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Anticipatory Activity in Anterior Cingulate Cortex Can Be
Independent of Conflict and Error Likelihood
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'F. C. Donders Centre for Cognitive Neuroimaging, Radboud University Nijmegen, 6500 HB Nijmegen, The Netherlands, and 2Nijmegen Institute for
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Previous studies have found no agreement on whether anticipatory activity in the anterior cingulate cortex (ACC) reflects upcoming
conflict, error likelihood, or actual control adjustments. Using event-related functional magnetic resonance imaging, we investigated the
nature of preparatory activity in the ACC. Informative cues told the participants whether an upcoming target would or would not involve
conflict in a Stroop-like task. Uninformative cues provided no such information. Behavioral responses were faster after informative than
after uninformative cues, indicating cue-based adjustments in control. ACC activity was larger after informative than uninformative cues,
as would be expected if the ACC is involved in anticipatory control. Importantly, this activation in the ACC was observed for informative
cues even when the information conveyed by the cue was that the upcoming target evokes no response conflict and has low error
likelihood. This finding demonstrates that the ACC is involved in anticipatory control processes independent of upcoming response
conflict or error likelihood. Moreover, the response of the ACC to the target stimuli was critically dependent on whether the cue was
informative or not. ACC activity differed among target conditions after uninformative cues only, indicating ACC involvement in actual
control adjustments. Together, these findings argue strongly for a role of the ACC in anticipatory control independent of anticipated
conflictand error likelihood, and also show that such control can eliminate conflict-related ACCactivity during target processing. Models
of frontal cortex conflict-detection and conflict-resolution mechanisms require modification to include consideration of these anticipa-

tory control properties of the ACC.
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Introduction

Cognitive control refers to regulatory processes that ensure that
our actions are in accordance with our goals. Neuroimaging ex-
periments have shown that the anterior cingulate cortex (ACC)
plays a role in cognitive control, together with other areas in
frontal and parietal cortex (for review, see Picard and Strick,
1996; Bush et al., 2000; Miller, 2000; Paus, 2001). However, the
exact function of the ACC in cognitive control is still a matter of
debate. Some researchers have claimed that ACC activity reflects
top-down regulation processes (Posner and Raichle, 1994; Ro-
elofs and Hagoort, 2002; Swick and Turken, 2002; Roelofs, 2003;
Dosenbach et al., 2006; Roelofs et al., 2006; Posner and Rothbart,
2007), whereas others have argued that ACC activity reflects the
detection of competing response alternatives (Carter et al., 1999;
MacDonald et al., 2000; Botvinick et al., 2001; Kerns et al., 2004).
According to this latter conflict monitoring hypothesis, the oc-
currence of response conflict is signaled by the ACC and leads to
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the recruitment of more cognitive control for subsequent perfor-
mance executed by the lateral prefrontal cortex (LPFC).

Previously, Sohn et al. (2007) extended the role of the ACC as
aresponse conflict monitor to include anticipatory conflict mon-
itoring. Brown and Braver (2005) argued that the ACC predicts
error likelihood, independent of response conflict. More gener-
ally, control adjustments can be made if environmental cues pro-
vide information about which type of target is coming and, as a
consequence, about which control setting is most appropriate for
processing the upcoming target (Logan and Zbrodoff, 1982; Lo-
gan, 1985; Gratton et al., 1992). However, these cues do not nec-
essarily have to predict response conflict or error likelihood
(Gratton et al., 1992). This raises the question whether anticipa-
tory activity in the ACC may be obtained independent of upcom-
ing conflict or error likelihood. We report a functional magnetic
resonance imaging (fMRI) experiment that examined this issue.

Participants were informed about Stroop-like target condi-
tions by means of symbolic cues, which were presented well be-
fore the imperative target on each trial (see Fig. 1). The symbolic
cue indicated whether the upcoming Stroop target was congru-
ent, incongruent, or neutral, or the cue provided no information
about the upcoming condition. Earlier behavioral studies indi-
cated that participants are able to process the cue and extract the
information about the target condition it conveys and adjust
their control accordingly (Logan and Zbrodoff, 1982; Gratton et
al., 1992).
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Figure1.  Experimental paradigm. Depicted are the informative and uninformative cues and

examples of congruent, incongruent, and neutral targets with the word “right.” Green cues
were always followed by congruent targets, red cues were always followed by incongruent
targets, and yellow cues were always followed by neutral targets. Gray cues could be followed
by either one of the three target conditions and, hence, were uninformative. The task was to
indicate the direction denoted by the word by pressing a left or right button.

