of cortical neurons are highly
irregular, synaptic input from a population of such neurons to a
cortical neuron will exhibit a large amount of noise. The brain
may try to keep the irregularity in neuronal firing as constant as
possible to decode information from the noisy signals. The in-
stant by instant Bayesian decoding shown in Figure 8 is one ex-
ample of how this decoding process might take place. The strat-
egy used therein is simple, and is applicable to many practical
problems to estimate the firing rate from irregular spike trains:
(1) estimate the firing irregularity � for each neuron of interests
in advance, and (2) estimate the firing rate with the help of the
estimated value of �. Note that the estimation of � can be done
whatever the firing rate profile is. At step 1, only knowing the
typical value of � for cortical neurons in advance would suffice for
most of the practical situations. For instance, the above proce-
dure may be applied to brain-machine interfaces to improve the
performance of signal detection or discrimination. Thus, the use
of the firing irregularity � in conjunction with the mean firing
rate provides an efficient method to decode information from
neuronal activity.

Balanced synaptic inputs “clamp” the firing irregularity
We have shown that the firing irregularity significantly depends
on the effective synaptic reversal potential Vr. In this study, the
value of Vr was kept constant to maintain the firing irregularity at
a fixed level. Results of recent experiments suggest that constant
Vr is indeed the case in cortical networks in vivo. It has been
shown that the changes in the average excitatory synaptic con-
ductance are balanced with those of inhibitory ones in cortical
and spinal cord neurons (Shu et al., 2003; Haider et al., 2006; Berg
et al., 2007). The balanced synaptic inputs keep the membrane
potential fluctuating around a constant value of Vr and make the
irregular firing of cortical neurons describable by the proposed
framework. Thus, our results suggest that a functional implica-
tion of balanced synaptic input is the decomposition of rate in-
formation from the irregularity of neuronal firing.

In the previous experiments, the ratio between the average
excitatory and inhibitory conductances varied from neuron to
neuron. Because the absolute value of Vr can be determined by
the ratio in number between the excitatory and inhibitory syn-
apses innervating a neuron, it seems that the individual cortical
neurons exhibit different values of Vr, or different degrees of the
firing irregularity. The balance between excitation and inhibition
may be broken when, for example, a neuronal circuit performs
certain operations (Borg-Graham et al., 1998; Chance et al., 2002;
Wehr and Zador, 2003). In that case, the measure � may detect
the shift of the balance as it is sensitive to the ratio between
excitation and inhibition. As our measure � is decoupled from
firing rate, the out-of-balance state may give � an opportunity for
exploring a role different from that of firing rate in the informa-
tion representation by neurons.

Why is the irregularity � kept constant in the balanced regi-
men? It is well known that choosing every �th spike from a Pois-
son spike train yields a spike train that obeys a gamma distribu-
tion of shape parameter �. Therefore, the output spike train may
obey such a gamma distribution if a neuron fires at every moment
when it completes integrating � input spikes obeying a Poisson
process. The number (� �) of inputs required for spike genera-
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Figure 10. A toy probabilistic model for the discrimination of two stimuli. a, Two constant
stimuli generated different firing rate profiles. We used the spike data recorded in vitro in Figure
5 to mimic the stimulus discrimination by in vivo neurons. Stimulus 1 was given as the injected
current defined with ge0 � 0.04 �S and Vr � �41 mV, and stimulus 2 defined with ge0 �
0.025 �S and Vr � �41 mV. b, The posterior probability of stimulus 1 when it was actually
presented. The solid line represents the posterior calculated from the gamma distribution with
an optimal value of � (� 2.47). It increases with time because the evidence accumulates with
output spikes. The dotted/dashed curve represents the posterior calculated from the conven-
tional Poisson process (� � 1). Thus, the stimuli can be discriminated efficiently by estimating
� for the output spikes.
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tion may depend on various parameters such as the amplitude of
each input, the time constant of leakage, and, particularly, the
distance from the effective reversal potential Vr to threshold.
Therefore, � remains unchanged if Vr is fixed. Because the ob-
served values of � are small (�2), in reality they may represent the
required number of spike packets rather than single spikes.

