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We assessed here true causal directionalities in cerebellar–motoneuron (MN) network associations during the classical conditioning of
eyelid responses. For this, the firing activities of identified facial MNs and cerebellar interpositus (IP) nucleus neurons were recorded
during the acquisition of this type of associative learning in alert behaving cats. Simultaneously, the eyelid conditioned response (CR) and
the EMG activity of the orbicularis oculi (OO) muscle were recorded. Nonlinear association analysis and time-dependent causality
method allowed us to determine the asymmetry, time delays, direction in coupling, and functional interdependences between neuronal
recordings and learned motor responses. We concluded that the functional nonlinear association between the IP neurons and OO muscle
activities was bidirectional and asymmetric, and the time delays in the two directions of coupling always lagged the start of the CR.
Additionally, the strength of coupling depended inversely on the level of expression of eyeblink CRs, whereas causal inferences were
significantly dependent on the phase information status. In contrast, the functional association between OO MNs and OO muscle
activities was unidirectional and quasisymmetric, and the time delays in coupling were always of opposed signs. Moreover, information
transfer in cerebellar–MN network associations during the learning process required a “driving common source” that induced the mere
“modulating coupling” of the IP nucleus with the final common pathway for the eyelid motor system. Thus, it can be proposed that the
cerebellum is always looking back and reevaluating its own function, using the information acquired in the process, to play a modulating-
reinforcing role in motor learning.

Introduction
The analysis of functional relationships between motor activities
(both actual movements and muscle electromyography), neural
firing rates, and oscillatory rhythms at different motor and pre-
motor levels has provided important insights regarding how neu-
ral circuits generate appropriate behaviors (Varela et al., 2001). In
particular, the information collected has led to a better under-
standing of the physiological mechanisms underlying the role of
cerebellar centers in neural control of movement (Eccles et al.,
1967; Thach et al., 1992; Welsh and Llinás, 1997; Lang et al., 2006;
Gerwig et al., 2007; Cheron et al., 2008). At the same time, recent
analytical procedures have enabled the determination of how
deep brain stimulation suppresses synchronized firing activities
to improve its therapeutic efficiency in certain motor disorders
(Llinás et al., 1999; Titcombe et al., 2001) by using different time-
delayed feedback strategies (Rusemblum and Pikovski, 2004) and
phase-resetting techniques (Tass, 2003). A widely used method
for estimating functional interdependences between two physio-
logical signals is the linear cross-correlation function. This index

measures the strength (strong or weak) of association, the time
delay, and the relative linearity between two processes. However,
the cross-correlation function is unable to distinguish between a
closed- and an open-loop system. Similar significant linear cross-
correlation estimations may appear in systems both with and
without feedback. Thus, these analytical procedures do not help
to elucidate any causal relationship within the physiological
systems involved. Therefore, to fully understand information
processing at different levels of the motor system and—in partic-
ular—the functional interdependence between signals recorded
during actual motor learning processes, a directional analysis to
reveal causal influences is essential. The nonlinear association
method (Lopes da Silva et al., 1989; Pijn et al., 1997; Kalitzin et al.,
2007) and Granger time-dependent causality analysis (Granger,
1980; Geweke, 1982; Nolte et al., 2008) have proven useful in
these experimental situations (Bernasconi et al., 2000; Kaminski
and Liang, 2005; Witte et al., 2009).

In the present study, we have carried out a nonlinear associa-
tion analysis to quantify the time-dependent coupling between
simultaneously recorded neural [neuronal responses (NRs) of
identified facial motoneurons (MNs) or deep cerebellar posterior
IP neurons] and muscular [EMG activity of the orbicularis oculi
(OO) muscle] signals. We had already preprocessed crude NRs
and EMG activities, validated our hierarchical cluster analysis for
averaged blocks of trials and experimental sessions and used a
cumulative neuronal integration method for the phase infor-
mation (Sánchez-Campusano et al., 2007). This information
allowed us to develop multivariate autoregressive models of
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physiological time series during the motor learning processes and
to determine the influence of the phase-inversion properties of
interpositus (IP) neurons on the acquisition of new motor abili-
ties (Sánchez-Campusano et al., 2007). Here, we have used time-
dependent Granger causality analysis (Granger, 1980; Geweke,
1982) to reveal any possible causal relationship between time
series resulting from neuronal firing rates collected from identi-
fied OO MNs or from posterior IP neurons and learned motor
responses. The aim was to determine the causal involvement of
the cerebellum in the generation of new motor abilities, using as
an experimental model the classical conditioning of eyelid re-
sponses in alert cats.

Materials and Methods
Experimental animals. Experiments were carried out on eight female
adult cats (weighing 2.3–3.2 kg) obtained from an authorized supplier
(Iffa-Credo). Experiments were carried out in accordance with the
guidelines of the European Union (86/609/EU, 2003/65/EU) and Span-
ish regulations (BOE 252/34367-91, 2005) for the use of laboratory ani-
mals in chronic studies.

Surgery. Animals were anesthetized with sodium pentobarbital (35
mg/kg, i.p.) following a protective injection of atropine sulfate (0.5 mg/
kg, i.m.) to prevent unwanted vagal responses. A search coil (five turns, 3
mm in diameter) was implanted into the center of the left upper eyelid at
�2 mm from the lid margin (Fig. 1A). The coil was made from Teflon-
coated multistranded stainless steel wire (50 �m of external diameter).
Coils weighed �1.5% of the cat’s upper lid weight and did not impair
eyelid responses. Animals were also implanted in the ipsilateral OO muscle
with bipolar hook electrodes aimed for EMG recordings. These electrodes
were made of the same wire as the coils and bared 1 mm at their tips.

Four of the animals were prepared for the chronic recording of anti-
dromically identified facial MNs projecting to the OO muscle. For this,
two stainless steel hook electrodes were aimed at the zygomatic subdivi-
sion of the left facial nerve, 1–2 mm posterior to the external canthus. The
other four animals were prepared for the chronic recording of anti-
dromically identified left posterior IP neurons. In this case, a bipolar-
stimulating electrode, made of 200 �m enamel-coated silver wire, was
implanted in the magnocellular division of the right (contralateral) red
nucleus following stereotaxic coordinates (Berman, 1968). A recording
window (5 � 5 mm) was opened in the occipital bone of all of the animals
to allow access to the facial or the IP nuclei. The dura mater was removed,
and an acrylic chamber was constructed around the window. The cere-
bellar surface was protected with a piece of silicone sheet and sterile gauze
and hermetically closed using a plastic cap. Finally, animals were pro-
vided with a head-holding system for stability and proper references of
coil and recording systems. All the implanted electrodes were soldered to
a socket fixed to the holding system. A detailed description of this chronic
preparation can be found elsewhere (Trigo et al., 1999; Gruart et al., 2000;
Jiménez-Díaz et al., 2004; Sánchez-Campusano et al., 2007).

Electrical recordings and stimulating procedures. Eyelid movements
were recorded with the magnetic field search-coil technique (Gruart et
al., 1995). The gain of the recording system was set at 1 V � 10°. The EMG
activity of the OO muscle was recorded with differential amplifiers at a
bandwidth of 0.1 Hz to 10 kHz. Action potentials were recorded in facial
and IP nuclei with glass micropipettes filled with 2 M NaCl (3–5 M� of
resistance) using a NEX-1 preamplifier (Biomedical Engineering). For
the antidromic activation of recorded neurons, we used single or double
(interval of 1–2 ms) cathodal square pulses (50 �s) with current intensi-
ties �300 �A. Only antidromically identified OO MNs and IP neurons
were stored and analyzed in this study (Fig. 1 A, B). Site location and
identification procedures have been described in detail for facial MNs
(Trigo et al., 1999) and posterior IP neurons (Gruart et al., 2000;
Jiménez-Díaz et al., 2004; Sánchez-Campusano et al., 2007).

Classical conditioning. Classical eyeblink conditioning was achieved by
the use of a delay-conditioning paradigm (Fig. 1C). A tone (370 ms, 600
Hz, 90 dB) was used as conditioned stimulus (CS). The tone was followed
270 ms from its onset by an air puff (100 ms, 3 kg/cm 2) directed at the left
cornea as a unconditioned stimulus (US). Thus, the tone and the air puff

terminated simultaneously. Tones were applied from a loudspeaker located
80 cm below the animal’s head. Air puffs were applied through the opening
of a plastic pipette (3 mm in diameter) located 1 cm away from the left
cornea.