If the ACC plays a role in anticipatory adjustments in control,
ACC activity should be higher in response to informative cues
than to uninformative cues. If the adjustments are independent
of response conflict or error likelihood, enhanced ACC activity
should be obtained for cues preceding congruent targets. Adjust-
ments are expected in premotor cortex, where response rules are
implemented (Wallis and Miller, 2003). Moreover, if the advance
adjustments are successful, ACC activity should exhibit smaller
differences among target conditions in response to targets after
informative cues (when control was adjusted in advance) than
after uninformative cues (when control was not adjusted in
advance).

Materials and Methods

Subjects. Twelve neurologically healthy Dutch undergraduates (10 female
and 2 male; mean age, 21.2 years; range, 18—24) participated in the ex-
periment. All participants were right handed and native speakers of
Dutch. They were compensated for participation and gave written in-
formed consent in a manner approved by the Dutch Central Committee
on Research Involving Human Subjects (CCMO).

Stimuli and paradigm. The participants were scanned while perform-
ing a manual arrow-word version of the Stroop task. As with color-word
Stroop stimuli, responding in this task is usually slower on incongruent
than on neutral trials and it is fastest on congruent trials (Baldo et al.,
1998; Turken and Swick, 1999; Roelofs et al., 2006). The targets consisted
of written words in arrows (see Fig. 1). The lines and letters of the targets
were white on a black background. The arrows pointed to the left or to
the right. The word in the arrow was the Dutch word for “right”
(“rechts”) or for “left” (“links”). Participants responded manually to the
words of the Stroop-like targets by pressing a left or right button on a
scanner-compatible button box. Participants were told to respond as
quickly and accurately as possible with the left middle finger (for left
response) and the left index finger (for right response). In the congruent
target condition, the arrow and the word denoted the same direction
(e.g., the word “right” in an arrow pointing to the right). In the incon-
gruent target condition, the arrow and the word denoted a different
direction (e.g., the word “left” in an arrow pointing to the right). In the
neutral target condition, the targets consisted of words (“left” or “right”)
in rectangles without arrow points.

Every target was preceded by a cue (Fig. 1). The cue was a colored
square giving either information about the upcoming target condition
(informative cue) or giving no information (uninformative cue). The
informative cues were 100% valid with green squares preceding congru-
ent targets, red squares preceding incongruent targets, and yellow
squares preceding neutral targets. The uninformative cues were gray
squares, which could be followed by either one of the target types. Par-
ticipants were told to pay explicit attention to the cues to let them be of
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help in processing the target. It was brought to the participants’ attention
that during congruent trials one could be helped by the nonrelevant
dimension of the target (i.e., the arrow) and that one should not be
distracted by the arrow in case of an incongruent trial (Logan and Zbrod-
off, 1982). The experiment included 240 trials, consisting of 120 infor-
mative and 120 uninformative cues, and each type of trial containing 40
incongruent, 40 congruent, and 40 neutral targets. Informative and un-
informative cues, as well as congruent, incongruent, and neutral targets
were randomly intermixed.

The target followed the cue after a variable delay of 2-7 s. Similarly, a
variable delay of 2-7 s was used between a target and the next cue. The
jitter was calculated with a simulation of the blood oxygenation level-
dependent (BOLD) response in SPM99 (Wellcome Department of Cog-
nitive Neurology, London, UK). The variable delays enabled us to char-
acterize the hemodynamic responses at a finer temporal resolution than
the actual repetition time (Josephs et al., 1997) and thus allowed us to
reliably distinguish the BOLD response to the cue from the BOLD re-
sponse to the target [for a similar procedure, see Toni et al., (1999) and
Mars et al. (2005)]. This calculation was repeated to generate a random
sequence with optimal delays for every participant separately. Because
the delay between cue and target could not be predicted, the participant
needed to be ready to respond at any time. Cues and targets remained on
the screen for 600 ms.

Functional imaging. Whole-brain imaging was performed on a 3 Tesla
MR scanner (Magnetom Trio; Siemens Medical Systems, Erlangen, Ger-
many). Functional data were acquired using a gradient-echo echo-planar
scanning sequence (repetition time, 2100 ms; echo time, 30 ms; 33 axial
slices; voxel size, 3.5 X 3.5 X 3.5 mm; field of view, 224 mm; flip angle,
70°). All functional images were acquired in a single run lasting 40 min.
Visual stimuli were projected on a screen and were viewed through a
mirror attached to the head coil. After the acquisition of functional im-
ages, a high-resolution anatomical scan (T1-weighted magnetization-
prepared rapid-acquisition gradient echo, 192 slices) was obtained.

