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Brief Communications

Perirhinal Cortex Contributes to Accuracy in Recognition
Memory and Perceptual Discriminations

Edward B. O’Neil,' Anthony D. Cate,? and Stefan Kohler!
'Department of Psychology, University of Western Ontario, London, Ontario N6A 5C2, Canada, and 2Human Cognitive Neurophysiology Laboratory,
Veterans Affairs Northern California Health Care System, Martinez, California 94553

The prevailing view of the medial temporal lobe (MTL) holds that its structures are dedicated to long-term declarative memory. Recent
evidence challenges this position, suggesting that perirhinal cortex (PRc) in the MTL may also play a role in perceptual discriminations
of stimuli with substantial visual feature overlap. Relevant neuropsychological findings in humans have been inconclusive, likely because
studies have relied on patients with large and variable MTL lesions. Here, we conducted a functional magnetic resonance imaging study
in healthy individuals to determine whether PRc shows a performance-related involvement in perceptual oddball judgments that is
comparable to its established role in recognition memory. Morphed faces were selected as stimuli because of their large degree of feature
overlap. All trials involved presentation of displays with three faces. The perceptual oddball task required identification of the face least
similar to the other display members. The memory task involved forced-choice recognition of a previously studied face. When levels of
behavioral performance were matched, we observed comparable levels of activation in right PRc for both tasks. Moreover, right PRc
activity differentiated between accurate and inaccurate trials in both tasks. Together these results indicate that declarative memory
demands are not a prerequisite for a performance-related engagement of PRc and that the introduction of such declarative memory
demands in an otherwise closely matched perceptual task does not necessarily lead to an increase in PRc involvement. As such our
findings show that declarative memory and perception are not as clearly separable at the level of MTL functioning as traditionally

thought.

Introduction

It is firmly established that the integrity of the medial temporal
lobe (MTL) is critical for memory functioning (Milner et al.,
1998). The prevailing view is that the MTL, which consists of the
hippocampus, entorhinal, perirhinal, and parahippocampal cor-
tex, forms a system dedicated to declarative long-term memory
(Squire et al., 2004). The MTL is widely connected with the neo-
cortex; perirhinal cortex (PRc) receives much of its neocortical
input from unimodal association areas, including significant
contributions from the ventral visual stream (VVS) pertaining to
object qualities (Suzuki and Amaral, 1994). In light of this con-
nectivity, recent reports of visuoperceptual deficits in association
with PRc damage have led some researchers to question the stan-
dard view of MTL functioning and the implied notion that a
sharp boundary separates the MTL from the VVS (Buckley and
Gaffan, 2006; Murray et al., 2007; Baxter, 2009). Instead, PRc may
be best understood as an extension of the representational hier-
archy within the VVS for object identification (Bussey and Sak-
sida, 2007; Murray et al., 2007). According to such an account,
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PRc is recruited in tasks, perceptual or mnemonic, that require
discriminations of objects with highly overlapping shape fea-
tures, including but not restricted to faces. PRc may provide a
representation of the conjunctions of features (Murray and Bus-
sey, 1999) or of gestalt characteristics (Cate and Kohler, 2006),
critical when individual shape features are insufficient for unique
object identification. Such a higher-order representation is also
beneficial for recognition of prior occurrence as a constant
stream of visual input creates massive interference at the feature
level, which needs to be resolved for the assessment of the famil-
iarity of specific objects (Cowell et al., 2006).

Although a critical role for PRc in recognition memory is
undisputed, its contributions beyond declarative memory re-
main highly controversial (Squire et al., 2004; Hampton, 2005;
Suzuki, 2009). For example, two recent studies in neurological
patients with lesions that included PRc provided conflicting re-
sults, despite highly similar experimental paradigms to tax online
processing of objects in perceptual tasks (Lee et al., 2005a;
Shrager et al., 2006). Furthermore, although imaging investiga-
tions in healthy individuals have begun to reveal an involvement
of PRc in visuoperceptual tasks (Devlin and Price, 2007; Lee et al.,
2008), it is presently unknown whether PRc activation is in fact
related to accurate performance, and whether it is comparable to
that seen in recognition memory. If representational factors dic-
tate whether PRc is recruited, regardless of declarative memory
demands, one would predict that its activity is related to accuracy
on both types of tasks.