Next, why is � almost independent of ge0? If we increase the
means of ge and gi (i.e., the values of ge0 and gi0), their variances are
also increased in our model. Increasing the means strengthens the
“force” that clamps the membrane voltage at Vr, which would
lower the firing rate and the irregularity. In contrast, increasing
the variances raises the firing rate and the irregularity. The two
competing effects as a whole increase the firing rate and maintain
�. Thus, the correlated changes in the mean and SD of synaptic
conductance (Shu et al., 2003; Berg et al., 2007) are essential for
the constancy of �.

Does the validity of the firing irregularity strongly depend on
the membrane properties of neurons? We examined the con-
stancy of � in the balanced regime using several different neuron
models such as leaky integrate-and-fire neurons (data not
shown). The leaky integrate-and-fire model is one of the simplest
computational neuron models (Koch, 1999; Dayan and Abbott,
2001). The results obtained were essentially the same as those
obtained from the realistic neuron model or cortical neurons,
implying the generality of our results.

Advantage of measure � over CV

Previous studies pointed out that the conventional measure CV

also remains unchanged in the balanced regime. However, the
statistics of input spikes was limited and, more importantly, the
firing rate was fixed at constant in these studies (Salinas and
Sejnowski, 2000; Chance et al., 2002). Our results have extended
these results to a wider class of input statistics, demonstrating a
new finding that the firing irregularity is robust against the firing
rate changes in the balanced regimen. In contrast, CV is sensitive
not only to the firing irregularity but also to the rate change (Fig.
9). In fact, the large CV values observed in vivo, which some
attempted to reproduce by in vitro experiments (Stevens and Za-
dor, 1998) or computer simulations (Softky and Koch, 1993;
Troyer and Miller, 1997; Shadlen and Newsome, 1998; Sakai et
al., 1999; Shinomoto et al., 1999), may be mostly caused by the
modulations of firing rate. We propose that � is more suitable
than CV for defining the firing irregularity.

We note that some of the previously proposed measures for
the firing irregularity, such as

CV2 �
1

n�
i�1

n 2�Ti � Ti�1�
Ti � Ti�1

and

LV �
1

n�
i�1

n 3�Ti � Ti�1�
2

�Ti � Ti�1�
2 ,

are not influenced by the rate variation like the present � (Holt et
al., 1996; Shinomoto et al., 2003, 2005b). The derivation of these
measures, however, is ad-hoc and they have no corresponding
parameters in statistical models. In contrast, � has a clear-cut
meaning based on information mathematics (Bickel et al., 1993;
Amari and Kawanabe, 1997; Amari and Nagaoka, 2001; Miura et
al., 2006a,b). In fact, � is an optimal estimator of the shape pa-
rameter of the gamma distribution of ISIs. In other words, each

value of � specifies a unique shape of the ISI distribution. There-
fore, � is directly linked to a statistical model and, hence, is useful
for decoding.

In a widely accepted view of neuroscience, information is con-
veyed by the instantaneous firing rates of neurons, and an inho-
mogeneous Poisson process, where each time bin is independent,
is often used for a probabilistic model of the spike generation.
However, our results indicate that this process more resembles
the gamma process rather than the Poisson process, when cortical
neurons receive balanced excitatory and inhibitory synaptic in-
puts (Shu et al., 2003; Haider et al., 2006; Berg et al., 2007). Other
studies performed a model selection using Kolmogolov–Smirnov
statistical test on the ISIs recorded from in vivo cortical neurons
(Barbieri et al., 2001; Brown et al., 2001). The measurement of LV

in in vivo cortical neurons also suggested that the constancy of the
irregularity (Shinomoto et al., 2003, 2005b). The results of these
studies are consistent with the present ones, confirming that the
gamma process fits the ISI distribution reasonably well. However,
the previous studies did not address the role of balanced synaptic
inputs in keeping the firing irregularity constant. We emphasize
that our study has clarified the profound relationship between
the gamma process and the constant irregularity (i.e., �), and the
biological conditions to ensure the validity of the gamma process
(i.e., balanced synaptic input).

We demonstrated that the shape parameter � in the gamma
process augments the information provided by the firing rate,
resulting in more accurate estimation of the posterior probabili-
ties of presented stimuli. This fact may enable us to improve the
quality of decoded signals in the brain-machine interface, a re-
cent technological challenge to use brain-derived signals for con-
trolling robots and other information processing systems. In
summary, we have shown that balanced synaptic inputs clamp
the irregularity of neuronal firing against the rate modulation.
Our results have revealed a possible functional role of balanced
synaptic inputs in the cortical information representation.
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