Each animal followed a sequence of 2 habituation, 10 conditioning
sessions, and 3 extinction sessions. A conditioning session always consisted
of 12 blocks separated by a variable (5 � 1 min) interval. Each block con-
sisted of 10 trials separated by intervals of 30 � 10 s. Within each block, the
CS was presented alone during the first trial—i.e., it was not followed by the
US. A complete conditioning session lasted for �2 h. The CS was presented
alone during habituation and extinction sessions for the same number of
blocks per session and trials per block and with similar random interblock
and intertrial distributions (Gruart et al., 1995).

Histology. At the end of the recording sessions, animals were deeply
reanesthetized (50 mg/kg sodium pentobarbital, i.p.). Electrolytic marks
were placed in selected recording sites with a tungsten electrode (1 mA for
30 s). Animals were perfused transcardially with saline and phosphate-
buffered formalin. Serial sections (50 �m), including the cerebellum and the
brainstem, were mounted on glass slides and stained with toluidine blue or
cresyl violet for confirmation of the recording sites (Gruart et al., 2000;
Jiménez-Díaz et al., 2004).

Data collection and multiparametric statistical analysis. Eyelid position,
EMG and neuronal activity, and rectangular pulses corresponding to CS and
US presentations were stored digitally on a computer, using an analog–
digital converter (CED 1401 Plus; Ceta Electronic Design). Commercial
computer programs (spike 2 and SIGAVG; Ceta Electronic Design) were
used for acquisition and on-line conventional analysis. The off-line analysis
and quantification and representation programs used here were developed
by one of us (R.S.-C.) with the help of MATLAB routines.

Action potentials recorded from identified OO MNs and IP neurons
were computed and quantified. The quantification algorithm took into
account the identification of the action potential’s standard waveform
and the absolute refractory (mean duration of the action potential) and
relative refractory (minimum interspike time interval) periods (Sánchez-
Campusano et al., 2007). The instantaneous firing rate was calculated as
the inverse of the interspike intervals. Velocity and acceleration profiles
were computed digitally as the first and second derivatives of eyelid po-
sition records after low-pass filtering of the data (�3 dB cutoff at 50 Hz
and zero gain at �100 Hz) (Domingo et al., 1997).

Computed results were processed for statistical analysis using the Sta-
tistics MATLAB Toolbox. As statistical inference procedures, both
ANOVA (estimate of variance both within-groups and between-groups,
on the basis of one dependent measure) and MANOVA (estimate of
variance in multiple-dependent parameters across groups) were used to
assess the statistical significance of differences between groups. The cor-
responding statistical significance test [i.e., F[(m�1),(m�1)�(n�1),(l�m)]

statistic] was performed, with sessions as repeated measures, coupled
with contrast analysis when appropriate (Hair et al., 1998; Grafen and
Hails, 2002). The orders m (number of groups), n (number of cats), and
l (number of multivariate observations) were reported accompanying
the F statistic values. The corresponding statistical significance tests (i.e.,
Student’s t test and F statistic) were performed for the parameters of
nonlinear correlation analysis and causal inference method (see below).
These parameters were statistically significant if the resulting probability p
met the requirements of the hypothesis test: p � 0.05, in which 0.05 was the
predetermined statistical significance level. This hypothesis test is done by
using modified Fisher’s z-transformation (w) to associate each measured
nonlinear association index (�) with a corresponding w-transformation.
Then, each w is approximately normally distributed with values in [�inf
�inf]. If the probability p is less than the predetermined significance level
(0.05), then reject the null hypothesis (H0, no correlation or no difference
between population means) (Belsley et al., 1980). A small value of p
indicates that the two distributions (w-transformation and Gaussian) are
significantly correlated (see supplemental Appendix S1, available at www.
jneurosci.org as supplemental material). In all of the cases, if H0 � 0, we do
not reject null hypothesis at significance level of 0.05. If H0 � 1, we reject null
hypothesis at significance level of 0.05.

Collected data were analyzed using a multivariate cluster technique.
Multivariate cluster analysis is an optimal tool to link the kinetic neural
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commands (i.e., motor and premotor neuronal activities computed from
different quantitative parameters) and kinematic (i.e., motor activities
computed from EMG and actual movement) parameters during motor
learning; used here, it enabled us to determine the intrinsic coherence of
collected data (Sánchez-Campusano et al., 2007). For this, we developed
the necessary computer programs and algorithmic procedures to deal
with such a huge amount of data (60 parameters quantified across 15
experimental sessions collected from eight experimental animals). Impor-
tantly, this analysis allowed neural firing properties recorded from different
animals during the same conditioning paradigm to be correctly assigned to
the corresponding experimental session [i.e., in agreement with the actual
conditioned response (CR) evoked during the CS–US interval].

An additional advantage of this experimental approach is that once
collected data were properly arranged according to the hierarchical
cluster tree (and that nonsignificant data were rejected), it was possi-
ble to determine analytically the multiple and coherent evolution of
kinetic and kinematic parameters, the dynamic nonlinear association
functions relating MNs and IP NRs to EMG activity, the causal infer-
ences between the firing neuronal time series and learning motor
responses time series, and—finally—the relationship between the causal in-
ference and phase-inversion properties of OO MNs and IP neurons with
regard to acquired CRs (Sánchez-Campusano et al., 2007).

Multivariate analyses of physiological time series. Multivariate analysis is
extensively used with the aim of studying the relationship between simul-

Figure 1. Schematic representation of the experimental design and of recorded physiological signals. A, Diagram illustrating the stimulating (Stim.) and recording (Rec.) sites, as well as the eyelid
coil and EMG electrodes implanted in the upper eyelid. Kinetic neuronal commands were computed from the firing activities of antidromically identified OO MNs located in the facial nucleus (VII n)
and from neurons located in the ipsilateral cerebellar posterior IP nucleus (IP n). R n, red nucleus; V n, trigeminal nucleus. B, Diagrammatic representation of the experimental series (S1 for MN and
S2 for IP neuron recordings, both obtained in simultaneity with the EMG activities of the OO muscle and eyelid position recordings) during classical eyeblink conditioning. C, For classical conditioning
of eyelid responses we used a delay paradigm consisting of a tone as a CS. The CS started before but coterminated with an air puff used as an US. D–K, A set of recordings collected from the 10th
conditioning session from two representative animals. D, Raster representation of action potentials generated by two identified neurons (an IP and an MN) across one learning block (n � 9 trials).
Each row in the raster represents a single trial. The two single trials marked with dotted rectangles in D correspond to the global representation of collected physiological signals illustrated from E
to K. E, Conditioning paradigm and firing activities of two (IP and MN) selected neurons during a single trial. Action potentials (IP spikes), marked with blue plus signs (D and E), correspond to the
direct representation of the neuronal activity in the IP n (IP raw recordings, in F ), and its respective instantaneous frequency (IP firing rate, in G). Action potentials (MN spikes) recorded from an OO
MN are indicated with magenta plus signs (D and E) and are the direct representation of the neuronal activity in the facial nucleus (MN raw recordings, in H ) and its corresponding instantaneous
frequency (MN firing rate, in I ). J, K, These traces illustrate the EMG activity of the OO muscle (OO EMG, in J ), and the direct recording of the eyelid position by the magnetic field search-coil technique
(in K ). The beginning of the CR was taken as the zero reference point (in K ) for subsequent analysis.
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taneously recorded signals or their equivalent time series. Multivariate
time series tools [(1) nonlinear association analysis and (2) causal infer-
ences using time-dependent causality analysis] enabled us to determine
the functional relatedness, asymmetry, time delay, direction in coupling,
and causal inferences between physiological recordings [i.e., neuronal
activities generated in facial and cerebellar IP nuclei (Fig. 1 A, VII n or IP
n), and learned motor responses (OO EMG activity or conditioned eyelid
responses)] collected during classical conditioning sessions. In practice,
we illustrated the use of multivariate analyses for the assessment of the
strength (strong or weak), functional nature (unidirectional or bidirec-
tional), and the type (linear or nonlinear) of interdependences between
these physiological time series. The analytical procedures and multivar-
iate analyses of physiological signals developed here were designed by one
of us (R.S.-C.) with the help of MATLAB routines.