Here, we conducted a functional magnetic resonance imaging
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(fMRI) study to compare the role of PRc in recognition memory
and perceptual oddball judgments. As in the aforementioned pa-
tient studies, morphed faces served as stimuli. Critically, we ma-
nipulated the difficulty of both tasks to allow for direct compar-
ison at matched levels of accuracy. To investigate potential
differences in the PRc response with that in more posterior VVS
regions previously implicated in face processing, we also exam-
ined experimental effects in the fusiform face area (FFA) (Kan-
wisher et al., 1997).

Materials and Methods

Participants. Eighteen right-handed healthy subjects (10 male; age range,
23-29 years) participated in the study. All subjects had normal or
corrected-to-normal vision and gave written informed consent. Partici-
pants received compensation for their participation. This study received
approval from the Health Sciences Research Ethics Board at the Univer-
sity of Western Ontario.

Materials. Trials of both experimental tasks consisted of three artifi-
cially created faces (i.e., triplets) obtained by morphing two original color
face photographs of Caucasian individuals with neutral facial expression.
The two original faces of each trial-unique face pair were designated as
endpoints on a morph continuum. Triplet members for the perception
task were captured at different points on this continuum, such that the
distance between the oddball image and its neighbor was larger than the
distance between the other two images. To create three different levels of
difficulty for the perception task, this increase in distance for the oddball
was manipulated systematically (see supplemental Fig. 1 for additional
details, available at www.jneurosci.org as supplemental material). Triplet
members for the memory task were equally spaced along the morph
continuum.

Additional stimuli were created for a luminance—baseline task that
required no processing of visual shape features. Two squares of identical
luminance and a third with a 5% increase were presented against a visual
noise background. Luminance levels for these squares varied across trials.

Experimental procedure. The experiment included six fMRI runs in a
fast event-related design. Each run was preceded by a study phase in
which the 12 faces that served as targets in the memory task were pre-
sented for memorization. Faces were studied for 3000 ms, with a 1000 ms
intertrial interval. Half of the set of studied faces was presented once
(difficult condition), whereas the other half was repeated three times
(easy condition). During scanning, each trial began with a 1000 ms cue
indicating the type of task to be performed. Each display of triplets was
presented for 5000 ms, followed by jittered fixation (Fig. 1). Trial order
and jitter were optimized using the “OptSeq2” algorithm (http://surfer.
nmr.mgh.harvard.edu/optseq/).

Every run included six trials from each difficulty level of the experi-
mental tasks as well as the luminance—baseline task. Perception trials
required selection of the face most different from the other two. Lumi-
nance trials required selection of the brightest square. Memory trials
required selection of the face identical to one previously studied. Partic-
ipants viewed the displays through a mirror at an approximate size of
22 X 19° visual angle. Responses were made using a keypad without
performance feedback.

For investigation of responses in the FFA, the imaging protocol also
included two functional localizer runs to identify this region. Here, we
used the protocol described by Ganel et al. (2006), which involved pre-
sentation of face, object, and place stimuli in a blocked design under
passive viewing instructions.

fMRI data acquisition and image analysis. All fMRI scanning was com-
pleted on a 4 Tesla whole-body scanner (Varian; Siemens) using a cus-
tom head coil. To optimize signal in PRc, a localized second-order-
shimming algorithm was combined with a multishot, short echo-time-
imaging sequence. An oblique coronal orientation was selected for image
acquisition to prevent inclusion of the eyes in the functional volume. The
resulting volume captured the temporal and occipital lobe from the tem-
poral pole to the occipital pole. For each subject, 19 contiguous 4 mm
slices were obtained with a field of view of 22 X 22 cm (sampled with a
64 X 64 matrix) and an in-plane resolution of 3.44 X 3.44 mm. A T2*-
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Figure 1.  Experimental design. Each experimental run consisted of an initial study phase
(prescanning) that required memorization of a series of faces. Under scanning, participants
made perceptual oddball (0), forced-choice recognition memory (M), and luminance— baseline
judgments (B).

weighted spiral image acquisition was used for all functional scans [echo
time (TE) = 12 ms; repetition time (TR) = 625 ms; i.e., total volume
acquisition time of 2500 ms with four-shot sequence; flip angle, 30°] with
160 volumes per run (150 volumes in the localizer runs). A T1-weighted
high-resolution anatomical scan was acquired in the same plane as the
functional images (144 slices; TR = 45 ms; TE = 3 ms; 256 X 256 matrix,
in-plane resolution of 0.86 X 0.86 mm with 1 mm slice thickness). f{MRI
data were analyzed using Brain Voyager QX 1.8 software (Brain Innova-
tion). Functional images were resampled into 3 mm isotropic voxels,
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Table 1. Mean accuracy and response times for correct trials across participants

