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Previous studies and models of perceptual decision making have largely focused on binary choices. However, we often have to choose
from multiple alternatives. To study the neural mechanisms underlying multialternative decision making, we have asked human subjects
to make perceptual decisions between multiple possible directions of visual motion. Using a multicomponent version of the random-dot
stimulus, we were able to control experimentally how much sensory evidence we wanted to provide for each of the possible alternatives.
We demonstrate that this task provides a rich quantitative dataset for multialternative decision making, spanning a wide range of
accuracy levels and mean response times. We further present a computational model that can explain the structure of our behavioral
dataset. It is based on the idea of a race between multiple integrators to a decision threshold. Each of these integrators accumulates net
sensory evidence for a particular choice, provided by linear combinations of the activities of decision-relevant pools of sensory neurons.
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Introduction
Decision making is an essential higher-level neural mechanism
for linking perception and action. Huge efforts are currently un-
dertaken to understand neural mechanisms of decision making
on various levels, ranging from the behavioral, cognitive, and
computational levels to the neurophysiological implementation
of the underlying mechanisms. Mainly for reasons of tractability,
researchers have largely focused on studying choices between two
alternatives [for recent reviews, see Ratcliff and Smith (2004) and
Smith and Ratcliff (2004)]. In real life, however, we often face
choices between multiple alternatives. Recently, some progress
has been made on the theoretical aspects of multichoice decision
making (Roe et al., 2001; Usher and McClelland, 2001; McMillen
and Holmes, 2006; Bogacz et al., 2007), but experimental datasets
that are quantitative enough to test computational models are
desperately needed.

An experimental paradigm that has been very helpful in elu-
cidating the neural mechanisms underlying perceptual decisions
between two alternatives in both humans and monkeys is the
random-dot motion direction discrimination task (Shadlen and
Newsome, 2001; Roitman and Shadlen, 2002; Palmer et al., 2005;
Heekeren et al., 2006). We have asked human subjects to perform
random-dot motion discrimination between three alternatives,

making use of a random-dot stimulus with multiple motion
components. This new stimulus has the advantage of providing
simultaneous experimental control over the sensory evidence for
each of the three alternatives.

The collected behavioral data span a wide range of both accu-
racy levels, ranging from chance to perfect performance, and
mean response times. We demonstrate that the complex data
pattern can be captured by a relatively simple computational
model with only five free parameters. This model is based on the
idea of a race between three competing neural integrators toward
a threshold. Each of these integrators accumulates the net sensory
evidence for one of the alternatives. The net sensory evidence is
computed as a linear combination of the neural activities of three
task-relevant pools of motion-sensitive sensory neurons in extra-
striate visual cortex. The model is a generalization and expansion
of the computational model that we have used previously to ex-
plain both the behavior and the neural activity in the parietal
cortex of monkeys performing a random-dot motion discrimi-
nation between two alternatives (Ditterich, 2006a,b).

Materials and Methods
Human subjects
Three young adults with normal vision participated in our experiment.
Each of the subjects completed multiple experimental sessions (between
9 and 13) of 408 trials each, providing us with between �3300 and 5100
valid (see below) experimental trials per subject (for details, see Table 1).
Subject 1 (S1) had previous experience with visual psychophysics, S2
never had performed a similar experiment before, and S3 was experi-
enced in visual psychophysics and one of the authors.

Experimental setup
The subjects sat in front of a 19 inch flat-screen cathode ray tube video
monitor (PF790; viewing distance, 60 cm; ViewSonic, Walnut, CA) with
their head on a chin and forehead rest. The visual stimuli were generated
by a Macintosh G4 computer running Mac OS 9, Matlab (Mathworks,
Natick, MA), and the Psychophysics Toolbox (Brainard, 1997; Pelli,
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1997) at a frame rate of 75 Hz. The experiment was controlled, and the
data were collected by an Intel Pentium IV computer running QNX
(QNX, Ottawa, Ontario, Canada) and a modified version of REX (Lab-
oratory of Sensorimotor Research, National Eye Institute, Bethesda,
MD).

Eye movements were monitored using an infrared video eye tracker
(EyeLink; SR Research, Osgoode, Ontario, Canada). The eye position of
the right eye was sampled at 250 Hz. Before each experimental session,
the eye tracker was calibrated using the built-in fixation-based calibra-
tion routine.

Experimental task and visual stimulus
The experimental task is illustrated in Figure 1. Each trial started with the
presentation of a central fixation mark (diameter, 0.4°). The measured
fixation location had to remain within 2.0° of the center of the screen
throughout the trial (up to the saccadic response). After 500 ms of stable
fixation, three targets (diameter, 0.8°) appeared on the screen. They were
all located on a virtual circle around the fixation mark with a radius of
8.0°. The target locations were chosen randomly (with an equal spacing)
at the beginning of an experimental session and did not change through-
out the session. After a random delay [minimum, 0.2 s; maximum (max),
5.0 s; mean, 0.9 s], a multicomponent random-dot pattern was presented
at the center of the screen (diameter, 5.0°).