Behavioral data analysis. The mean latencies of the correct manual
responses and the error rates were analyzed using repeated-measures
ANOVAs with the factors target condition (congruent, incongruent,
neutral) and cue condition (informed, uninformed). All variables were
tested within participants. Specific effects were tested with paired  tests.
An effect was called significant when p < 0.05.

fMRI data analysis. fMRI data were analyzed with BrainVoyager QX
(Brain Innovation, Maastricht, The Netherlands). Functional images
were corrected for slice time acquisition (using sinc interpolation) and
three-dimensional motion correction was performed to detect and cor-
rect for small head movements. Estimated translation and rotation pa-
rameters were inspected and never exceeded 3 mm. Linear trend removal
was performed and the signal was temporal high-pass filtered to remove
low-frequency nonlinear drifts of three or fewer cycles per time course.
Functional images were coregistered with the anatomical scan and trans-
formed into Talairach coordinate space using the nine-parameter land-
mark method of Talairach and Tournoux (1988). Images were spatially
smoothed with a full-width at half maximum Gaussian kernel of 6 mm.

Statistical analyses were performed in the context of the general linear
model, including the event types of interest: informative cues preceding
congruent, incongruent, and neutral targets; uninformative cues preced-
ing congruent, incongruent, and neutral targets; congruent, incongru-
ent, and neutral informed targets; and congruent, incongruent, and neu-
tral uninformed targets. Trials on which participants had made an error
were put together as a separate event type of noninterest. Six motion
parameters were included as event types of noninterest as well. The event
types were modeled with a two gamma hemodynamic response function
that was adjusted in such a way that it equaled the hemodynamic re-
sponse function in SPM99 on the basis of which the jitter was calculated
(see above). Random-effects group analyses were performed enabling
generalization of the statistical inferences to the population level. A con-
junction analysis with a standard “minimal ¢ statistic” approach (Nichols
et al., 2005) was used with the contrasts (informative cues > uninforma-
tive cues) N (uninformed targets > informed targets), to assess the effect
of cue type on target processing. This conjunction analysis is equivalent
to a logical AND of the contrasts at the voxel level. The statistical thresh-
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Table 1. Peak Talairach coordinates, cluster size, and peak t values of regions showing an effect of advance information on the cue, and regions showing an effect of
advance information on both the cue and the target for p < 0.001 and a threshold of 50 mm®

Informative > uninformative cues

Informative > uninformative cues AND uninformed > informed targets

BA X y z Size (mm?) tan X y z Size (mm?) tan
Activations
ACC 32 -9 14 37 1762 6.77 9 14 40 540 5.87
-9 -1 LX) Al 5.07 -9 2 37 920 5.2
DLPFC (MFG) 46 =27 26 28 316 5.45
9 30 32 34 901 9.16 30 32 31 192 6.99
Insula 13 33 14 13 108 5.88
SMA (MeFG) 6 -3 -7 61 182 5.34
PMCd (SFG) 6 =15 =10 67 240 5.60 =15 —-13 64 234 548
12 -7 64 216 5.35
Precentral gyrus 6 30 —-13 46 58 5.75
IPL 40 —33 —49 28 862 7.43 -30 —52 28 455 7.22
54 —46 19 196 6.44
SPL 7 =30 —58 55 178 5.59
Angular gyrus 39 —27 —61 22 56 6.86
Precuneus 7 =15 —58 40 65 5.24 —6 —64 55 370 5.54
=15 —67 52 1223 137 =15 —67 52 120 5.51
-9 =73 40 62 491
12 =73 46 1545 1.73 12 —76 3] 1065 6.46
Parahip. gyrus 19 18 —46 =5 61 5.39
Lingual gyrus 18 -9 —9% -8 58 5.28 —6 —61 =5 142 5.86
0 —76 1 409 5.96
Cuneus 18/17 3 —88 19 134 4.93 0 —82 13 158 5.69
18 15 -9 7 75 5.72
Dorsal striatum —21 14 10 918 6.64 —21 14 10 497 6.02
18 n 10 1180 8.28 21 n -2 519 6.55
Thalamus =15 -7 13 775 6.79 =15 -7 10 76 5.34
Cerebellum —36 —52 -29 1480 6.96 —36 —49 -29 443 6.14
—24 —61 =17 51 5.21
Y] —49 -29 4743 8.36 21 —67 —20 2350 7.82
Deactivations
MeFG 9 -3 47 28 98 =51
Subgenual area 25 -9 29 =5 486 —6.23
0 20 —14 55 —6.03