(1) Nonlinear association between EMG activity and neuronal recordings.
We used nonlinear correlation analysis to investigate the functional associa-
tion between the EMG activity [YEMGOO

(t), for the OO muscle] and the
neuronal recording [XNR(t), with XNRMN

(t) for facial motoneuronal or with
XNRIP

(t) for IP neuronal activities]. This statistical measurement is aimed at
quantifying the degree of correlation between two signals and the corre-
sponding time delays (Lopes da Silva et al., 1989; Slaght et al., 2004; Kalitzin
et al., 2007) and has also been shown to give reliable measurements of the
degree and direction of functional coupling between neuronal populations
(Wendling et al., 2001; Pereda et al., 2005; Ansari-Asl et al., 2006).

The basic idea is that if the amplitude of signal YEMGOO
(t) is considered a

function of the amplitude of signal XNR(t), the value of the first signal—
given a certain value of the second—can be predicted according to a non-
linear regression curve. A fixed duration sliding window is used, in which a
parameter (nonlinear correlation coefficients:��EMG�NR�

2 and��NR�EMG�
2 in the

opposite direction, ranging from 0 to 1) is computed. Low values of �2

denote that analyzed signals are independent. Contrarily, high values of �2

mean that one signal can be explained by a transformation (possibly nonlin-
ear) of the other (i.e., the two signals are dependent).

By calculating the index � 2, it is also possible to estimate the delay in
the coupling between the electrophysiological signals during the classical
eyeblink conditioning. The index � 2 can be estimated as a function of
time shift (�) between signal XNR(t) and YEMGOO

(t), or vice versa. That
shift for which the maximum value of � 2(�) is reached is used as an
estimate of the time lag between the two signals. This procedure, in
contrast to “classical” linear cross-correlation functions, can yield an
asymmetric function (i.e., ��EMG�NR�

2 	 ��NR�EMG�
2 ), which can provide

insights into possible driving–response relationships (Lopes da Silva et al.,
1989; Meeren et al., 2002). Details regarding the theoretical formulation of
this method can be found in supplemental Appendix S1 (available at www.
jneurosci.org as supplemental material). Readers may refer to the above-
mentioned reports for a detailed and practical description of this technique.

Mean and SEM values for � and � were calculated for each animal. To
determine whether time delays differed significantly from 0, the 95%
confidence interval for � was calculated for each pair of electrophysiolog-
ical recordings per trial. For all analyses, the amplitude of the signals
XNR(t) and YEMGOO

(t) was subdivided into 10 bins (Figs. 2 and 3A in the
main text and supplemental Appendix S1, available at www.jneurosci.org
as supplemental material), the maximum time shift was 370 ms, and the
minimum time shift was 1.0 ms (one uniform time sample for all the
signals). Maximum eyelid displacements during CRs were determined in
the CS–US interval, and the function corresponding to the collected data
(frequency sample at 1000 Hz) in the CS–US interval was adjusted by a
simple regression method. This method allowed to fix the tendency for
the points near the zero level of eyelid position and to establish a stan-
dardized algorithm for all the responses across of all the blocks of trials. In
this way, the typical randomness in the determination of CR onset was
avoided. The onset of a CR (Fig. 1 K) was determined as the latency from
CS presentation to the interception of the regression function with the
maximum amplitude level (supplemental Fig. S3, available at www.
jneurosci.org as supplemental material). This method was applied across
the successive conditioning sessions, always showing the appropriate
precision and robustness.

(2) Causal inferences according to multivariate time series analysis. We
investigated the dynamic regression models and causal inferences be-

tween neuronal firing function [SIt:S1t(MN), with fMN(t) for facial MN
or S2t(IP) with fIP(t) for IP neuron instantaneous firing frequencies] and
learned motor response [S0t(�), with �(t) for eyelid positions during
conditioned eyeblink responses] using the time-dependent causality analysis
as a particular case of the transfer function method (TFM), a model fre-
quently used to measure the functional interdependence between time series
(Box and Jenkins, 1976; Granger, 1980; Nolte et al., 2008).

Relationships between Ns physiological time series [corresponding to
instantaneous frequencies fMN(t) and fIP(t), and conditioned eyelid re-
sponses �(t)] can be represented by transfer function models of the form

S0ht � �
i�Ns
h�

vhi
B�Slit � Uht

in which

vhi
B� �
�mhi


B�

�ahi

B�

Bbhi

are the impulsive responses or transfer functions of the models. B is the
back-shift operator such that BSIt � SIt�1 and h � 1, 2, . . ., Ns. The
moving average �mhi

( B) and autoregressive �ahi
( B) operators are also

polynomials in B with orders m and a, respectively. The parameters bhi

are nonnegative integers representing certain periods of delay in the
transmission of the effects between the input SIit and output S0ht time

Figure 2. A scatter representation of motoneuronal (MN NR, in A) and IP neuronal (IP NR, in B)
responses versus the EMG activity of the OO muscle (OO EMG). A, An LPA of the nonlinear regression
curves was obtained by representing the scatter plot of OO EMG amplitude (in mV) versus the ampli-
tude of motoneuronal responses (in mV) divided by segments of straight lines. The subdivisions in
amplitude bins (Nb � 10, i.e., a total of 11 vertical and horizontal magenta lines) are shown for the
association between MN recordings and the OO EMG activity. Illustrated results correspond to a single
trial and to data collected from Figure 1 J (for OO EMG) and Figure 1 H (for MN NR) of the main text. B,
The same as in A but relating IP neuronal (IP NR) responses versus OO EMG. Illustrated results corre-
spond to data collected from Figure 1 J (for OO EMG) and Figure 1 F (for IP NR) of the main text.
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series. The structure of the processes of inertia or uncertainties Uht �
[	qh

(B)/
ph
(B)]nht can be represented by the univariate operators (with

orders p and q) in the stochastic difference equations of the followng form:

ph

( B)SIit � 	qh
(B)nht, in which nht are Ns independent Gaussian white-

noise processes with variances �h and zero means (Tiao and Box, 1981).
Details of the theoretical formulation of these models and their normal
GI30 and normalized RI30

2 � 1 � e �GI30 causality indices can be found
in supplemental Appendix S2 (available at www.jneurosci.org as supple-
mental material).

Transfer function models of this form assume that the time series, when
suitably arranged, possess a triangular relationship (Geweke, 1982; Harvey,
1994), implying for example that S2t depends only on its own past (i.e., the
Granger causality indices are such that G032 � 0 and G132 � 0); S1t

depends on its own past and on the present and past of S2t (i.e., G132 �
0 and G231 � 0, for unidirectional coupling); S0t depends on its own past
and on the present and past of S1t and S2t (i.e., G031 � 0, G130 
 0 and
G032 � 0, G230 
 0, respectively) and so on. If S1t depends on its own
past and on the present and past of S2t, and S2t depends on its own past
and on the present and past of S1t, then we must have a model that allows
for this feedback (i.e., high and significant values of the causality indices
in both senses G231 
 0 and G132 
 0, indicating bidirectional cou-
pling). Readers may refer to Figure 5 in the main text and supplemental
Appendix S2 (available at www.jneurosci.org as supplemental material)
for a detailed and practical description of this method.

Results
We recorded a total of 105 posterior IP neurons, classified as type
A (Fig. 1D,F,G). Type A neurons increase their firing in the time
interval between CS and US presentations across successive con-
ditioning sessions (Gruart et al., 2000; Sánchez-Campusano et al.,
2007). In addition, we recorded 102 antidromically identified OO
MNs (Fig. 1D,H,I). Characteristically, OO MNs encode eyelid
position during conditioned eyelid responses (Trigo et al., 1999).
The two pools of neurons were recorded in separate experiments
during classical conditioning of eyelid motor responses (Fig.
1 J,K) using a delay paradigm (Fig. 1C,E and see Materials and
Methods). The present study was centered on the analysis of data
collected at CS–US intervals across the successive sessions during
the motor learning process, with emphasis in the 10th condition-
ing session, i.e., at the asymptotic level of acquisition of the asso-
ciative learning test. A more detailed description of OO MN and
IP neuron firing peculiarities during classical eyeblink condition-
ing can be found elsewhere (Trigo et al., 1999; Gruart et al., 2000;
Sánchez-Campusano et al., 2007).