In the original version of the stimulus [as used, e.g., in Shadlen and
Newsome (2001), Roitman and Shadlen (2002), and Palmer et al.
(2005)], a certain fraction of the dots (defined as the coherence of the
stimulus) was moving coherently in a particular direction, whereas the
rest of the dots were flickering randomly. Our multicomponent random-
dot pattern had up to three coherent motion components embedded.
Thus, there were four subpopulations of dots: one of them was moving
coherently in a particular direction � (aligned with one of the choice
targets; fraction of dots defined by the coherence of the first component),
another one was moving coherently in the direction � � 120° (fraction
defined by the coherence of the second component), a third one was
moving coherently in the direction � � 240° (fraction defined by the
coherence of the third component), and the rest of the dots were
flickering randomly. The stimulus is therefore described by a set of
three coherences. Which of the four subpopulations a particular dot
belonged to changed randomly over time. As a consequence, the stim-
ulus is not perceived as an overlay of several transparent layers of
motion that could be easily separated, but as a mixture of different
motion components. For a discussion of transparent random-dot
motion stimuli, see, e.g., Treue et al. (2000). Corresponding pairs of
dots, responsible for the percept of apparent motion, were presented
with a temporal separation of 40 ms (three video frames). The coher-
ently moving dots had a speed of 5°/s, the dot density was 16.7 dots/
(deg 2 � s), and each dot was a little filled square with an edge length of
0.1°. On each trial, the set of coherences was randomly selected from
the following list (given as percentages):

(0/0/0)
(5/0/0), (0/5/0), (0/0/5)

(10/0/0), (0/10/0), (0/0/10)
(20/0/0), (0/20/0), (0/0/20)
(40/0/0), (0/40/0), (0/0/40)
(10/10/10)
(20/10/10), (10/20/10), (10/10/20)
(30/10/10), (10/30/10), (10/10/30)
(20/15/5), (20/5/15), (15/20/5), (5/20/15), (15/5/20), (5/15/20)
(30/15/5), (30/5/15), (15/30/5), (5/30/15), (15/5/30), (5/15/30)
(20/20/20)
(30/20/20), (20/30/20), (20/20/30)
(40/20/20), (20/40/20), (20/20/40)
(30/25/15), (30/15/25), (25/30/15), (15/30/25), (25/15/30), (15/25/30)
(40/25/15), (40/15/25), (25/40/15), (15/40/25), (25/15/40), (15/25/40).

This provides a total of 51 different trial types. Each trial type was re-
peated eight times per experimental session (in random order).

The subjects were instructed to identify the direction of the stron-
gest motion component and to make a saccadic eye movement to the
associated choice target (aligned with the identified direction of mo-
tion). They were allowed to watch the stimulus for as long as they
wanted to and to respond whenever they were ready. After each trial,
they received auditory feedback as to whether they had picked the
correct target. If the stimulus did not have one strongest motion
component, the computer randomly identified one of the targets as
being the correct one.

To complete a trial successfully (“valid trial”), the subject had to main-
tain accurate fixation until the random-dot pattern appeared. Once cen-
tral fixation was broken, the eye position had to be within 3.0° of one of
the three choice targets within 100 ms and had to stay on this target for at
least 200 ms.

Data analysis
When analyzing the data, we collapsed across different target locations.
Thus, we only cared about the set of coherences and whether the subject
picked the target associated with the strongest motion component, the
one associated with the intermediate component, or the one associated
with the weakest component.

Because in the two-alternative forced-choice (2AFC) version of the
task the psychometric function is usually well described by a logistic
function of the form p(correct choice) � e � �C/(1 � e � �C) (Roitman and
Shadlen, 2002; Palmer et al., 2005), we used a function of the form

p�correct choice� �
e��C*

2 � e��C*

for quantification of the slope of our psychometric functions, with C*
being the difference between the coherence of the strongest motion com-
ponent and the coherence of the other two components. (We performed
this analysis only for trial types with the two lower coherence levels being
the same. The probability of a correct choice has to be 1/3 for three
identical coherence levels.) The slope parameter � was determined using
maximum likelihood estimation. The standard error of the parameter
was calculated from the second partial derivative of the log likelihood
with respect to the parameter (Meeker and Escobar, 1998).

The response time (RT) was measured as the time between the appear-
ance of the random-dot stimulus and the breaking of central fixation. For
obtaining the RT distributions, we eliminated any RTs �4 s, divided the
remaining range of RTs into 10 bins of equal width, and counted the
number of RTs within the range of each bin.

Computational model
A general description of the ideas behind our model can be found in the
Results section.

Model of the neural representation of the sensory stimulus. Specifically,
the mean response of a population of motion-sensitive neurons to a
three-component random-dot stimulus with coherences c1 (in the pre-
ferred direction of the pool), c2, and c3 was modeled to be of the form

Table 1. Model parameters and data statistics for the pooled dataset and for the
three individual subjects

Subject

Pooled data S1 S2 S3

Model parameters
g 0.0126 0.0137 0.00769 0.0172
kn 0.0989 0.0717 0.0907 0.0738
ks 2.08 2.07 2.75 1.64
kv 0.261 0.370 0.291 0.326
Residual time (ms) 366 340 413 326

Data statistics
nvalid 12,247 3882 3291 5074
nexp 10 9 13

nvalid, Number of valid trials; nexp, number of experimental sessions.
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s�1 �

g � �c1 � kn � �1 � �
i�1

3

ci��

1 � ks � �c2 � c3�
,

where g is the overall gain of the sensory response (relationship between
neural activity and motion strength). The two additive terms in the
brackets reflect the two linear response components: the first one de-
scribes the response to the coherent motion in the preferred direction,
and the second one describes the response to the noise dots. The term in
parentheses reflects the proportion of noise dots in the stimulus. kn is the
relative gain of the response to the noise dots compared with the response
to an identical fraction of dots moving coherently in the preferred direc-
tion. The term in the denominator reflects the divisive normalization.
Because the term in the numerator accurately describes the response to a
single-component stimulus, only the coherences of the motion compo-
nents away from the preferred direction should show up in the denom-
inator. For simplicity, we have chosen a linear term with ks describing the
gain/strength of the divisive normalization. There is probably room for
improvement in the mathematical description of the normalization pro-
cess, but, as we will see, this simple approximation will allow us to capture
the structure of the behavioral data quite nicely.

In general, the mean responses of each of the three task-relevant sen-
sory pools can be written as

s�j �

g � �cj � kn � �1 � �
i�1

3

ci��

1 � ks � �
i	j

ci

.