Condition Accuracy (% correct) Response time (in ms)
Memory
Difficult 54.60 (+2.72) 3098.17 (*96.75)
Easy 66.08 (*-2.80) 2926.08 (*89.81)
Perception
Difficult 50.45 (+1.98) 3071.47 (£94.70)
Easy 72.90 (*1.85) 2865.71 (*£72.35)
Baseline 59.32 (*5.00) 2233.22 (*124.00)

Note that both accuracy and response times were matched for the difficult memory and perception conditions
(mean =+ SEM).

high-pass filtered, coregistered with the anatomical image, and trans-
formed into standardized Talairach space. Resulting images were
smoothed using a three-dimensional Gaussian kernel with a full-width at
half maximum (FMHW) value of 6 mm. Data were convolved with a
double gamma hemodynamic response function and examined in a
random-effects general linear model (GLM). Mean intensity of the vol-
ume was included as a covariate-of-no-interest.

A whole-volume voxelwise approach was used to identify PRc activa-
tion related to our experimental manipulations. Experimental effects
exceeding a threshold of p < 0.001 (uncorrected) were considered sig-
nificant. For the conjunction analysis (Nichols et al., 2005), this signifi-
cance level reflected the joint probability of the two independent con-
trasts included. Localization of activation in PRc was guided by published
neuroanatomical protocols (Insausti et al., 1998). For purpose of com-
parison, the FFA was identified at the group level as the most anterior
region in the right fusiform gyrus that showed greater activation for faces
than places and greater activation for faces than objects ( p < 0.01, un-
corrected, for each contrast). One subject was unable to complete the
functional localizer runs, and one run had to be discarded due to mal-
function of the scanner.

Results

Behavioral results

Participants performed at above chance level of accuracy in each
condition. Difficulty manipulations were effective for the mem-
ory task and for the perception task [memory, ¢, ,,, = —3.24,
P < 0.05; perception, F, 55, = 27.97, p < 0.05]. Closer inspection
of data in the middle perception condition revealed, however,
that while accuracy was approximately halfway in-between the
difficult and easy conditions in terms of group mean, individual
subjects’” performance fell closer to levels for these extreme con-
ditions than to their mean in the majority of cases. Consequently,
for the fMRI analyses, we recoded the trials from the middle
condition as “easy” or “difficult” according to each participant’s
unique performance pattern. As expected, the effect of the diffi-
culty manipulation was preserved in these recoded data. An
ANOVA of accuracy scores revealed a main effect of difficulty
F1.17) = 9.36, p < 0.05. This effect was more pronounced in the
perception condition, resulting in a task X difficulty interaction,
F,17) = 61.72, p < 0.05 (with no significant main effect of task).
An examination of reaction times also revealed a main effect of
difficulty, F(, ,,) = 15.16, p < 0.05, with no other effects present
(Table 1). Critically, behavioral performance for the difficult
condition of both tasks was matched in terms of accuracy and
reaction times (¢ tests both p > 0.10), allowing for direct compar-
ison of BOLD activation without a difficulty confound. Addition-
ally, accuracy for the luminance task did not differ from that of
these two conditions.

Imaging results

First, we aimed to determine whether PRc was differentially in-
volved in memory compared with our baseline task (i.e., lumi-
nance judgments). The contrast between all memory trials and all
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luminance trials revealed significant activation in the right PRc in
the anterior collateral sulcus (peak x = 27,y = —4,z= —27;t =
4.01). Not surprisingly, this contrast also revealed activation in
more posterior VVS regions, including the FFA (as defined with
our functional localizer). Second, we determined whether PRc
was also differentially involved in our perception task compared
with baseline. The contrast between all perception trials and all
luminance trials revealed significant activation in a right PRc
region in the anterior collateral sulcus overlapping with that ob-
served in the memory contrast (peak x = 33,y = —4,z = —26;
t = 4.20). Again, other more posterior VVS regions, including the
FFA, were present in the pattern identified with this contrast.
Supplemental Figure 2 (available at www.jneurosci.org as supple-
mental material) displays the overlap in activation for both con-
trasts for descriptive purposes. Notably, in itself the overlap in
PRc does not address whether activation levels were of compara-
ble magnitude or perhaps stronger for the memory task. Thus, we
directly compared activation associated with accurate trials for
the difficult memory and perception conditions, i.e., when per-
formance was matched across tasks. This contrast revealed no
significant activation in any aspect of PRc, even when the thresh-
old was lowered to a level of p = 0.10. Examination of the effects
of the difficulty manipulation also showed no differential re-
sponse in PRec.