Directional coupling between simultaneously recorded
signals during classical eyeblink conditioning
The degree of association between the EMG activity of the OO
muscle [YEMGOO

(t)] and crude recordings of NRs [XNR(t)] col-
lected from OO MNs [XNRMN

(t)] and IP neurons [XNRIP
(t)] was

obtained by computing the nonlinear association index (�) as a
function of a time shift (�) between these muscular and neuronal
signals. The shift for which the maximum of �(�) was reached
provided an estimate of the time delay between the electrophys-
iological signals during the associative learning process. Thus, we
were able to determine whether the maximum nonlinear corre-
lation between neuronal recordings and EMG activities was be-

Figure 3. A representation of the nonlinear association method applied to the EMG activity
of the OO muscle (OO EMG) and facial motoneuron (MN NR) or IP neuron (IP NR) responses. Two
recorded neurons were selected from each of the experimental subjects collected from the 10th
conditioning session (series S1: C10, four cats, eight motoneurons; series S2: C10, four cats,
eight IP neurons). A, Two pairs of LPAs of the nonlinear regression curves were obtained by
representing the scatter plot of OO EMG amplitudes (in mV) versus neuronal recording ampli-
tudes (in mV) by segments of straight lines. The subdivision in amplitude bins (Nb � 10; i.e., a
total of 11 vertical and horizontal magenta and blue dashed lines) are shown for MN and IP
neuronal associations with OO EMG activities (see color code in the legends). For each mean
value per bin, the � SEM is always indicated. B, The nonlinear association indices (�) were
calculated between the two pairs of electrophysiological signals (in both senses) as functions of
the time shift. The start of the eyelid CR is taken as the zero reference point of the dynamic
association. Four nonlinear association curves are represented. Each representation corre-
sponds to the average of all nonlinear association curves obtained for the trials presenting
conditioned eyelid responses (n � 10) and collected from all the blocks (n � 12) of the same
conditioning session (C10) for all the experimental subjects (n � 4). The vertical broken lines
represent the time shifts for which the maximum values for nonlinear association indices are
reached (time delays). In the first case (OO EMG vs MN NR, and vice versa), the information of
asymmetry and the relative time delay in coupling were positive (�� 2

max 
 0, �� 
 0,

4

respectively), whereas the index of the directional coupling between the signals was equal to
unity (D� � �1). In the second case (OO EMG vs IP NR and vice versa), the degree of asym-
metry of the nonlinear coupling was positive (��2

max 
 0), and the relative time delay be-
tween the signals was negative (�� � 0), so that the direction index was annulled (D� � 0).
In this case, the time delays are located to the right of the zero reference point (i.e., always
lagged the start of CR).
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fore or after the zero reference point (i.e., the moment at which
the conditioned eyelid response started; arrow in Fig. 1K).

Statistically, the nonlinear association index � quantifies the
reduction of variance that can be obtained by predicting the
YEMGOO

(t) values given the values of XNR(t) (or vice versa), on
the basis of a regression curve. Details regarding the rationale
underlying the nonlinear correlation analysis and its dynamic
association functions are described in Materials and Methods and
in supplemental Appendix S1 (available at www.jneurosci.org as
supplemental material). The nonlinear association functions cor-
responding to the trials taken from all the blocks of the same
session were averaged, session by session, for each animal across
the 10 successive conditioning sessions (C01–C10).

Dynamic association functions enabled describing how the
mean nonlinear association indices (�) evolved during the suc-
cessive sessions. Two general nonlinear correlation analyses were
developed. In the first case (OO EMG vs MN NR and vice versa),
the nonlinear association functions remained quasi-stationary
and with high (� � 0.75) mean association index values across
conditioning sessions—i.e., the two electrophysiological signals
were very dependent. Thus, motoneuronal activities correlate
significantly (one-way ANOVA F tests, H0 � 1, F(9,27,98) � 3.06,
p � 0.01, for ��OO EMG�MN NR�; and H0 � 1, F(9,27,98) � 2.51, p �
0.01, for ��MN NR�OO EMG�) with the EMG activity of the OO mus-
cle during the performance of conditioned eyelid responses in all
the conditioning sessions. Importantly, their time delays in the
two directions of coupling were always of opposed signs. In the
second case (OO EMG vs IP NRs and vice versa), the values of
the nonlinear association indices were statistically significant
(one-way ANOVA F tests, H0 � 1, F(9,27,98) � 7.26, p � 0.01, for
��OO EMG�IP NR�; and H0 � 1, F(9,27,98) � 11.02, p � 0.01, for
��IP NR�OO EMG�), although their values show only a slight coupling
(0.5 
 � � 0.8, i.e., the two signals were slightly related) between
the neuronal activity recorded at the IP nucleus and the EMG
activity of the OO muscle during conditioned eyelid responses. In
this particular case, the maximum association index values al-
ways lagged the zero reference point across the successive condi-
tioning sessions.

In Figure 3 is represented the nonlinear correlation analysis
carried out with OO EMG corresponding to conditioned eyelid
responses and crude recordings of neuronal activity collected
from either OO MNs or IP neurons during the 10th conditioning
session in different animals. This method has some major advan-
tages over other signal–analysis procedures, such as coherence
and cross-correlation functions, because it can be applied inde-
pendently of whether the type of relationship between the two
signals is linear or nonlinear (Lopes da Silva et al., 1989; Meeren
et al., 2002). In all the analyses, the amplitudes of the signals
XNR(t) and YEMGOO

(t) were subdivided into 10 bins (Figs. 2 and
3A in the main text and supplemental Appendix S1, available at
www.jneurosci.org as supplemental material). For each mean
value per bin, the SEM is always indicated. Figure 2 displays data
collected from a single trial (corresponding to recordings illus-
trated in Fig. 1F,H,J), whereas Figure 3A illustrates mean values
of the linear piecewise approximations (LPAs) curves obtained
for the trials (n � 9 trials per block; e.g., Fig. 1D) collected from
all the blocks of the 10th conditioning session for all subjects (see
Materials and Methods).

As illustrated in Figure 3B, the nonlinear association curves
ranged from 250 ms before to 250 ms after the zero reference
point. This representation enabled us to determine the time of
occurrence of the maximum association index (�max) with respect to
the beginning of the conditioned eyelid response (zero reference

point, in Fig. 3B)—i.e., the time of delay in coupling between EMG
and neuronal signals. Two of the illustrated traces (magenta traces)
correspond to the nonlinear association curves between OO EMG
and motoneuronal responses [YEMGOO

(t) and XNRMN
(t)], whereas the

other two (blue traces) represent the nonlinear association curves
between OO EMG and IP NRs [YEMGOO

(t) and XNRIP
(t)]. For

these nonlinear association curves, the null hypothesis (H0, no
correlation between the two distributions) were rejected for all
the w-transformations (modified Fisher’s z-tests, H0 �1;
p[w�OO EMG�MN NR�] � 0.01, p[w�MN NR�OO EMG�] � 0.01, and
p[w�IP NR�OO EMG�] � 0.05) of the nonlinear association indices
(�) (see Materials and Methods and supplemental Appendix S1,
available at www.jneurosci.org as supplemental material).

In the first case (Fig. 3B, magenta curves), the maximum associ-
ation indices remained with high values in the dynamic correlation
range (paired modified Fisher’s z-test, H0 � 1, p[w�MN NR�OO EMG�,
w�OO EMG�MN NR�] � 0.05, for the significance of a difference between
two measured nonlinear correlation coefficients; mean � SEM,
�max�OO EMG�MN NR� � 0.957 � 0.003 and �max�MN NR�OO EMG� �
0.925 � 0.006). As a result, the information of asymmetry for the
maximum values of the nonlinear correlation coefficients (or
nonlinear association indices) (��max

2 � �max�OO EMG�MN NR�
2 �

�max�MN NR�OO EMG�
2 � 0.056) showed a deviation of only 5.6%

(i.e., one signal can be explained as a quasilinear transformation
of the other). The time delay in the direction of preferential cou-
pling was positive [mean � SEM, ��OO EMG�MN NR� � 5.22 � 0.09
ms, the XNRMN

(t) signal preceding the YEMGOO
(t) signal], whereas

the time delay in the opposite direction was negative [mean �
SEM, ��MN NR�OO EMG� � �4.81 � 0.11 ms, signal YEMGOO

(t) was
delayed with respect to signal XNRMN

(t)]. These data are clearly
indicative of a unidirectional coupling [�� � 10 ms and D� �
�1, signal XNRMN

(t) was in advance; see supplemental Appendix
S1, available at www.jneurosci.org as supplemental material] be-
tween the two electrophysiological signals

XNRMN
t�O¡
YES

YEMGOO
t�

during the 10th conditioning session, a result that was verified
across the preceding conditioning sessions (data not shown).
These results strongly suggest that OO MNs certainly encode
EMG activity of the OO muscle at every instant of the dynamic
nonlinear correlation range. This inference is supported by the
experimental fact that the total number of spikes generated by
these facial MNs and their corresponding discharge rate during
the CS–US interval increased progressively across the learning
process in relation to the increased number of EMG action po-
tentials and therefore with the progressive increase in the ampli-
tude of the corresponding conditioned eyelid responses (Gruart
et al., 1995; Trigo et al., 1999; Sánchez-Campusano et al., 2007).