The variances of the three sensory responses were modeled as

�sj

2 � kv � s�j.

We described the outputs of the sensory pools as normal random pro-
cesses to be able to treat the decision process as a standard diffusion
process (based on Brownian motion), which is reasonable if the pools are
not too small.

Model of the decision process. In principle, we would have to treat the
race between the three integrators mathematically as a three-dimensional
diffusion process. However, for the 2AFC case, the decision process has

often been described as a one-dimensional dif-
fusion process with two boundaries instead of a
two-dimensional diffusion process. This sim-
plification can be done when one assumes that
the two signals that are accumulated by the two
integrators are only different in sign and identi-
cal in absolute value. Such a situation would
result from all of the contributions that a partic-
ular pool of sensory neurons makes to the net
evidence signals having the same origin. If we
make the same assumption in our model, we
can also reduce the dimensionality of the prob-
lem. We can write the three evidence signals as

e1 � s1 �
1

2
s2 �

1

2
s3

e2 � s2 �
1

2
s1 �

1

2
s3

e3 � s3 �
1

2
s1 �

1

2
s2.

e3 can be rewritten as

e3 � � � s1 �
1

2
s2 �

1

2
s3�

� � s2 �
1

2
s1 �

1

2
s3� � � e1 � e2.

Thus, if e1 and e2 are known, e3 is known. In our model, each of the three
evidence signals is integrated over time (see Fig. 3A):

ij�t� � �
0

t

ej���d�.

Because integration is a linear operation, if i1 and i2 are known, we also
know i3. We can therefore rewrite the decision criterion for choosing the
third alternative:

i3 � 1

� i1 � i2 � 1

i2 	 � i1 � 1.

Thus, the third integrator exceeding a value of 1 is equivalent to crossing
another linear boundary in the i1–i2 plane. This is illustrated in Figure 3C.
The diffusion process always starts at (0, 0) and stops when one of the
three boundaries is crossed. The figure shows these boundaries: the solid
line (i1 � 1) is the decision boundary for the first alternative, the dashed
line (i2 � 1) is the boundary for the second alternative, and the dotted
line (i2 � 
i1 
 1) is the boundary for the third alternative.

The two-dimensional diffusion process is described by a drift vector
and a covariance matrix. The drift vector is given by [e�1e�2]T, the means of
the first two evidence signals. Because [e1 e2]T, can be calculated as

� e1

e2
� � � 1 �

1

2
�

1

2

�
1

2
1 �

1

2
� � � s1

s2

s3

� ,

[e�1 e�2]T is given by

Saccade

Motion

Targets

Fixation

Time
]RT

 

  

  

  

Figure 1. Experimental paradigm. Human observers were asked to make a judgment about the strongest direction of motion
in a random-dot pattern with multiple motion components. They were free to watch the stimulus as long as they wanted to and
responded with a goal-directed eye movement to one of three choice targets. Choices and RTs were measured.
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For calculating the predictions of the model (probabilities of the different
choices and RT distributions), we discretized the two-dimensional dif-
fusion process and projected it onto a Markov chain. Ditterich (2006a)
has explained this in detail (his section B.5). The only difference between
what has been explained there and what we have done here is that we had
to use three instead of two decision boundaries. Thus, we had to add a
third absorbing state to the Markov chain. The Matlab function
OU_2D_3B_MAR.M, which has been used for performing the model
calculations, is part of the Stochastic Integration Modeling Toolbox
(written by J.D.), which can be downloaded from http://master.
peractionlab.org/software/.

Model fit and predictions. The model parameters were identified by an
optimization procedure based on the mean RTs. A multidimensional
simplex algorithm (provided by Matlab’s Optimization Toolbox) was
used to minimize the sum of the squared differences between the mean
RTs in the data and the mean RTs predicted by the model, taking the
standard errors of the estimated means into account. We used the mean
RTs for each combination of coherences, regardless of choice (15 data
points). For the model, these were obtained by calculating a weighted
sum of the predicted mean RTs for the different choices based on the
predicted probabilities of these choices.

For the pooled dataset and for S1 and S3, the decision time distribu-
tions were calculated to a maximum decision time of 5 s with a temporal
resolution of 25 ms during the optimization process and 10 ms for the
optimized model. Because of wider distributions and reaching computer
memory limits, we had to use different parameters for S2: during the
optimization process, the decision time distributions were calculated to a
maximum decision time of 7 s with a temporal resolution of 35 ms; for
the optimized model, the decision time distributions were calculated to a
maximum decision time of 8 s with a temporal resolution of 15 ms.

Results
Data
To study the neural mechanisms of perceptual decision making
between multiple alternatives, we asked human observers to
judge the direction of the strongest of three motion components
embedded into a new (nontransparent) multicomponent
random-dot motion stimulus. The observers were free to watch
the stimulus for as long as they wanted to and responded with a
goal-directed eye movement (saccade) to one of three choice
targets whenever they were ready. We measured how often they
picked each target (relative frequencies) and their RTs as a func-
tion of the motion strengths (coherences) of the three motion

components. A schematic of the experimental task is shown in
Figure 1. Please see Materials and Methods for further details. We
will first focus on the pooled data from all three subjects (12,247
valid trials), but we will show individual results later.