MFG, Middle frontal gyrus; MeFG, medial frontal gyrus; PMCd, dorsal premotor cortex; SFG, superior frontal gyrus; IPL, inferior parietal lobule; SPL, superior parietal lobule; Parahip., parahippocampal.

old for the group analyses was set at p < 0.001 at the voxel level with a
minimum cluster size of 50 mm?>/14 original voxels (Forman et al.,
1995), uncorrected for multiple comparisons.

To investigate differential effects of cue information in the ACC, we
obtained subject-averaged 3 weights (i.e., regression coefficients) for all
cue conditions as indices of effect size for all voxels in the functionally
defined region of the ACC showing an effect of informative cues versus
uninformative cues in the random effects group analysis. To investigate
the effect of cue information on target-related effects in the ACC, subject-
averaged 3 weights were extracted for all target conditions from ACC
voxels showing an effect of informative cues versus uninformative cues in
the random effects group analysis. In addition, to ensure that the ob-
served effects were the same regardless of the contrast used to select the B
weights, subject averaged 3 weights were extracted for each event type
from ACC voxels showing an effect of incongruent versus congruent
targets in the uninformative condition. Regionally averaged 8 weights
were analyzed in repeated-measurement ANOVAs. Specific effects were
tested by applying paired t contrasts to the 3 weights obtained for the
different event types. The regional-specific time courses were standard-
ized, so that B weights reflected the BOLD response amplitude of one
condition relative to the variability of the signal. An effect was called
significant when p < 0.05.

Premotor cortex activity should reflect the operation of control in
response to informative cues. Therefore, we expected a positive correla-
tion between ACC and premotor activity. To test these predictions, we
computed Pearson correlations between the 8 weights in the ACC and
the regions differentially activated on the cues in Table 1. We mention
only correlations that were significant for all three separate cue condi-
tions and report p values on a Bonferroni corrected « level ( p < 0.002)
across subjects and cue conditions (1 = 36). Furthermore, we tested for
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Figure 2.  Behavioral results. Mean response times and error rates (E%) of congruent, neu-

tral, and incongruent target conditions preceded by informative and uninformative cues. Error
bars represent SEM.

the significance of the difference between (dependent) correlations
(Chen and Popovich, 2002).

Results

Behavioral data

Analysis of the reaction-time data (Fig. 2) showed a main effect
of target condition (F(, ,,) = 69.51; p < 0.001) and a main effect
of cue condition (F(, ;;, = 45.36; p < 0.001). The interaction
between cue condition and target condition was significant



4674 - ). Neurosci., April 30, 2008 - 28(18):4671-4678

(F2.22) = 7.48; p = 0.003). A similar pat- A
tern was observed for the errors. The anal-

ysis yielded a main effect for target condi-

tion (F(;,,) 7.66; p = 0.003), a
marginally significant main effect for cue
condition (F, ,;, = 4.17; p = 0.066), and a
significant interaction between cue condi-

tion and target condition (F(,,,, = 6.19;

p = 0.007).

Reaction times were slower in the in-
congruent than in the neutral condition
(ta1y = 5.33; p < 0.000), and fastest in the B 2
congruent condition (compared with neu-
tral, t,,, = 8.97; p < 0.000). Most errors
were made in the incongruent condition
(compared with neutral, ¢,,, = 2.85; p =
0.008, one-tailed; compared with congru-
ent, t;, = 2.98; p = 0.007, one-tailed),

beta weight
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Informative cues > Uninformative cues

Cue-related activity

whereas the neutral and congruent condi-
tion did not differ (¢,,), = —0.33; p =
0.742). Thus, conflict and error likelihood
were higher in the incongruent condition
than in the other conditions. C
The difference in response times be-
tween congruent and neutral targets (i.e.,
the facilitation effect) was larger after in-
formative cues (83 ms) than after uninfor-
mative cues (25 ms) (Fig. 2) (t,,, = 4.47;
p < 0.001, one-tailed). The difference be-
tween incongruent and neutral targets (i.e.,
the interference effect) was marginally

beta weight
o = N W RO N O

Congruent

Target-related activity D
after informative cue

Incongruent Neutral

Informative cue Uninformative cue

Target-related activity
after uninformative cue

1k

smaller after informative cues (27 ms) than
after uninformative cues (56 ms) (¢, =
1.52; p = 0.079, one-tailed). In other
words, advance information tripled the
Stroop-like facilitation effect and halved
the interference effect.