In the second case (Fig. 3B, blue curves), the nonlinear
associations were only weakly significant in the dynamic
correlation range (paired modified Fisher’s z-test, H0 � 1,
p[w�IP NR�OO EMG�,w�OO EMG�IP NR�] � 0.05, for the significance of a
difference between two measured nonlinear correlation coeffi-
cients; mean � SEM, �max�OO EMG�IP NR� � 0.744 � 0.013 and
�max�IP NR�OO EMG� � 0.543 � 0.017). However, moderate and low
nonlinear association index values are not necessarily indicative
of an absence of functional relationships between the involved
signals. Thus, the statistical algorithm developed here indicates
that the degree of asymmetry in coupling for the maximum
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values of the nonlinear correlation coefficients (��max
2 �

�max�OO EMG�IP NR�
2 � �max�IP NR�OO EMG�

2 � 0.26, OO EMG activity
variations can be explained by the IP neuronal activity better than
vice versa) presented a deviation of 26% (i.e., one signal can be
explained as a transformation, possibly nonlinear, of the other).
In the same way, the time delays in the two possible directions of
coupling were positive (mean � SEM, ��OO EMG�IP NR� � 15.62 �
0.24 ms, and ��IP NR�OO EMG� � 29.31 � 0.33 ms), whereas the
relative time delay was negative (�� � �13.7 ms). According to
these analyses, the functional interdependence between the si-
multaneously recorded signals was nonlinear and bidirectional
[D� � 0, XNRIP

(t)^YEMGOO
(t); see supplemental Appendix S1,

available at www.jneurosci.org as supplemental material] during
the 10th training session, a result that was also verified for the
preceding conditioning sessions (results not illustrated). In con-
trast with the first case, the bidirectional coupling indicated a
feedback relationship between the OO EMG and IP neuronal
signals [YEMGOO

(t) and XNRIP
(t)] recorded during the classical

conditioning of eyelid responses. These data suggest that instead
of one signal exclusively driving the other (as in the first case),
both YEMGOO

(t) and XNRIP
(t) signals influence the other.

According to these results, the bidirectional coupling between
OO EMG and IP neuronal recordings [YEMGOO

(t) and XNRIP
(t)]

could be explained if we assume that there is an indirect rein-
forcement effect of IP neurons on OO MNs. This inference is
supported by the experimental fact that IP neurons do not di-
rectly encode eyelid kinematics (Gruart et al., 1995; Sánchez-
Campusano et al., 2007)—i.e., their contribution was only
weakly significant in the dynamic correlation range (according to
the linear and nonlinear correlation methods; Figs. 3 and 4). The
sustained increase in mean peak firing rate presented by the pool
of IP neurons across conditioning (Fig. 4A) was in parallel with a
decrease in the mean time of its occurrence with respect to the
start of the CR (Gruart et al., 2000; Sánchez-Campusano et al.,
2007). The increase in firing rate, in association with the decrease
in its mean time of occurrence, caused the maximum coefficient
of correlation (linear/nonlinear) between IP neuron activity (in-
stantaneous frequency/raw NR) and CR (eyelid position/OO
EMG) to decrease [Fig. 4B and Table 1 (actual values character-
izing the ongoing process of motor learning) in the main text]. As
a result, values of maximum linear coefficient of correlation
(rmax; one-way ANOVA F test, H0 � 1, F(9,27,98) � 161.54, p �
0.01) between instantaneous IP firing and eyelid position and the
maximum nonlinear association index (�max; one-way ANOVA
F tests, H0 � 1, F(9,27,98) � 7.26, p � 0.01, for �max�OO EMG�IP NR�;
and H0 � 1, F(9,27,98) � 11.02, p � 0.01, for �max�IP NR�OO EMG�)
between IP NR and OO EMG during the CS–US interval always
lagged the zero reference point (i.e., the start of the CR; Figs. 1K
and 3B). There is a significant decrease in the maximum correla-
tion coefficients (R � �0.97, p � 0.01, for rmax�fIP���; R � �0.76,
p � 0.05, for �max�OO EMG�IP NR�; and R � �0.96, p � 0.01, for
�max�IP NR�OO EMG�; all with respect to maximum instantaneous
frequency fIPmax

) during conditioning sessions (see e2, e3, and e4

regression lines, respectively, in Fig. 4B).
In turn, the discharge rate of the OO MNs increased progres-

sively across the learning process, with a relative refractory period
(minimum interspike time interval) that decreased progres-
sively in the CS–US interval. Thus, an OO MN discharge pat-
tern that correlated significantly with eyelid position during
CRs in all the conditioning sessions was obtained. In this
sense, posterior IP neurons could contribute to facilitate a
quick repolarization process of OO MNs, reinforcing their
tonic firing during the performance of conditioned eyelid re-

Figure 4. Relationships between type A IP neuron (IPn) firing rates and the percentage of CRs
across the 10 conditioning sessions. A, Learning curve (blue circles; mean (� SEM) corresponding to
all the animals (n � 4) of the experimental series S2). The mean (� SEM) firing rate of 96 identified
IP neurons (blue squares) during the CS–US interval is also indicated. B, The abscissa and the left
ordinate illustrate the relationship between the peak firing rate of IPn ( fIPmax

) and the percentage of
CRs (blue squares; e1 regression line). The abscissa and the right ordinate illustrate the relationship
between peak firing rate ( fIPmax

) and the coefficient of correlation (red triangles, rmax linear coeffi-
cients, e2 regression line; green triangles, �max nonlinear association coefficients) with eyelid perfor-
mance during CRs, across conditioning. Note that the increase in fIPmax

(e1 regression line) together
withthedecreaseinitstimeofoccurrence(alwayslaggedthestartofCR),causedadecreaseinthermax

linear coefficient (see, e2 regression line) between instantaneous frequency fIP and eyelid CRs. In turn,
a similar decrease was observed in the�max nonlinear coefficients (see, e3 regression line for�max[OO
EMG vs IP NR]; and e4 regression line for �max[IP NR versus OO EMG]) between IP NR and the EMG
activity of the OO muscle (OO EMG). Thus, the strength (strong or weak) of the functional nonlinear
association depends inversely on the level of expression of conditioned eyeblink responses. Also, the
degree of asymmetry of the nonlinear coupling was positive (�� 2

max � 0.26, with ��max � 0.20).
TheindexR isthewell-knownPearson’sproductmomentcorrelationcoefficient, i.e., theconventional
index frequently used to measure the linear correlation between two variables (e.g., fIPmax

vs % CRs; or
fIPmax

vs rmax; or fIPmax
vs �max).
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sponses (Sánchez-Campusano et al., 2007). This previous ex-
perimental evidence further supports the results obtained here
with regard to the bidirectional interdependence between the OO
EMG [YEMGOO

(t)] and IP neuronal [XNRIP
(t)] signals, and the unidi-

rectional coupling manifested by the OO EMG [YEMGOO
(t)] and

OO MN [XNRMN
(t)] signals.

Causal inferences and temporal ordering of the neuronal
influences during motor learning
A question of great interest is whether there is a “causal” relation-
ship between two simultaneous recordings collected during asso-
ciative motor learning without any specific information on the
direction of the coupling. Both the linear cross-correlation func-
tion and the nonlinear correlation method are, in principle, able
to indicate the delay in coupling, but inferring causality from the
time delay is not always straightforward (Granger, 1980; Lopes da
Silva et al., 1989). Therefore, we decided to investigate the puta-
tive functional interdependences between neuronal activity [fir-
ing rates of OO MNs, fMN(t), or IP neurons, fIP(t)] and learned
motor responses [i.e., conditioned eyelid responses, �(t)], using
time-dependent causality analysis.