Choice behavior
Figure 2A shows how often a particular target was chosen as a
function of the coherence (fraction of dots that move coherently
in a particular direction) of the strongest motion component.
The color of the symbols codes for the coherences of the two
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Figure 2. Experimental results. A, Relative frequency of choice as a function of the motion
strength of the strongest component. The symbols represent the data points, and the error bars
represent 95% confidence intervals for the estimated probabilities (see text for details). The
dotted lines connect neighboring data points for the same trial type (different combinations of
motion strengths of the two weaker components). The trial type is indicated by the color (see B
for the legend). The solid lines show the function fits used for quantifying the slope of the
psychometric functions (see text). The shape of the symbol indicates the choice [circle, correct
choice (strongest component has been chosen); square, target associated with the intermedi-
ate component has been chosen; diamond, target associated with the weakest component has
been chosen]. The dashed line indicates chance level. The symbols (and lines) have been shifted
horizontally to avoid overlap. This is indicated by the light gray areas. All symbols in such an area
would normally be located on the central vertical line. B, Mean RT as a function of the motion
strength of the strongest component. The symbols represent the data points, and the error bars
represent the mean � 1 and 2 SEs. The dotted lines connect neighboring data points for the
same trial type. The color code is identical to the one used in A (see legend). The light gray areas
again indicate a horizontal shift (see A for details).
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weaker motion components (Fig. 2B, legend). The shape indi-
cates the chosen target [round, correct target (target associated
with strongest motion component); square, target associated
with intermediate motion component; diamond, target associ-
ated with weakest motion component]. The dotted lines connect
symbols of the same color and shape. The error bars represent
95% confidence intervals for the estimated probabilities, calcu-
lated according to the method proposed by Goodman (1965).
The dashed line indicates chance level (1/3 for a choice between
three alternatives). Some of the symbols have been shifted hori-
zontally to avoid overlapping error bars. This is indicated by the
light gray areas: any symbol located within such an area is sup-
posed to be located exactly at 10, 20, 30, or 40%.

The dark blue symbols represent the proportion of correct
choices for the traditional dot stimulus with only a single coher-
ent motion component. As in the 2AFC case, a gradual improve-
ment of the observed performance is seen with an increase of the
motion strength. The choice performance was at chance for a
pure noise stimulus (0% coherence) and approached perfect ac-
curacy for strong motion (� 20% coherence). For stimuli with
the two weaker motion components having coherences of 10%
each (shown in red), chance performance is again observed for all
motion strengths being identical, corresponding to a shift of the
psychometric function to the right. The psychometric function
was also shallower than in the single motion component case. We
used function fits, represented by the solid lines in Figure 2A, for
estimating the slopes of the psychometric functions (for details,
see Materials and Methods). The slope (�) of the blue psycho-
metric function was estimated to be 32.3 � 1.0 (SE), and the slope
of the red function was estimated to be 21.2 � 0.7. For stimuli
with the two weaker motion components having coherences of
20% each (shown in green), the psychometric function was again
shifted to the right (chance performance for all coherences being
20%) and was even shallower than in the red case (estimated
slope, 13.9 � 0.5).

For the stimuli with three different motion coherences, we
analyzed not only the frequency of correct responses, but also
how often the targets associated with the two weaker components
were chosen. This is shown in purple for stimuli with the two
weaker coherences being 15 and 5% and in cyan for the two
weaker coherences being 25 and 15%. The relative frequencies of
choices followed the order of the motion strengths: the correct
target was chosen most frequently, the target associated with the
intermediate component was chosen with an intermediate fre-
quency, and the target associated with the weakest motion com-
ponent was chosen least frequently.

Response times
Figure 2B shows the associated mean RTs. The error bars repre-
sent �1 and �2 SEs (for approximating 95% confidence inter-
vals). As in Figure 2A, the symbols were again shifted horizontally
to prevent overlapping error bars (again indicated by the light
gray areas). Similarly to what has been reported in the 2AFC case
(Palmer et al., 2005), our subjects waited longest for the most
difficult decisions (on average �1650 ms for pure noise stimuli)
and responded much faster when the decision was easy (�550 ms
for stimuli with a single 40% coherence motion component). For
a given coherence of the strongest component, choices were both
less accurate (Fig. 2A; comparison of blue, red, and green data
points in a single gray column) and slower (Fig. 2B; same com-
parison) with increasing motion strengths of the two weaker
components. Furthermore, the green chronometric function
(stronger distracting motion components) seems shallower than

both the red and the blue ones (weaker distracting motion com-
ponents). It is also striking that the purple (max/15/5%) and the
red (max/10/10%) data points and the cyan (max/25/15%) and
the green (max/20/20%) data points tend to overlap. These dif-
ferent stimulus categories are characterized by identical mean
values of the coherences of the two weaker components. Thus,
the RT seems to be determined by only two degrees of freedom
(the coherence of the strongest component and the average co-
herence of the two weaker components), rather than three (all
three motion coherences).

Interestingly, identical means of the coherences of the two
weaker motion components did not induce identical choice per-
formance, as can be seen in Figure 2A: the purple circles are
clearly located below the red circles, and the cyan circles are
clearly located below the green circles. This suggests that in our
task, accuracy and RT are not controlled by a unique single vari-
able (for a discussion of this observation, see supplemental ma-
terial, available at www.jneurosci.org).

Between-stimulus-category speed–accuracy effects
This notion is further supported by another observation in our
dataset. Within each stimulus category (unique color in Fig. 2),
we have observed a characteristic relationship between accuracy
and RT, which has been reported in a multitude of previous
studies: more accurate choices in response to a more informative
sensory stimulus are also faster. However, the introduction of our
multicomponent stimulus also allows us to look at between-
category speed–accuracy effects. For example, choices in re-
sponse to (0/0/0%), (10/10/10%), and (20/20/20%) stimuli were
all at chance level (Fig. 2A) (because of the identical coherence
levels for all three directions), but the mean RTs were clearly
different (Fig. 2B): responses were faster for higher coherence
levels. This might appear counterintuitive at first, because one
might think of the higher-coherence stimulus as a higher-conflict
situation, but we will provide an explanation for this phenome-
non based on our computational model in the Discussion
section.

