Cover legend: In each panel, the radial distance from the center represents contrast along a particular color direction. The saturation of the color at a point in the plane indicates the strength of the response of neurons tuned to that color direction. Different panels show the population response either in the control state (center panel) or after prolonged exposure to color modulation along four different directions in the isoluminant plane. Left and right panels of the center row show the effects of habituation that stimulates only L and M cones (left–right); top and bottom panels of the middle column show the effects of habituation that stimulates only S cones (top–bottom); panels at top left and bottom right, and bottom left and top right, show effects of habituation to intermediate directions that stimulate all three classes of cones. For more information, see the article by Tailby et al. in this issue (pages 1131–1139).
1185 Differential Tonic GABA Conductances in Striatal Medium Spiny Neurons
Kristen K. Ade, Megan J. Janssen, Pavel I. Ortinski, and Stefano Vicini

DEVELOPMENT/PLASTICITY/REPAIR

1022 Early Prediction of Functional Recovery after Experimental Stroke: Functional Magnetic Resonance Imaging, Electrophysiology, and Behavioral Testing in Rats
Ralph Weber, Pedro Ramos-Cabrera, Carlos Justicia, Dirk Wiedermann, Cordula Strecker, Christiane Sprenger, and Mathias Hoehn

1085 Regional Distribution of Cortical Interneurons and Development of Inhibitory Tone Are Regulated by Cxcl12/Cxcr4 Signaling
Guangnan Li, Hillel Adesnik, Jennifer Li, Jason Long, Roger A. Nicoll, John L. R. Rubenstein, and Samuel J. Pleasure

1224 Metabotropic Glutamate Receptor Type 5-Dependent Long-Term Potentiation of Excitatory Synapses on Fast-Spiking GABAergic Neurons in Mouse Visual Cortex
Abdolrahman Sarihi, Bin Jiang, Alireza Komaki, Kazuhiro Sohya, Yuchio Yanagawa, and Tadaharu Tsumoto

1262 The N-Terminal Domain of Nogo-A Inhibits Cell Adhesion and Axonal Outgrowth by an Integrin-Specific Mechanism
Fenghua Hu and Stephen M. Strittmatter

BEHAVIORAL/SYSTEMS/COGNITIVE

1034 Qualitatively Different Hippocampal Subfield Engagement Emerges with Mastery of a Spatial Memory Task by Rats
Guillaume L. Poirier, Eman Amin, and John P. Aggleton

1076 Roles of the Nucleus Accumbens and Amygdala in the Acquisition and Expression of Ethanol-Conditioned Behavior in Mice
Christina M. Gremel and Christopher L. Cunningham

1131 Habituation Reveals Fundamental Chromatic Mechanisms in Striate Cortex of Macaque
Chris Tailby, Samuel G. Solomon, Neel T. Dhiru, and Peter Lennie

1140 Functions of Interneurons in Mouse Cerebellum
Neal H. Barmack and Vadim Yakhnitsa

1163 Primary Motor Cortex Tuning to Intended Movement Kinematics in Humans with Tetraplegia
Wilson Truccolo, Gerhard M. Friehs, John P. Donoghue, and Leigh R. Hochberg

1198 Trk: A Neuromodulator of Age-Specific Behavioral and Neurochemical Responses to Cocaine in Mice
Michelle Niculescu, Shane A. Perrine, Jonathan S. Miller, Michelle E. Ehrlich, and Ellen M. Unterwald

1246 Central Processes Amplify and Transform Anisotropies of the Visual System in a Test of Visual–Haptic Coordination
Joseph McIntyre and Mark Lipshits

NEUROBIOLOGY OF DISEASE

1046 Interaction of Transient Receptor Potential Vanilloid 4, Integrin, and Src Tyrosine Kinase in Mechanical Hyperalgesia
Nicole Alessandri-Haber, Olayinka A. Dina, Elizabeth K. Joseph, David B. Reichling, and Jon D. Levine