The physiological time series fMN(t), fIP(t), and �(t) exhibit
nonstationary behaviors. The stationary time series S1t(MN),
S2t(IP), S3t(SUM), and S0t(�) were determined here by regular
differentiation of averaged relative variation functions, and the
latter as a result of high-pass filtering of integrated neuronal firing
activities [resulting from fMN(t) for MNs and from fIP(t) for IP
neurons] and of learned motor responses [resulting from eyelid
position �(t) during conditioned eyelid responses, CRs]. In Fig-
ure 5 are represented the transfer function models for the physi-
ological time series corresponding to data collected from the 10th
conditioning session. From here on, the significant values of the
transfer function (or sample impulse response) are those that are
outside the confidence bounds (horizontal blue dashed lines,
�95% confidence interval), indicating the number of SDs of the
sample impulse response estimation error to compute, assum-
ing that the input and output physiological time series are
uncorrelated.

As illustrated in Figure 5A, the functional interdependence
between S0t(�) and S1t(MN) was unidirectional (significant val-
ues of the transfer function alone for lags 
 0, vk� 	 0 and vk� 	
0)—i.e., the Granger causality indices are such that G130 
 0 and

G031 � 0, which signifies that S0t(�) depends on its own past and
on the past of S1t(MN) and, as a result, OO MNs consistently lead
the OO muscle during conditioned eyelid responses.

For the curves shown in Figure 5B, the significant values of the
transfer function presented a bimodal distribution for both pos-
itive (vk� 	 0) and negative (vk� 	 0) lags, indicating that S0t(�)
depends on its own past and on the past of S2t(IP), whereas
S2t(IP) depends on its own past and on the past of S0t(�). That is,
significant values of the causality indices in both senses (G230 

0 and G032 
 0), indicate a bidirectional coupling or feedback
relationship between these time series.

In contrast, the relationship between S0t(�) and S3t(SUM)
was unidirectional (G330 
 0, G033 � 0, vk� 	 0, and vk� 	 0),
which indicates that this causal inference is dependent on the
phase information, as shown in Figure 5C.

Finally, and as illustrated in Figure 5D, the functional cou-
pling (or feedback relationship, the same as in Fig. 5B) between
S1t(MN) and S2t(IP) was bidirectional in the sense of Granger
causality (G231 
 0, G132 
 0, vk� 	 0, and vk� 	 0), and these
causal inferences signify that the neuronal activity in the posterior
IP nucleus causes both the activity present in the final common
pathway (i.e., that of the MNs participating in the generation of
the selected motor responses) and the CRs of the eyelid motor
system and vice versa [S1t(MN) depends on its own past and on
the past of S2t(IP), and S2t(IP) depends on its own past and on the
past of S1t(MN)].

At the same time, the transfer function models shown in
Figure 6, D and E, assume that the stationary time series
[S2�(IP) and S0�(�) as shown in Fig. 6 D; or S2�(IP) and
S1�(MN), as indicated in Fig. 6 E] possess an unidirectional
interdependence after phase synchronization. The phase cor-
responding to S2�(IP) in the instant � � t � t1 � t2 was
equivalent to the phases corresponding to S0�(�) and S1�(MN)
in the instants � � t � t1 and � � t, respectively, as illustrated
in Figure 6 A–C. The actual values for t1 (time elapsed from
activation of MN firing to the zero reference point) (Fig. 1 K)
and t2 (time elapsed from the zero reference point to the acti-
vation of IP neuron firing) were 5.98 � 0.26 (mean � SEM;
range, 3.41– 8.56) ms and 23.5 � 0.31 (mean � SEM; range,
20.41–26.59) ms, respectively. With these conditions of phase
synchronization, the Granger causality indices are such that
G230 
 0 and G032 � 0, and vk� 	 0 and vk� 	 0 (Fig. 6 D),

Table 1. Mean values of peak firing rates ( fIPmax
, see Fig. 4A,B in the main text) of interpositus neurons (IP n, n � 96) and their latencies (tIPmax

, with respect to CS
presentation) for all the animals (n � 4) of the experimental series S2, the percentage of conditioned responses (% CRs in Fig. 4A,B), and the maximum values of the linear
(rmax , in Fig. 4B) and nonlinear (�max in Fig. 4B) correlation coefficients across the successive sessions during motor learning

Session CRs (%) fIPmax
(spike/s) tIPmax

(ms) rmax (CRs vs fIP ) �max (EMG vs IP) �max (IP vs EMG)

H01 11.701 125.230 93.061 � � �
H02 14.112 123.869 90.390 � � �
C01 18.303 151.501 85.572 0.680 0.703 0.775
CO2 23.121 166.850 88.136 0.630 0.671 0.769
C03 40.810 201.112 77.901 0.612 0.632 0.782
C04 57.112 227.911 71.405 0.591 0.617 0.780
C05 63.331 242.224 65.992 0.594 0.582 0.776
C06 70.204 244.980 67.333 0.585 0.589 0.769
C07 78.903 255.093 61.035 0.554 0.561 0.763
C08 79.611 271.362 62.876 0.547 0.556 0.760
C09 83.402 287.713 60.902 0.529 0.533 0.751
C10 81.913 322.604 56.814 0.505 0.543 0.744
E01 79.300 275.970 62.900 � � �
E02 67.414 221.911 64.330 � � �
E03 64.302 225.068 67.012 � � �

Ellipses indicate that the linear and nonlinear correlation coefficients were not computed for the habituation and extinction sessions.
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implying that S0�(�) depends on its own
past and on the past of S2�(IP); and
G231 
 0, G132 � 0, vk� 	 0, and vk� 	
0 (Fig. 6 E), which signifies that
S1�(MN) depends on its own past and
on the past of S2�(IP). This phase anal-
ysis demonstrates that causal inferences
are dependent on the phase information
status, as indicated in Figures 5C and 6,
D and E.

Revealing the functional
interdependence between the kinetic
neuronal commands and the
performance (kinematics) of learned
motor responses
Traditional analytical methods, such as
cross-correlation and coherence analyses,
do not reveal causality, and their applica-
tion demonstrates that these indices de-
pend strongly on the type of relationship
(linear or nonlinear) between the signals
involved. The genesis of generalized causal
inferences between cerebellar and brain-
stem motor circuits involved in the acqui-
sition of conditioned eyeblinks and in the
performance of learned eyelid responses
requires at least a first approach in vivo to
reveal the true causal relationships be-
tween the participating centers and the ac-
tivity present in OO MNs.

We used multivariate analyses (com-
bining the information of asymmetry,
time delay, direction in coupling, and cau-
sality indices) of physiological time series
recorded during classical eyeblink condi-
tioning, using a delay paradigm, to reveal
the putative functional interdependence
and temporal ordering of the neuronal in-
fluences (i.e., neuronal activity in the IP
nucleus and firing activities of OO MNs)
during the actual motor learning process.
Granger causality is a time-domain mea-
surement of functional interactions, as-
suming directionality and information
transfer. In short, the current study aimed
to evaluate a novel approach for assessing
directionality in cerebellar–MN network
associations during the actual performance
of learned movements.

First, a relatively weak (� � 0.8) but
statistically significant functional cou-
pling [one-way ANOVA F test, H0 � 1,
F(3,9,2000) � 1844.35, p � 0.01; see blue
curves in Fig. 3B of the main text, and Figs.
S1 and S2 in supplemental Appendix S1,
available at www.jneurosci.org as supple-
mental material] was found between the IP nucleus and the OO
muscle across conditioning (one-way ANOVA F tests, H0 �1;
F(9,27,98) � 3.06, p � 0.01, for ��OO EMG�MN NR�; and H0 � 1,
F(9,27,28) � 2.51, p � 0.05, for ��MN NR�OO EMG�). The flow of in-
formation in the direction “cerebellar IP neurons3OO muscle”
was more intensive (��OO EMG�IP NR� � 0.74) than in the back-

ward direction (��IP NR�OO EMG� � 0.54). This is the first indi-
cation of asymmetry (Fig. 3B, blue curves with a deviation
of 26%, ��max

2 � 0.26 and ��max � �max�OO EMG�IP NR� �
�max�IP NR�OO EMG� � 0.20 in Fig. 4B) in IP neuron–OO MN in-
teractions during classical eyeblink conditioning. We concluded
that the functional nonlinear association between the IP nucleus