Model
The critical question for understanding the neural mechanisms
underlying the decision process is whether we can find a quanti-
tative explanation for the observed data pattern. We therefore
developed a computational model. We based its architecture on
ideas that had proven successful in explaining both the behavior
and the neural activity in the parietal cortex of monkeys perform-
ing the 2AFC version of the task (Ditterich, 2006a,b). The basic
idea is that two integrators (one for each possible choice) com-
pete with each other for reaching a critical activity level or thresh-
old. One of the integrators reaching the threshold terminates the
decision process and therefore determines the choice and the
decision time. The assumption is that these integrators accumu-
late net sensory evidence for a particular choice. In the case of
discriminating between two (opposing) motion directions, these
net evidence signals would be based on reading out the activity of
two task-relevant pools of motion-sensitive neurons, each of the
pools being tuned to one of the two possible directions of coher-
ent motion. The net evidence signals would result from subtract-
ing the activity of one of the sensory pools from the activity of the
other sensory pool.

Model of the decision mechanism
Our task required a choice between three alternatives. We there-
fore assumed a race between three integrators (one for each

Niwa and Ditterich • Perceptual Decisions between Multiple Alternatives J. Neurosci., April 23, 2008 • 28(17):4435– 4445 • 4439



choice). Whichever integrator would reach
a critical activity level (threshold) first
would determine the choice and the deci-
sion time. The outputs of these integrators
are labeled as i1, i2, and i3 in Figure 3A.
Because we cannot measure this decision
time directly, but only the RT, we have to
make an assumption how these two mea-
sures are related. Similar to the assump-
tions in previous decision models (Luce,
1986), we assumed that the RT is com-
posed of two independent and additive
components: the decision time and a resid-
ual time combining the durations of all
non-decision-related processes, such as,
e.g., providing the decision process with
the necessary sensory information and ex-
ecuting the eye movement. Expecting the
trial-by-trial variability of the decision
component of the RT to be much larger
than the variability of the residual compo-
nent, we assumed a constant residual time
(first free parameter of the model). The va-
lidity of this assumption will be demon-
strated later when examining the RT
distributions.

We arbitrarily defined the threshold
that had to be crossed by any integrator to
terminate the decision process as 1. (One of
the parameters of a bounded diffusion
model can always be chosen arbitrarily
without restricting the generality of the
model.) As in the 2AFC case, we assumed
that the integrators accumulate net sensory
evidence. These evidence signals are la-
beled e1, e2, and e3 in Figure 3A. Because
our multicomponent stimulus could con-
tain coherent motion in three different di-
rections, we assumed that three task-
relevant pools of sensory neurons would
have to be read out to accomplish the task,
each of them being tuned to one of these
three possible directions of motion. These sensory signals are
labeled s1, s2, and s3 in Figure 3A. But how would these signals
have to be combined to obtain the net sensory evidence for a
particular choice? The sensory pool that is tuned to the direction
associated with a particular choice target should provide evidence
for making this choice, whereas the other two pools should pro-
vide evidence against it. We used a linear combination of the
three sensory signals with a weight of �1 for the signal providing
evidence for a particular choice and weights of 
0.5 for each of
the signals providing evidence against it. This selection of weights
makes sure that both pools of sensory neurons providing evi-
dence against a particular choice have the same amount of influ-
ence on the decision. Because the three directions of motion are
equally spaced, there should be no advantage to either one of
them. Furthermore, the selection also makes sure that all weights
sum to zero. Thus, when all three pools are equally active, there is,
on average, no net evidence for either choice.

Model of the neural representation of the sensory stimulus
How would we describe the response of the three sensory pools to
our multicomponent random-dot stimulus? To our knowledge,

nobody has recorded the physiological responses of motion-
sensitive neurons to this type of stimulus so far. However, Britten
et al. (1993) have recorded the response of neurons in macaque
area MT to the single-component version of the stimulus, having
a net motion component either in the preferred direction of the
recorded cell or in the opposite (null) direction. They found that,
after an initial transient response, the instantaneous activity of a
single neuron fluctuated over time, but that the mean firing rate
was largely stationary. When characterizing the response to stim-
uli with different coherences in one of the two possible directions,
they also found that the firing rate of an MT neuron could be
approximated by a piecewise linear function with two different
slopes (one for each direction of coherent motion in the stimu-
lus). Ignoring spontaneous activity, such a response profile could
be thought of as resulting from two additive and approximately
linear response components: a strong response to coherent mo-
tion in the preferred direction of the neuron and a weaker re-
sponse to the noise dots. Because the fraction of noise dots in the
stimulus is determined by the coherence (it is 1 minus the coher-
ence of the stimulus), the latter response component would be
strongest for a 0% coherence (pure noise) stimulus and would fall
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Figure 3. Computational model. A, Structure of the model. Three integrators (each associated with one of the three alterna-
tives) race against each other. The integrator output signal (i1, i2, or i3) reaching a decision threshold first determines the choice
and terminates the decision process. The integrator input signals (e1, e2, and e3) are net evidence signals, which are linear
combinations of the three relevant sensory signals (s1, s2, and s3). Solid arrows indicate positive weights (excitatory connections),
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off linearly for stronger coherent motion in either direction. This
is plotted in blue in Figure 3B. The former response component
would be strongest for 100% coherent motion in the preferred
direction of the neuron, would fall off linearly with weaker mo-
tion coherence, would reach zero for a pure noise stimulus, and
would stay there for coherent motion in the null direction. This is
shown in gray in Figure 3B. Adding these two components to-
gether results in a piecewise linear function with two different
slopes (Fig. 3B, dashed purple line).