In the next step of our analyses, we sought even more direct
evidence for a comparable role of PRc in recognition memory
and perceptual oddball decisions by focusing on accuracy effects.
We asked whether activation in PRc is related to accuracy on both
tasks. A conjunction analysis (Nichols et al., 2005) that combined
an accuracy contrast for all memory trials with an accuracy con-
trast for all perception trials revealed a common activation in
right PRc in the anterior collateral sulcus ( p < 0.001; p < 0.01 for
the individual contrasts; peak x = 18, y = 5, z = —29) (Fig. 2).
Notably, the accuracy effect in PRc was not modulated by task
difficulty in either task (i.e., interaction terms >0.10) (see Fig. 2
for response profile). Although not the specific focus of the cur-
rent study, our conjunction contrast also revealed activity in a
more lateral anterior temporal region in the left occipitotemporal
sulcus (OTS; p < 0.001, peak x = —32, y = 4, z = —37). This
finding is in line with other evidence pointing to an involvement
of lateral inferior temporal lobe structures in making fine-
grained face discriminations (Kriegeskorte et al., 2007; Suzuki,
2009), and the notion that PRc does not perform its role in
isolation.

To examine whether more posterior VVS regions in infero-
temporal cortex showed more limited contributions to accuracy
than PRc, we conducted a targeted ROI analysis of the function-
ally defined FFA. When investigating effects of task, accuracy and
difficulty within a three-factorial 2 X 2 X 2 ANOVA, we obtained
a significant three-way interaction effect [F (, ,,) = 4.71, p <
0.05]. Subsequent pairwise comparisons revealed that this inter-
action reflected an accuracy effect that was limited to the easy
perception condition (¢, = 3.35, p < 0.05 Bonferroni corrected
(Fig. 3)].

Discussion

In the present fMRI study, we compared the role of PRc in a
forced-choice recognition memory task and in perceptual odd-
ball judgments using highly similar, morphed face stimuli. Under
conditions of matched levels of behavioral performance, we ob-
served comparable levels of activation in right PRc for both tasks.
Critically, right PRc activity also differentiated between accurate
and inaccurate trials in both tasks. Together these results indicate
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that declarative memory demands are not
a prerequisite for a performance-related
engagement of PRc in object discrimina-
tions. Moreover, they show that the intro-
duction of such declarative memory de-
mands in an otherwise closely matched
perceptual task does not lead to an increase
in PRc involvement.

The observed accuracy effect in right
PRc for the memory conditions converges
with a large literature pointing to a critical
role of PRc in recognition memory for ob-
jects and faces (Eichenbaum et al., 2007),
including past neuroimaging findings
showing accuracy effects in the context of
yes-no recognition decisions (Gonsalves et
al., 2005; Daselaar et al., 2006). Notably, in
forced-choice recognition, unlike in
yes-no recognition, previously studied 2
items and novel foils are presented simul-
taneously. Thus, both familiarity of the
target and novelty of the foils can guide
successful discrimination. As the latter has
typically led to higher levels of PRc activa-
tion in previous research, the pattern we
observed could reflect a novelty signal for
the foils that is more pronounced in the
context of a correctly than incorrectly
identified familiar target.

The accuracy effect for the perception
task indicates that PRc contributes to per-
ceptual discriminations of highly similar
visual stimuli under conditions in which
no reference to any prior encounter is re-
quired (Buckley and Gaffan, 2006; Murray
et al., 2007). In fact, in the current study,
no reference to any such prior encounter
could be made; all stimuli in the perceptual
task were novel and trial unique. Thus,
neither familiarity nor novelty could be
used as a source to distinguish between
targets and foils. Accordingly, they cannot
account for the observed differences in
PRc activation for correct compared with
incorrect trials.

Our perception task was modeled after
the oddity task used by Buckley et al.
(2001) to examine the effects of PRc le-
sions on visual discriminations in nonhu-
man primates under conditions of mini-
mal declarative memory demands. These
authors reported unimpaired perfor-
mance in association with PRc lesions
when the oddball was different in color,
size, or simple shape. Yet, the lesions lead
to impairments under conditions of high feature ambiguity, i.e.,
when faces and other complex visual stimuli that could not be
distinguished based on simple perceptual features were pre-
sented. In related human patient research, large MTL lesions that
include PRc¢ have also been reported to produce impairments on
oddball and other perceptual discrimination tasks with visual
stimuli that share many shape features (Barense et al., 2005; Lee et
al., 2005a,b; Barense et al., 2007). However, the findings are less

Figure 2.

intervals.