Figure 5. Causal inferences using TFM between the kinetic neuronal commands [neuronal activity of OO MNs and neuronal
activity of cerebellar IP neurons (IP)] and kinematics (eyelid CRs). Three representative IP neurons and a representative motoneu-
ron were selected from each experimental subject (n � 8) during the 10th conditioning session (series S1: C10, four cats, four MNs;
series S2: C10, four cats, 12 IP neurons). A–D, The transfer function models assume that the stationary time series S1t(MN), S2t(IP),
S3t(SUM), and S0t(�) have a functional and dynamic relationship, implying that S0t(�) depends on its own past and on the past of
S1t(MN), S2t(IP), and S3t(SUM) (i.e., the causality indices are such that G130 
 0, G031 � 0, �k� 	 0, and �k� � 0, see A for
a unidirectional coupling; G230 
 0, G032 
 0, �k� 	 0, and �k� 	 0, see B for a bidirectional coupling; G330 
 0, G033 �
0, �k�	 0, and �k�� 0, see C for a unidirectional coupling, respectively). Note that S3t(SUM) depends only on its own past (i.e.,
G033 � 0) and that the unidirectional relationship in opposite direction (as shown in C) was possible because S1t(MN) and S2t(IP)
were induced toward a phase equality (i.e., the relative phase difference will be close to zero). However, S1t(MN) depends on its
own past and on the past of S2t(IP), and S2t(IP) depends on its own past and on the past of S1t(MN) (i.e., significant values of the
causality indices in both senses: G231 
 0, G132 
 0, �k� 	 0, and �k� 	 0, see D for a bidirectional coupling), indicating a
feedback relationship between these physiological time series, at least in the statistical sense of causality. Blue horizontal dashed
lines indicate the approximate upper and lower confidence bounds (�95% confidence interval), assuming that the input and
output physiological time series are completely uncorrelated.
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and the OO muscle is dynamic, bidirectional, asymmetric, and
dependent (inversely) on the level of expression of conditioned
eyeblink responses (Figs. 3B and 4A,B; e3 regression line for
�max[OO EMG vs IP NR], e4 regression line for �max[IP NR vs
OO EMG]).

Second, a strong and sustained in-
crease in “OO MNs3OO muscle” inter-
actions was found across the 10 successive
conditioning sessions (one-way ANOVA
F tests, H0 �1, F(9,27,98) � 7.26, p � 0.01,
for ��OO EMG�IP NR�; and H0 � 1, F(9,27,98) �
11.02, p � 0.01, for ��IP NR�OO EMG�). Dur-
ing the 10th conditioning session—i.e.,
at the asymptotic level of acquisition
of the associative learning test—“OO
MNs3OO muscle” coupling remained
constantly high [one-way ANOVA F test,
H0 � 1, F(3,9,2000) � 1844.35, p � 0.01, see
magenta curves in Fig. 3B of the main text,
and Figs. S1 and S2 in the supplemental
Appendix S1, available at www.jneurosci.
org as supplemental material] and the as-
sociation between the corresponding elec-
trophysiological time series was linear
(i.e., one time series can be explained as a
quasilinear transformation of the other),
unidirectional, and with scarce informa-
tion of asymmetry (��max

2 � 0.056, only
5.6% of deviation).

Third, functional information transfer
in IP neuron–OO MN network associa-
tions during the performance of condi-
tioned eyeblink responses required a
driving common source. This common
source is represented by the causal time
series S?t or S?� (see the causal relation-
ships r5, R6, R7, and R8, marked with an
asterisk in Fig. 7B) acting before or after
phase synchronization, respectively. The
best candidate for this role is the cerebral
motor cortex that participates in both
the generation and dynamic control of
learned movements (Aou et al., 1992;
Troncoso et al., 2007). Thus, motoneuro-
nal responses and cerebellar IP activities
contain equal amounts of information
about the common source. Finally, we stud-
ied interdependences between two indi-
rectly connected neuronal structures that
communicate via the common source: “IP
neurons3common source3final com-
mon pathway of learned motor responses.”

With regard to the third conclusion,
within the set D1 � [S0t(�), S1t(MN)], the
definition gives S1t(MN) causes S0t(�)
(Fig. 5A). Within the set D2 � [S0t(�),
S2t(IP)], it gives S2t(IP) causes S0t(�) (Fig.
3B). However, within the set D12 �
[S0t(�), S1t(MN), S2t(IP)], neither
S1t(MN) nor S2t(IP) causes S0t(�), al-
though the sum of S1t(MN) and S2t(IP)
would do so (Fig. 3C). How can it be de-
cided whether S1t(MN) or S2t(IP) are

causal time series for S0t(�)? The answer is, of course, that nei-
ther is. The causal time series is a common source, S?t (see r5 in Fig.
7B), involving other neuronal centers in the generation and per-
formance of the learned motor responses. If the set of series
within which causality was discussed is expanded to include S?t,

Figure 6. Causal inferences using TFM between IP kinetic neuronal commands (activity of IP neurons) and motor activities (activity of
OO MNs and eyelid CRs), during the phase synchronization. A–C, High-pass filtering (HPF) of the integrated activity. Oscillatory curves
(relative variation functions) resulting from HPF (�3 dB cutoff at 5 Hz and zero gain at 15 Hz) of integrated neuronal firing activities and of
eyelid position corresponding to the same set of records. (The experimental data used here are the same as those used in Fig. 5). The
operator ƒ d allowed obtaining the stationary time series S1t(MN), S2t(IP), and S0t(�) after making n � d regular differentiations to the
nonstationary time series (i.e., the relative variation curves, as shown in A–C). Note that in the oscillating curves shown here, components
a– d are totally out of phase with components e– h. The transfer function models (D and E) assume that the stationary time series possess
adirect interdependenceafterphasesynchronization[i.e., thephasescorrespondingto�� t� t1� t2, forS2�(IP),�� t� t1, forS0�(�),
and�� t, for S1�(MN)], implying that S0�(�) depends on its own past and on the past of S2�(IP) (i.e., the indices are such that G230
0,
G032 � 0, �k� 	 0, and �k� � 0; see D for a unidirectional coupling); and that S1�(MN) depends on its own past and on the past of
S2�(IP) (i.e., G231 
0, G132 �0, �k�	0, and �k��0, see E for another unidirectional coupling). Blue horizontal dashed lines in D
and E indicate the approximate upper and lower confidence bounds (�95% confidence interval), assuming the input and output physio-
logical time series are completely uncorrelated.
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then the above apparent paradox (Figs.
5A–C and 7A) vanishes. It will often be
found that constructed examples which
seem to produce results contrary to com-
mon sense can be resolved by widening
the set of data for which causality is de-
fined (see S?t and S?� in Fig. 7B).

In Figure 7A are represented the func-
tional relationships before and after phase
synchronization. Before phase synchro-
nization, the physiological time series
possess a triangular relationship with feed-
back (the relationship between black,
magenta, and blue rectangles in Fig. 7A, ac-
cording to Fig. 5A,B,D). In contrast, after
phase synchronization, the triangular rela-
tionship disappeared (in our case, a combi-
nation of unidirectional multilinear and
closed semilinear models without feedback;
see the dashed-line triangle in Fig. 7A and R5

relationship in Fig. 7B, according to Fig.
6D,E). In this situation, there was evidently
a very scarce probability to high prediction
ratio and clear autoregressive structure of a
closed nonlinear model without feedback
(see relationship R5 in Fig. 7B: a model with
a low prediction ratio and unclear autocor-
relation structure of prediction error). A
practical solution was that the causal rela-
tionships r2 and R2 were not considered ef-
fective, and therefore, the closed semilinear
(r3 and R3) and nonlinear (R5) models were
rejected. Thus, the causal relationships r5

(open nonlinear model with feedback), R6

(open nonlinear model without feedback),
R7 (open nonlinear model with feedback),
and R8 (linear models with feedback) (see
the causal relationships marked with an as-
terisk in Fig. 7B) are mathematically good
candidates to explain the coupling relation-
ships in IP neuron-facial MN circuits
involved in the dynamic control of condi-
tioned eyelid responses.