Based on these observations for the single-component stimu-
lus, we assumed that pools of similarly tuned MT neurons would
also be driven by two linear and additive components when pre-
sented with our multicomponent stimulus: one response compo-
nent would be driven by the dots moving coherently in the pre-
ferred direction of the neurons, and the other component would
be driven by the noise dots. Because the other two directions of
coherent motion had a separation of 120° from the preferred
direction of a particular pool, it is safe to assume that these mo-
tion components would not elicit a considerable neural response.
The typical direction tuning width of neurons in MT has been
reported to be on the order of 40 –50° (half-width at half-height)
(Albright, 1984; Snowden et al., 1992; Treue et al., 2000). How-
ever, it has been suggested that the MT circuitry contains a nor-
malization mechanism, and this normalization mechanism
might be triggered by the fact that other subpopulations of neu-
rons are strongly driven by the other coherent motion compo-
nents. Simoncelli and Heeger (1998) have suggested that this
normalization mechanism is divisive. Adding such a normaliza-
tion mechanism to our MT response model turned out to be
essential for being able to explain the behavior (for further
information, see supplemental material, available at
www.jneurosci.org).

We have therefore modeled the mean response of a popula-
tion of motion-sensitive neurons to a three-component random-
dot stimulus to be driven by two additive, linear response com-
ponents and to be affected by a divisive normalization
mechanism (for details, see Materials and Methods). The de-
scription of the mean response adds three free parameters to our
model: the first one is the overall gain g of the sensory response
(relationship between neural activity and motion strength). We
need this flexibility in the model because we have arbitrarily fixed
the decision threshold. The second one, kn, describes the relative
gain of the response to the noise dots compared with the response
to an identical fraction of dots moving coherently in the preferred

direction. The third one, ks, describes the strength of the divisive
normalization.

As we have already mentioned above, Britten et al. (1993) also
demonstrated that the MT response to a random-dot pattern
fluctuates over time. Thus, in addition to specifying the mean
response, we also have to define its variability. Britten et al. (1993)
showed that the variance of the number of spikes that are emitted
by a single neuron within a particular time interval is approxi-
mately proportional to the mean spike count. Our model requires
a description of the variability of the response of a pool of simi-
larly tuned motion-sensitive neurons. How variable this response
is depends on a number of factors: the Fano factor (variance-to-
mean ratio) of the response of a single neuron, the number of
neurons in the pool, the correlation between neurons in the pool
(Zohary et al., 1994), and an arbitrary scaling of the input signals
to the integrators (resulting from the arbitrary selection of a de-
cision threshold). However, none of the mentioned factors
should interfere with the variance remaining proportional to the
mean of the response. We therefore introduced the variance-to-
mean ratio kv as the fifth and last free parameter of the model.
Additional details regarding the model can be found in the Ma-
terials and Methods section. There we also derive how the model
can be implemented as a two-dimensional diffusion process with
three decision boundaries, which is illustrated in Figure 3C.

Model fit
We determined the model parameters by fitting the mean RTs
(for details, see Materials and Methods). The resulting model
parameters are shown in Table 1. kn turned out to be on the order
of 10%, which means that we would expect the sensory neural
response to a certain number of noise dots to be �1/10 of the
response of the same number of dots moving coherently in the
preferred direction of the motion-sensitive neurons. ks was �2,
which means that the divisive normalization would be expected
to reduce the neural response by �50% when the sum of the
coherences away from the preferred direction of the examined
pool is 50%. The residual time was on the order of 350 ms. Thus,
given a range of �550 –1650 ms of mean RTs depending on the
difficulty of a trial, the expected range of mean decision times
would be between 200 and 1300 ms. For the most difficult trials,
the decision process is therefore expected to account for �80% of
the overall RT. Figure 4A shows the results of the fitting process.
The symbols, as in Figure 2B, represent the data, but the lines
now represent the model. The expected RTs have been calculated

0 10 20 30 40

0

0.2

0.4

0.6

0.8

1

Motion strength of strongest component [%]

R
el

at
iv

e 
fr

eq
ue

nc
y 

of
 c

ho
ic

e

0 10 20 30 40

600

800

1000

1200

1400

1600

1800

Motion strength of strongest component [%]

M
ea

n 
R

T
 (

+
/–

 1
 a

nd
 2

 S
E

) 
[m

s]

( max. /   0% /   0% )
( max. / 10% / 10% )
( max. / 20% / 20% )
( max. / 15% /   5% )
( max. / 25% / 15% )

A B

0 1000 2000 3000 4000

# of observations: 997

# of observations: 1316

0 1000 2000 3000 4000

# of observations: 907

# of observations: 1180

( 20% / 15% / 5% )
correct choices

( 30% / 25% / 15% )
correct choices

( 40% / 25% / 15% )
correct choices

0 1000 2000 3000 4000

( 30% / 15% / 5% )
correct choices

0 1000 2000 3000 4000

RT [ms] RT [ms]

C

Figure 4. Comparison between the pooled dataset and the model predictions. A, The model was fitted to the mean RTs. The symbols represent the data points as in Figure 2, but the solid lines
now connect the model results. Color conventions and horizontal shifts (light gray areas) are as in Figure 2. B, Comparison between the probabilities of the particular choices predicted by the model
(connected by solid lines) and the relative frequencies of the choices in the data (symbols; not used for the model fit). Shape conventions are as in Figure 2. C, Comparison between the RT
distributions predicted by the model (solid blue lines) and the RT distributions observed in the experiment (gray histograms). The distributions are shown for the four trial types with the largest
numbers of observations.

Niwa and Ditterich • Perceptual Decisions between Multiple Alternatives J. Neurosci., April 23, 2008 • 28(17):4435– 4445 • 4441



for the model for the same combinations of coherences that have
been used in the experiment, and these points have been con-
nected by line segments.