1179 Targeted Disruption of Na⁺/Ca²⁺ Exchanger 3 (NCX3) Gene Leads to a Worsening of Ischemic Brain Damage
Pasquale Molinaro, Ornella Cuomo, Giuseppe Pignataro, Francesca Boscia, Rossana Sirabella, Anna Pannaccione, Agnese Secondo, Antonella Scorziello, Annagrazia Adornetto, Rosaria Gala, Davide Viggiano, Sophie Sokolow, Andre Herchuelz, Stéphane Schurmans, Gianfranco Di Renzo, and Lucio Annunziato
The Expression of MicroRNA miR-107 Decreases Early in Alzheimer’s Disease and May Accelerate Disease Progression through Regulation of β-Site Amyloid Precursor Protein-Cleaving Enzyme 1
Wang-Xia Wang, Bernard W. Rajeev, Arnold J. Stromberg, Na Ren, Guiliang Tang, Qingwei Huang, Isidore Rigoutsos, and Peter T. Nelson

Hyperoxia Causes Maturation-Dependent Cell Death in the Developing White Matter

Corrections: In Figure 1 of the article “Accelerated Accumulation of Misfolded Prion Protein and Spongiform Degeneration in a Drosophila Model of Gerstmann–Straussler–Scheinker Syndrome,” by Brendan A. Gavin, Maria J. Dolph, Nathan R. Deleault, James C. Geoghegan, Vikram Khurana, Mel B. Feany, Patrick J. Dolph, and Surachai Supattapone, which appeared on pages 12408-12414 of the November 29, 2006 issue, the anti-PrP monoclonal antibody D13 (InPro Biotechnology, South San Francisco, CA) was used to compare PrP expression levels between different transgenic Drosophila lines. In retrospect, the authors have realized that the D13 epitope encompasses residue 101 and that consequently, this antibody has poor affinity for P101L PrP. As a result, the Western Blot shown in Figure 1 does not accurately reflect the relative PrP expression levels between the PRNP/GAL4-Cha2 and GAL4-Cha2;P101L lines assayed. Using two alternative anti-PrP antibodies, whose epitopes do not include residue 101, the authors have found that GAL4-Cha2;P101L flies actually express >20-fold more PrP than PRNP/GAL4-Cha2 flies. Thus, with the transgenic lines currently available, the authors cannot exclude the possibility that expression of WT PrP at higher levels might also cause spongiform degeneration in Drosophila.

For the article “The Neural Coding of Stimulus Intensity: Linking the Population Response of Mechanoreceptive Afferents with Psychophysical Behavior,” by Michael A. Muniak, Supratim Ray, Steven S. Hsiao, J. Frank Dammann, and Sliman J. Bensmaia, which appeared on pages 11687-11699 of the October 24, 2007 issue, the formula for r_{max} (Eq. 6) (page 11695, in Results, Population firing rate), is incorrect. The fraction within the parentheses should be flipped. The correct formula, used in all subsequent calculations and derivations, is as follows:

$$r_{max} = r_0 \cdot \left(\frac{A}{10^b} \right)^{\frac{1}{7}}.$$

In the article “The Structure of Multi-Neuron Firing Patterns in Primate Retina,” by Jonathon Shlens, Greg D. Field, Jeffrey L. Gauthier, Matthew I. Grivich, Dumitru Petrusca, Alexander Sher, Alan M. Litke, and E. J. Chichilnisky, which appeared on pages 8254–8266 of the August 9, 2006 issue, there were two errors. On page 8255 (in Materials and Methods, Spike sorting, third sentence), “spikes were identified using a threshold of three times the voltage SD” should read “spikes were identified using a threshold of four times the voltage SD.” On page 8256 (in Materials and Methods, Stimulation and receptive field analysis, first paragraph), “intensity 9200 (8700, 7100)” should read “intensity 4300 (4200, 2400).”

Persons interested in becoming members of the Society for Neuroscience should contact the Membership Department, Society for Neuroscience, 1121 14th St., NW, Suite 1010, Washington, DC 20005, phone 202-962-4000. Instructions for Authors are available at http://www.jneurosci.org/misc/itoa.shtml. Authors should refer to these Instructions online for recent changes that are made periodically.

Brief Communications Instructions for Authors are available via Internet (http://www.jneurosci.org/misc/ifab_bc.shtml).

Submissions should be submitted online using the following url: http://sfn.manuscriptcentral.com. Please contact the Central Office, via phone, fax, or e-mail with any questions. Our contact information is as follows: phone, 202-962-4000; fax, 202-962-4945; e-mail, jn@sfn.org.