A cue limited the target types to two. It
is therefore possible that the speed up of
responses to informed targets was caused
by exact target expectation, which may be correct on half the
trials. If so, the speed up should be present on about half the trials
only. To test this, we classified the response times (RTs) from
each condition as below or above the median condition RT, and
tested for an interaction between cue condition and relative
speed. There were no such interactions for the congruent (F, ,;,
= 1.64; p = 0.227), incongruent (F, ;,, = 1.90; p = 0.195), and
neutral trials (F(, ;) < 1). These results exclude that the cue-
based anticipatory effects were caused by exact target
expectation.

Figure 3.

R, right.

Neuroimaging data

Comparing fMRI responses to informative cues with fMRI re-
sponses to uninformative cues revealed strong activity in a net-
work of brain regions, including the ACC (Table 1).

In addition, a conjunction analysis of the contrasts [informa-
tive cue > uninformative cue] and [uninformed target > in-
formed target] revealed that the ACC and other brain regions
(listed in Table 1) showed more activity for informative than for
uninformative cues, and subsequently, reduced activity for in-
formed compared with uninformed targets.

To further examine ACC responses to cue information,
subject-averaged 3 weights were extracted for all voxels in the

Congruent Incongruent

Neutral Congruent Incongruent Neutral

Target Target

ACCactivity. A, Group maps showing increased ACC activity (Talairach coordinates: x = —9,y = 14,z = 37) for
informative cues compared with uninformative cues (thresholded at p << 0.001 and minimal cluster size of 50 mm ). B—D, Mean
B weights for the cues (B), mean 3 weights for the informed Stroop targets (€), and mean 3 weights for the uninformed Stroop
targets (D) in the ACCregion, showing an effect of informative cues versus uninformative cues. Error bars represent SEM. L, Left;

ACCregion showing increased activity for informative compared
with uninformative cues (Fig. 3a). This was done for cues infor-
mative of incongruent, congruent, and neutral targets. Pairwise
comparisons of these 3 weights showed that ACC activity was
significantly larger for cues informative of incongruent and con-
gruent targets compared with cues informative of neutral targets
(ta1) = 243, p = 0.017, one-tailed; and t(,,, = 2.74, p = 0.01,
one-tailed, respectively) (Fig. 3b). Importantly, cues informative
of congruent and incongruent targets elicited similar ACC activ-
ity (t,;, = —0.17; p = 0.869) (Fig. 3b).

Comparing fMRI responses to incongruent and congruent
targets revealed increased activity in brain regions listed in
Table 2. After uninformative cues, a standard Stroop effect was
observed in a network of regions including the ACC. After
informative cues, only the left dorsolateral PEC (DLPFC) and
left ventrolateral prefrontal cortex were more active for incon-
gruent than for congruent targets. To further investigate this
effect of cue information on target processing in the ACC,
subject-averaged 3 weights were extracted from the ACC re-
gion responding to informative cues (Fig. 3a), separately for
each of the target conditions. As can be seen in Figure 3, c and
d, ACC activity was significantly reduced for targets preceded
by an informative cue compared with targets preceded by an
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Table 2. Peak Talairach coordinates, cluster size, and peak t values of regions showing more activity for
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2.29, p = 0.022, one-tailed; and ¢, =