Model predictions
Now that we have determined the optimal model parameters, we
can look at model predictions and compare them to aspects of the
dataset, which have not been used during the fitting process, for
testing the model. First, we examined the relative frequency/
probability of making a particular choice. Figure 4B shows a
comparison between the data (symbols; identical to Fig. 2A) and
the model predictions (lines). As can be seen from the figure, the
model predictions matched the data quite well. Second, we ex-
amined the shape of the RT distributions. This comparison is
shown in Figure 4C. The gray histograms represent the data, the
blue solid lines the model predictions. We show a good match for
the four experimental conditions with three different coherences,
because we have the largest numbers of observations for these
conditions (resulting from the largest numbers of possible per-
mutations), but a similar match was observed for the other con-
ditions (data not shown).

Individual subjects
So far, we have only looked at the pooled dataset, but we were
curious whether the model could also capture the individual be-
havior of our three subjects. We therefore fitted our model to the

individual datasets of the three subjects (again based on the mean
RTs). The resulting optimal model parameters are listed in Table
1, and a comparison between the individual datasets and the
best-fitting models is shown in Figure 5 (each row represents one
subject). As can be seen from Table 1, the parameter sets obtained
for the three subjects were not radically different. S2 showed the
largest deviations from the parameter set for the pooled data in
terms of a reduced overall gain and an increased residual time,
reflecting overall increased RTs in our inexperienced subject. Fig-
ure 5D shows that S2 had mean RTs of �2 s for some of the more
difficult experimental conditions. Overall, Figure 5 demonstrates
that our model was able to capture the individual datasets quite
successfully. The first column depicts the fitting results to the
individual mean RT data. The second column shows a compari-
son between the relative frequencies of particular choices and the
probabilities that were predicted by the models. The third col-
umn compares the observed RT distributions with the ones pre-
dicted by the models. Having a closer look at Figure 5, C and I,
which shows the RT distributions with a better resolution than
Figure 4C, reveals a surprisingly good match for the shape of the
RT distributions. The model had more difficulty reproducing the
data of our inexperienced subject S2. When looking at Figure 5F,
the top two histograms show some evidence of bimodal distribu-
tions, which suggests that S2 has been hesitating on a subset of
mainly the more difficult trials. Given that our model cannot
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capture this aspect of the behavior, it still matches the data sur-
prisingly well.

Discussion
We have presented human behavioral data from a three-
choice version of a random-dot motion-discrimination task.
We have introduced a new (nontransparent) multicomponent
version of the random-dot motion stimulus, which provided
us with simultaneous experimental control over the sensory
evidence for all three choice alternatives. We have further
demonstrated that this task provides a rich quantitative data-
set, spanning a wide range of accuracy levels and mean RTs, for
testing computational models of multialternative decision
making. We were able to demonstrate that a relatively simple
model with only five free parameters could capture multiple
aspects of the behavior, including mean RTs, relative frequen-
cies/probabilities of particular choices, and RT distributions.
The model is based on the idea of a race between multiple
integrators to a decision threshold. Each of the integrators
accumulates a net evidence signal for a particular choice.
These net evidence signals are computed as linear combina-
tions of the activities of task-relevant pools of sensory
neurons.

Model-based explanation of the between-stimulus-category
speed–accuracy effects
In the Results section, we pointed out that the use of our
multicomponent stimulus allowed us to create situations with
identical choice performance but different mean RTs: al-
though all stimuli with three identical motion strengths were
associated with chance performance, responses were faster for
higher coherence. This can be explained in the context of our
computational model. The net evidence signals ej feeding into
the integrators are stochastic (fluctuating) signals. They are
characterized by an expected value and by a measure of their
variability. Whereas the structure of our model predicts that
the expected values of the net evidence signals should be zero
for stimuli with three identical coherence levels, the variability
of the net evidence signals is expected to increase with increas-
ing coherence. This is because of the scaling of the variance of
the sensory signals sj with their mean. The integrators there-
fore accumulate more noise, which makes an earlier threshold
crossing more likely and therefore leads to, on average, faster
responses.

If a feedback inhibition model (see below, Other computa-
tional models of decision making) were also able to account for
our dataset, the faster RTs would not necessarily require an in-
crease in the noise level in addition to an increase in the mean of
the sensory signals. For binary choices, Bogacz et al. (2006)
pointed out that the mutual inhibition model is approximately
equivalent to a drift diffusion model with a decision criterion that
moves closer to the starting point of the random process as the
sum of the means of the sensory signals increases, which would
also lead to a reduction in the expected RTs.

Residual time
The residual times reported here ranged from 326 to 413 ms,
which is in accordance with a previous human study of the 2AFC
version of the experiment (Palmer et al., 2005). We observed very
good matches between the real and predicted shapes of the RT
distributions, which justifies our simplifying assumption of no
trial-by-trial variability in the residual time. Thus, most of the

trial-by-trial variability in the RT was contributed by variations in
the decision time.

A previous study of discriminating multiple directions
of motion
A previous microstimulation study of discriminating between
multiple possible directions of visual motion in a random-dot
pattern by Salzman and Newsome (1994) suggested that dif-
ferent subpopulations of motion-sensitive neurons can be
read out individually for making a decision. These authors also
found that the relative frequencies of the observed choices
were well described by a polychotomous logistic regression,
but they did not discuss how the decision-making mechanism
might be implemented. In contrast, our model suggests how
the different subpopulations of motion-sensitive neurons are
read out and how these signals are combined and processed for
making a decision.

Other computational models of decision making
The structure of our current model of three-alternative decision
making provides generalizations for two key elements of our pre-
vious model for making choices between two alternatives (Dit-
terich, 2006a,b): the race to threshold between two competing
integrators is replaced by a race between three competing inte-
grators; and the difference between the activities of two relevant
sensory pools is replaced by a linear combination of the activities
of three relevant sensory pools. An extension of this mechanism
to more than three alternatives is straightforward, as discussed
below.