Figure 3.
sponses in this region for the two difficulty conditions in each task. The accuracy effect is significant only for the easy perception
condition. I, Incorrect; C, correct; error bars represent 95% confidence intervals.
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consistent than those in the nonhuman primate literature, per-
haps because of the variability in nature and extent of the lesions
across studies (Levy et al., 2005; Shrager et al., 2006). Neverthe-
less, the findings reported by Lee et al. (2005a), who observed
impairments in patients with large MTL lesions using morphed
face stimuli very similar to those used here, are directly in line
with our conclusions.

It has been proposed that PRc may reflect the highest level of
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object representation in the hierarchically organized VVS (Mur-
ray and Bussey, 1999; Bussey and Saksida, 2007). According to
such a model, it is the nature of the representation required,
rather than the presence or absence of declarative memory de-
mands, that determines whether PRc is recruited in object dis-
criminations. PRc may provide an object representation that is
critical when individual shape features are insufficient for unique
object identification. Although the present study was not de-
signed to determine the exact nature of those object representa-
tions that require PRc contributions, comparison of activation in
PRc and the more posterior FFA supports such a representational
account. Unlike in PR, accuracy effects observed in the FFA were
specific to the easy perception condition, consistent with a more
limited representational capability of more posterior regions in
the VVS hierarchy (as theorized by the hierarchical representa-
tional account; also Kriegeskorte et al., 2007).

Curiously, accuracy effects in PRc were not modulated by
difficulty of the perception task in the current study. These find-
ings mirror a report of human patients with large MTL lesions
who exhibited significant deficits in perceptual face discrimina-
tions independent of morph difficulty, despite observed difficulty
effects for other classes of complex visual stimuli (Lee et al.,
2005a). A large literature points to a critical role of holistic
gestalt-like representations in face perception (Farah etal., 1998).
Reliance on such a representation may be particularly critical
when discriminations of morphed stimuli are required, as in the
current study; morphing warps an image in nonlinear ways, mak-
ing discriminations based on individual features unreliable (Cate
and Kohler, 2006). Holistic representations are also thought to
play a critical role in generalizing object or face identity across
differences in viewpoint, a task demand critical in a number of
past studies that have shown perceptual deficits in association
with PRc lesions (Buckley and Gaffan, 2006). Although further
research is necessary, such findings suggest that PRc may support
gestalt-like visual representations. These representations would
also be beneficial for recognition of prior occurrence, because
they are relatively resistant to interference at the feature level
from other encountered stimuli (Cowell et al., 2006).

Beyond representational demands, pre-experimental stimu-
lus familiarity may also determine the extent of PRc contribu-
tions to perceptual discriminations. Functional neuroimaging re-
search on working memory has shown that MTL regions in the
vicinity of PRc are involved to a greater extent in the online
maintenance of complex visual stimuli that are novel and lack
pre-existing cortical representations than familiar ones (Stern et
al., 2001). Accordingly, stimulus novelty may have also played a
role in engaging PRc in perceptual discriminations in the current
study. It has been suggested that rapid synaptic plasticity in PRc,
critical for the formation of declarative memory representations,
can also support the online maintenance of novel stimuli in
working memory when posterior cortical regions are insufficient
to perform this function (Ranganath et al., 2005; Hasselmo and
Stern, 2006; Ranganath, 2006; Winters et al., 2008). The same
mechanism may also support the online maintenance of novel-
face representations in difficult perceptual discriminations when
there is no delay component and the stimuli are continuously
visible. However, a follow-up experiment that we conducted to
explore this idea at the behavioral level did not provide any sup-
port; it did not reveal any declarative-memory advantage for suc-
cessfully identified oddball items on a subsequent recognition
memory task (see supplemental material, available at www.
jneurosci.org). Future research needs to address this issue
more directly at the neural level to determine the extent to
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which PRc activity on perceptual oddball tasks may be related to
rapid declarative-memory formation and/or working-memory
maintenance.

In conclusion, our findings provide new evidence that the
involvement of PRc in the accuracy of perceptual discriminations
can match that in recognition decisions. Therefore, they show
that the presence of declarative retrieval demands is neither a
prerequisite nor a factor that necessarily boosts PRc engagement.
As such our findings add to a growing literature indicating that
declarative memory and perception are not as clearly separable at
the level of MTL functioning as traditionally thought.
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