incongruent than congruent targets for p < 0.001 and a threshold of 50 mm? 2.46, p = 0.016, one-tailed, respec-
BA X y z Size (mm?) tay  tively). Again, no difference in ACC ac-
. tivity was observed for cues informative
Uninformed targets .
ACC 24 6 8 34 1223 6.24 of incongruent and congruept targets
Insula -30 8 1 205 591 (fay = —0.1; p = 0.911). Paired com-
Precentral gyrus 6 36 . 34 716 6.16 parisons of target-related 3 weights ob-
SMA (MeFG) 6 -6 —4 58 321 6.03 tained in this ACC region showed signif-
MFG 6 —24 =10 55 125 807 icantly less ACC activity for targets
2 =7 58 18 547 preceded by an informative cue than for
< s 3 - B 1325 657 targets preceded by an uninformative
IPL 40 4 _23 53 188 9;2 cue (¢, = 3.1; p = 0.005). Importantly,
:22 :4; ;5 Zg 2'37 although B weights were obtained from
60 3 3 9 519 those ACC voxels responding more
60 —3 2% 502 59y strongly to incongrl}ent targets than to
SpL 7 15 —64 5) 3091 gg¢ congruent targets in the uninformed
15 —67 55 193 555 condition, no such Stroop-like effects
24 —52 55 72 497 were found for targets that were pre-
Precuneus 7 —24 -73 43 104 488 ceded by an informative cue. For in-
9 —52 67 51 620  formed targets, ACC responses did not
31 12 —64 28 2172 708 differ between target conditions (incon-
Angular gyrus 39 30 —55 34 153 5.65 gruent > congruent, f,;, = —0.17, p =
MTG 39 45 —64 10 56 5.54 .
0.43, one-tailed; congruent < neutral,
21 —60 —49 10 152 5.80 .
_ _ tnyy = —0.36, p = 0.365, one-tailed).
S0G 19 27 67 25 253 6.60 . .
Y —7 34 66 559 Lhus, the difference between incongru-
33 -7 28 162 595 entand congruent targets (the Stroop ef-
Cuneus 19 -3 -73 28 69 528 fect) inthe ACC was larger after uninfor-
Lingual gyrus 18 -9 —82 -n 396 6.12 mative cues than after informative cues
18 —97 -8 110 857 (tnyy = 1.97; p = 0.037, one-tailed).
3 —8 1 287 6.08 Additional analyses showed that cue-
Thalamus -1 -1 4 352 576 hased activity in the ACC was positively
15 —10 4 § 600 correlated for all three informative cue
Cerebellum 21 —55 —42 61 571 I . PR
conditions separately with activity in the
Caudate 9 5 4 61 543
dorsal premotor cortex contralateral to
Informed targets . .
DLPFC (MFG) 4% 39 M 16 73 660 theresponse hand) [right superior frontal
VLPF((IFG) 46 —48 38 7 93 5.25 gyrus, Brodmann S area (BA) 6; overall

MeFG, Medial frontal gyrus; MFG, middle frontal gyrus; CG, cingulate gyrus; IPL, inferior parietal lobule; SPL, superior parietal lobule; MTG, middle temporal

gyrus; SOG, superior occipital gyrus; VLPFC, ventrolateral prefrontal cortex; IFG, inferior frontal gyrus.

uninformative cue (t.,,, = 3.89; p = 0.002). Uninformed tar-
gets elicited a normal Stroop-like pattern of activity with
larger responses for incongruent than for congruent targets
(ta1y = 4.77; p <0.001, one-tailed), and reduced responses for
congruent compared with neutral targets (t,,, = 3.84; p =
0.002, one-tailed). Interestingly, for informed targets, ACC
responses did not differ between target conditions (incongru-
ent > congruent, f,;, = —0.28, p = 0.389, one-tailed; con-
gruent < neutral, t,;, = —0.52, p = 0.307, one-tailed). This
result shows that although a standard Stroop-like effect was
obtained in the ACC for uninformed targets, this effect disap-
peared when a target was preceded by an informative cue.

To examine whether a similar effect of cue information on
target processing was present in ACC voxels showing a strong
Stroop effect for uninformed targets, subject-averaged f
weights were obtained for all voxels in the ACC showing larger
responses for incongruent compared with congruent targets
preceded by uninformative cues. Paired comparisons of the
cue-related B weights showed that ACC responses were larger
for informative than for uninformative cues (t;,,, = 4.56; p <
0.001, one-tailed). More specifically, ACC responses were
larger for cues informative of incongruent and congruent tar-
gets compared with cues informative of neutral targets (¢,,, =

r=0.69; t3, = 5.54; p < 0.001] and the
supplementary motor area (SMA; BA 6;
overall r = 0.75; t(34) = 6.65; p < 0.001).
There were no such correlations between
cue-based ACC activity and any of the other regions listed in
Table 1, except the cerebellum ipsilateral to the response hand
(overall r = 0.74; t5,) = 6.47; p < 0.001). Cue-related activity
in left DLPFC, although often coactivated with the ACC (Ko-
ski and Paus, 2000) and similarly coactivated in the present
study (Table 1), did not show a significant correlation with
cue-related ACC activity (overall » = 0.22; p > 0.1). The cor-
relations between activity in the ACC and the right dorsal
premotor cortex and between the ACC and the SMA were
significantly greater than the correlation between activity in
the ACC and the left DLPFC (¢35, = 3.39, p < 0.01;and (35, =
3.51, p < 0.01, respectively). These results provide evidence
that activity in premotor cortex indexes the operation of con-
trol in response to informative cues, as predicted.