Compared with multialternative decision field theory
(MDFT) (Roe et al., 2001), which is based on psychological
concepts, our model is more physiologically motivated and
operates with neural responses. However, there are structural
similarities between both models: both models make use of
linear combinations, using the same set of weights (MDFT
does so when calculating the valences from the weighted eval-
uations; our model uses them for deriving the net evidence
signals from the sensory responses), and both models are
based on temporal integration. Furthermore, our decision
rule is equivalent to the rule for internally controlled decisions
in MDFT. In contrast to MDFT, which also allows the com-
peting integrators to influence each other, our model is able to
explain the observed behavior without relying on lateral inter-
actions between the integrators.

How does our model compare with the leaky, competing
accumulator model (LCAM) (Usher and McClelland, 2001)?
Both models are based on a race between a number of accu-
mulators (or integrators), one for each possible choice. The
integrator that reaches a decision criterion first determines the
choice and terminates the decision process. However, the in-
tegrators in our model are perfect, whereas the accumulators
in the Usher and McClelland model are leaky. As we have
pointed out in the discussion of our previous model for the
2AFC version of the task (Ditterich, 2006a), based on the avail-
able data we were only able to provide a lower bound for the
integration time constant, but it was not possible to constrain
the time constant to a narrow interval. We therefore also do
not expect our current dataset to be able to distinguish be-
tween leaky and perfect integration. Whereas the time con-
stant of integration is not too critical in our model as long as it
is not too small, it is a critical parameter in the LCAM. We will
get back to this issue below. Another difference between the
two models concerns the type of inhibition. Whereas our

Niwa and Ditterich • Perceptual Decisions between Multiple Alternatives J. Neurosci., April 23, 2008 • 28(17):4435– 4445 • 4443



model is based on feedforward inhibition, the Usher and Mc-
Clelland model relies on feedback inhibition and the sensory
inputs to the accumulators are only excitatory. We did not test
explicitly whether the Usher and McClelland model would be
able to explain our dataset, because this would have required a
completely different approach from the one we have taken
(simulation based rather than numerical evaluation of the pre-
dicted model behavior). However, for choices between two
alternatives, Bogacz et al. (2006) have been able to demon-
strate that for a particular parameter range (when the model is
balanced, which means that decay and inhibition are equal,
and when these parameters are not too small), the dynamics of
the mutual inhibition model closely approximates the dynam-
ics of the drift diffusion model (and therefore a perfect inte-
grator model with feedforward inhibition). We would there-
fore expect that a mutual inhibition model could not be ruled
out on the basis of our behavioral dataset.

McMillen and Holmes (2006) performed a more detailed
analysis of the LCAM and its optimality. For the 2AFC prob-
lem, it has been shown theoretically that the optimal statistical
procedure (in the sense of minimizing the sample size or sam-
pling time, when assuming a constant rate of information
arrival, for a given error rate) is the sequential probability ratio
test (SPRT) (Wald and Wolfowitz, 1948), which is imple-
mented by the drift diffusion model. For choices between mul-
tiple alternatives, it has been shown that the multihypothesis
sequential probability ratio test (MSPRT) is asymptotically
optimal (Dragalin et al., 1999). Dragalin et al. considered two
different versions of the test: MSPRTa, which stops when the
largest posterior probability exceeds a threshold, and
MSPRTb, which stops when the ratio between the largest and
the second largest posterior probabilities exceeds a threshold.
Bogacz and Gurney (2007) discussed a potential neural imple-
mentation of MSPRTa in the basal ganglia. McMillen and
Holmes (2006) pointed out that the equivalent of MSPRTb in
the context of leaky, competing accumulators would be a max-
versus-next test, using a decision rule that terminates the de-
cision process when the difference between the two largest
accumulator values exceeds a threshold. However, they fur-
ther demonstrate that for a balanced LCAM with decay and
inhibition not being too small, the absolute test (stopping the
decision process when any accumulator value exceeds the de-
cision threshold) is nearly indistinguishable from the max-
versus-ave test (stopping the decision process when the differ-
ence between the largest integrator value and the average of
the other integrator values exceeds a threshold), which, in
turn, is a good approximation of the asymptotically optimal
max-versus-next test. Our model makes use of an absolute
decision rule, but the net evidence signals feeding into the
integrators already have max-versus-ave structure as a result
of the feedforward inhibition. Similar to the way in which the
drift diffusion model (and, thus, the stationary version of our
previous model) implements the SPRT in the 2AFC case, we
expect the mechanism presented here to provide a good ap-
proximation of the MSPRT.

Extension to more than three alternatives
Our proposed decision mechanism can easily be extended to
an arbitrary number of alternatives. The number of integra-
tors would then have to be increased to one per alternative.
The decision rule would remain the same: the first integrator
to cross the decision threshold determines the choice and ter-
minates the decision process. The net evidence signals sent

into the integrators would all result from linear combinations
of the available sensory signals, representing the difference
between the neural activity providing direct evidence for a
particular choice and the average of the neural activities pro-
viding evidence for the other alternatives and therefore against
this particular choice. However, we would assume that as the
available options would become more similar, or move closer
together spatially when thinking of goal-directed movements
(as the saccades in our case), it might very well be the case that
lateral inhibition could no longer be neglected. In this case, it
might be necessary to replace the discrete integrators by a
continuous dynamic medium (a “map” or “dynamic field”), as
has been suggested in dynamic field theory (Wilimzig et al.,
2006).

In summary, we have seen that our behavioral dataset on mul-
tialternative decision making is well explained by a straightfor-
ward decision mechanism based on linear combinations of sen-
sory evidence signals and integration to threshold. We expect that
physiological experiments will help us distinguish between differ-
ent proposed models of multialternative decision making and
provide us with further insight into how the calculations pro-
posed by the computational models are implemented
biophysically.
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