Discussion

In the present study, we investigated the role of the ACC in pre-
paratory adjustments in control by using symbolic cues that in-
formed participants about upcoming Stroop-like target condi-
tions. Our fMRI data show that the ACC was directly involved in
symbolically driven adjustments in control. ACC activity was sig-
nificantly enhanced for informative cues compared with uninfor-
mative cues. This finding is consistent with previous brain-
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imaging reports showing enhanced ACC activity in response to
informative task or stimulus cues in a variety of task situations
(Murtha et al., 1996; Luks et al., 2002; Weissman et al., 2005;
Dosenbach et al., 2006; Parris et al., 2007). Previously, electro-
physiological recordings from monkey cortex provided evidence
for task-related preparatory activation in ACC neurons
(Johnston et al., 2007).

Sohn et al. (2007) also demonstrated that the ACC is active
during anticipatory preparation. Similar to our results, in their
study, the ACC was only differentially active between low- and
high-conflict targets when there was no opportunity to prepare.
However, Sohn et al. (2007) claim that the anticipatory activity in
the ACC is critically dependent on upcoming response conflict.
In their view, the ACC monitors conflict regardless of whether
the source is online or anticipatory. In contrast to this view, our
data show that anticipatory ACC activity can be independent of
response conflict. In the present experiment, the ACC was equally
active for cues indicating an upcoming incongruent target and
cues indicating an upcoming congruent target, although with
congruent targets there are no competing response alternatives.

Brown and Braver (2005) presented data that also challenged
the claim that anticipatory activity in the ACC reflects conflict
monitoring. They showed that the ACC can be active in trials in
which there is no response conflict. However, they argued that
the ACC predicts error likelihood (Magno et al., 2006) (but see
Nieuwenhuis et al., 2007). In contrast to this view, we found that
ACC activity was enhanced for informative cues preceding con-
gruent as well as incongruent targets, although participants made
significantly more errors in the incongruent condition than in the
congruent one. Thus, although the error likelihood was higher
for incongruent trials than for congruent trials, no difference in
ACC activity was obtained for the cues. The independence of
ACC activity from error likelihood in the present study is also
evident from comparing congruent and neutral trials in which
the amount of response conflict is the same (absent in both cases)
and the error likelihood is the same (see Results, Behavioral data).
Despite similar conflict and error likelihood levels, the ACC was
more active for cues preceding congruent trials than for cues
preceding neutral trials. This clearly shows that the involvement
of the ACC in preparatory control is not restricted to conflict or
high error likelihood situations.

In a previous study, Luks et al. (2007) used cues to inform
participants about upcoming Eriksen flanker conditions. How-
ever, unlike what we observed, Luks et al. (2007) did not find
anticipatory ACC activity in response to the informative cues.
The authors argued that the flanker task involves stimulus con-
flict rather than response conflict (but see Sanders and Lamers,
2002). Luks et al. (2007) expected to find ACC activity in prepa-
ration for response conflict. However, our data show that ACC
activity is independent of upcoming response conflict. Impor-
tantly, in contrast to our findings, Luks et al. (2007) obtained no
behavioral evidence for adjustments in control based on the cues.
That is, the flanker effect in the RTs did not differ between infor-
mative and uninformative cues. Thus, it seems that Luks et al.
(2007) did not find cue-related ACC activity simply because their
participants did not adjust control in response to the cues.

If ACC activity in response to informative cues is independent
of response conflict or error likelihood, what does it reflect? The
behavioral data give some clues about what is happening on the
cues. For both informed and uninformed targets we observed the
normal Stroop pattern: participants were slowest on the incon-
gruent trials and fastest on the congruent trials (Baldo et al., 1998;
Turken and Swick, 1999; Roelofs et al., 2006). However, partici-
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pants were faster after informative cues than after uninformative
cues. Moreover, the interference effect was numerically smaller
after informative cues than after uninformative cues. Also, the
facilitation effect was much larger after informative cues than
after uninformative cues. A similar cueing benefit was observed
in other studies using cues to inform participants about the up-
coming target condition (Logan and Zbrodoff, 1982; Gratton et
al., 1992). In these studies, the largest cueing benefit was obtained
for the congruent targets, as was the case in the present study. The
cues in these previous studies and in the present experiment may
elicit control adjustments aiming at optimal processing of the
upcoming target (Gratton et al., 1992). An informative cue pre-
ceding an incongruent target might encourage participants to
strengthen the connections between the words and their re-
sponses, because the irrelevant arrows elicit the wrong response.
However, an informative cue preceding a congruent target might
encourage participants to strengthen the connections between
the arrows and the corresponding responses, because the irrele-
vant arrows also elicit the correct response. Overall, our behav-
ioral results show that control adjustments are made on the basis
of symbolic cues.

Our imaging results provide evidence for a role of the ACC in
these preparatory adjustments in cognitive control. If the ACC is
involved in adjusting control settings such that they are most
appropriate for responding to the upcoming targets, then ACC
activity should be enhanced in response to informative cues pre-
ceding both types of targets. This is indeed what we observed. In
case of an upcoming neutral stimulus, control adjustments can be
less because there is no incongruent arrow to ignore or congruent
arrow to exploit in responding. This explains the finding of less
ACC activity for informative cues preceding neutral targets com-
pared with informative cues preceding congruent and incongru-
ent targets. Moreover, the advance adjustments appeared to be
successful as is evident from the reaction time and imaging data.
That is, the response of the ACC to the target stimuli was critically
dependent on whether the cue was informative or not. After in-
formative cues, there were no differences in ACC activity among
target conditions, whereas in absence of advance information, a
normal Stroop pattern was observed.

Previous studies have examined consequences of control ad-
justments by looking at the effects of control on behavioral mea-
sures and task-selective brain regions (Egner and Hirsch, 2005;
Yeung et al., 2006). Specifically, effective connectivity studies
provided evidence for a function of the ACC in regulating or
top-down modulation of activity in modality-specific sensory ar-
eas (Crottaz-Herbette and Menon, 2006), the amygdala (Etkin et
al., 2006), and the caudal cingulate (motor) zone (Fan et al.,
2007). The effective connectivity from rostral ACC to caudal cin-
gulate zone was modulated by conflict. The caudal cingulate ac-
tivation extended into the SMA, a region that was functionally
coupled to the rostral ACC in the present study. The present
finding that ACC activity only correlated with activity in premo-
tor cortex/SMA after informative cues, and not with activity in
any other cortical area including the left DLPFC, similarly sug-
gests that the ACC has a regulative role itself (Johnston et al.,
2007). We are aware of the limitations of correlation analyses
regarding directionality interpretations. Still, given the findings
of Fan et al. (2007), it seems plausible to assume that the ACC
exerts an influence over premotor cortex/SMA rather than the
other way around.

Our data suggest that the ACC is actively involved in setting
control parameters. This idea fits with reinforcement learning
theories, according to which the ACC uses positive (reward) and
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negative (e.g., error) information to identify and select appropri-
ate behaviors (Holroyd and Coles, 2002; Walton et al., 2003;
Rushworth et al., 2004; Williams et al., 2004; Amiez et al., 2006;
Somerville et al., 2006). Our data suggest that, in addition to
rewards and errors, symbolic cues can be used to inform the ACC
that it should adjust control settings. A role for the ACC in ad-
justing control also fits with previous neuroimaging evidence
that the ACC is activated in decision making when the freedom of
choice increases (Walton et al., 2004; Forstmann et al., 2006) or
when a task is novel or difficult and that activity diminishes after
practice (Raichle et al., 1994; Bush et al., 1998; Milham et al.,
2003). These findings can readily be explained in terms of control
adjustments. Appropriate behaviors are more easily selected after
extensive training/practice or when explicitly instructed; hence,
control adjustments can be less.

To conclude, our results demonstrate that the ACC is involved
in preparatory adjustments in control, driven by symbolic cues
and independent of anticipated response conflict and error like-
lihood. When control can be adjusted in advance, the ACC is no
longer involved in resolving Stroop-like conflict evoked by the
target. The present findings argue strongly for a role of the ACC
in actual control adjustments. Models of frontal cortex conflict-
detection and conflict-resolution mechanisms will require mod-
ification to include consideration of these anticipatory control
properties of the ACC.
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