On one hand, the introduction of non-
linearity into the model may be necessary
to get comprehensive information about
network associations in cerebellar and
brainstem motor circuits during the perfor-
mance of the learned response. However,
application of nonlinear autoregressive
models with an additional “common
source” requires more careful selection of
model parameters (such as dimensions
and nonlinear model functions). Alto-
gether, the use of time-dependent causal-

Figure 7. A, Diagrammatic representation of the causal inferences among the two neuronal time series [the OO MNs (see VII n
inside the magenta rectangle) and the cerebellar IP neurons (see IP n inside the blue rectangle)] and the eyelid time series in the
final common pathway for performance of learned motor responses (see CR, in the black rectangle). For each of the causal
inferences represented, the implied physiological series and the respective temporal dependence (t or �) are indicated. B, Causal
relationships before (ri, in the instants t) and after (Ri, in the instants �) phase synchronization. The relationship r1 represents a
unidirectional linear model with a flow of S1t(MN)3S0t(�); r2 a bidirectional model with flows S2t(IP)^S0t(�); r3 a unidirectional
linear model [S1t(MN)3S0t(�)] with additional feedback [S2t(IP)^S0t(�)]; r4 a unidirectional linear model [S1t(MN)3S0t(�)]
with additional feedback [S2t(IP)^S1t(MN)]; and r5 a combination between a unidirectional linear relationship
[S1t(MN)3S0t(�)] and a bidirectional model with a common source S?t [S?t3S1t(MN), S?t3S2t(IP), and S1t(MN)^S2t(IP)].
After phase synchronization (dashed-line rectangle in A and B), R1 represents a unidirectional linear model with a flow of
S1�(MN)3S0�(�); R2 a unidirectional linear model with a flow of S2�(IP)3S0�(�); R3 a closed semilinear model with flows
S1�(MN)3S0�(�) and S2�(IP)3S0�(�); and R4 a unidirectional multilinear model with flows S2�(IP)3S1�(MN)3S0�(�). R5

represents a triangular relationship [nonlinear model with flows S2�(IP)3S1�(MN), S1�(MN)3S0�(�), and S2�(IP)3S0�(�),
see dashed-line triangle in A] but with spurious causality [closed semilinear (R3) and unidirectional multilinear (R4) models cannot
coexist]. However, in the r5, R6, R7, and R8 causal relationships, the mathematical linear coupling of r2 and R2 vanishes and the
closed semilinear (r3 and R3) and nonlinear (R5) models were rejected. Finally, the putative causal inferences depended on a
common source (see S?t or S?�, in the relationships marked with an asterisk) in open nonlinear (r5, R6, or R7) or linear (R8) models

4

such as those represented here. The causal relationships
marked with an asterisk correspond to the best candidates to
explain the coupling relationships in IP neuron-facial MN cir-
cuits involved in the dynamic control of conditioned eyelid
responses.
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ity analysis provided new information regarding neuronal net-
work connectivity during learning processes. We consider this
method a good alternative to the traditional measurements of
functional interactions in cerebellar– brainstem motor circuits.

In all cases (causal relationships r5, R6, R7, and R8, marked
with an asterisk in Fig. 7B), IP neurons were lagging OO MNs in
a temporal window of � � t � �(t1 � t2) � �(29.48 � 0.57)
[mean � SEM, range, �(23.68 –35.29)] ms before their maxi-
mum neuronal activation. Thus, the IP nucleus detects the onset
of the significant information from the MNs at t � � (Figs. 6C and
7A) and uses that functional information to reinforce to a greater
or lesser extent (adjusting their relative refractory periods in the
CS–US interval) the performance of conditioned eyeblink re-
sponses at t � � � t1 (Figs. 6B and 7A), modulating the phase of
MN responses at t � � � t1 � t2 (Figs. 6A and 7A). Finally, the
cerebellum always lags eyelid activation, and cerebellar activities re-
main “silent” at the actual and current status during the start and
preperformance of the learned motor response. Thus, it could be
said that the cerebellum is looking back and reevaluating its own

function with the information acquired
in the process to play a modulating-
reinforcing role in motor learning (Fig. 8).

Discussion
The present results allow proposing a def-
inite role of IP neurons on the final com-
mon pathway for the eyelid motor system
(i.e., the MN pool) that, by progressively
inverting phase information, modulates
and/or reinforces eyelid motor responses
inversely (but not oppositely) to the initial
contribution of OO MNs. Moreover, in
accordance with previous reports (Gruart
et al., 2000; Sánchez-Campusano et al.,
2007; Poulet and Petersen, 2008), we have
shown here that the neuronal activity in
the IP nucleus does not lead the perfor-
mance of learned motor responses but fol-
lows neural motor commands originated in
different neuronal sources. As a whole, IP
neurons could be considered to behave as a
neuronal phase-modulating device sup-
porting OO MN firing during learned eyelid
movements.

To interpret our results, we have put
together various theoretical consider-
ations: theories regarding the distributed
nature of the learning process (Llinás and
Welsh, 1993; Bloedel and Bracha, 1995;
Delgado-García and Gruart, 2006), the
modulatory and reinforcing role of IP
neurons on the final common pathway for
the eyelid motor system (Gruart et al.,
2000; Jiménez-Díaz et al., 2004; Sánchez-
Campusano et al., 2007), and suggestions
regarding the presence of “driving” and
“modulating” connections in neuronal
networks (Crick and Koch, 1998). We
propose here that the “common source” is
not merely a trigger but also acts as a dis-
tributor of significant functional informa-
tion about the dynamic control of motor
responses (see causal relationships r5, R6,
R7, and R8, marked with an asterisk in Fig.

7B). In particular, the significant information in relation with the
beginning and performance of conditioned eyelid responses may
easily propagate to those neuronal centers (i.e., cerebellar IP neu-
rons and facial MNs) that have multiple connections with the
common source in cerebellar-brainstem circuits.

Although highly speculative at the present moment, we can
suggest that the “driving common source” mentioned in the
present study is located at the motor cortex and/or in related
cortical areas. Indeed, many studies on cortical learning-related
plasticity have shown changes in the size of cortical representa-
tions as a result of long-term changes in the strength of intracor-
tical synaptic connections (Sanes and Donoghue, 2000; Hayashi
et al., 2005). In this regard, it has been described recently a pro-
gressive increase of CS-evoked field potentials in the vibrissal
motor cortex and a significant increase in the firing rate of layer V
pyramidal neurons during the acquisition of a pavlovian associa-
tive learning task in behaving mice (Troncoso et al., 2007). Sim-
ilar findings were reported in a seminal study on the firing of

Figure 8. Schematic representation of the reinforcing-modulating role of cerebellar posterior IP neurons during the acquisition
of an associative learning task. Neuronal inputs arriving at the facial nucleus (OO MNs) and carrying conditioned signals p(t) need
the reinforcing-modulating role of deep cerebellar nuclei signals m(t). To be efficient, IP neuronal signals need to go through a
learning process to become 180° out-of-phase OO MN firing. Thus, IP neuronal activities (following a relay in the red nucleus) reach
OO MNs right at the moment of maximum motoneuronal hyperpolarization (Trigo et al., 1999), and IP neurons facilitate a quick
repolarization of OO MNs, reinforcing their tonic firing during the performance of classically conditioned eyelid responses. VII n,
facial nucleus; IP n, cerebellar posterior IP nucleus.
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cortical neurons during classical eyeblink conditioning in alert
cats (Aou et al., 1992). In the latter two cases, recorded cortical
neurons fired in advance to the onset of the respective vibrissal or
eyelid CRs. From a hodological point of view, selective motor-
related cortical areas seem to project both to the cerebellum and
to the facial nucleus as shown with different neuroanatomical and
electrophysiological procedures (Fanardjian and Manvelyan, 1984,
1987; Morcuende et al., 2002; Ramnani et al., 2006; Glickstein and
Doron, 2008).

To explain the quantitative differences in coupling strength
between cerebellar IP neurons and facial nucleus MNs (Figs. 5D
and 6E), we used two conceptually different kinds of network
association—i.e., “driving” (Fig. 5A,C) and “modulating” (Fig.
5B,D before and Fig. 6D,E following phase synchronization)
connections. We hypothesized that the not very efficient “IP
neuron-MN” coupling via a common source (r5, R6, R7, and R8,
marked with an asterisk in Fig. 7B) in cerebellar-brainstem motor
circuits might prompt the sequential and out-of-phase release of
the activity of the IP neurons (Sánchez-Campusano et al., 2007)
and the propagation of the modulated information to the final
common pathway of the eyelid system, which would certainly be
helpful for a proper performance of consolidated conditioned
eyeblink responses. These are “modulating connections,” which—
although weak—are effective because they induce an optimized in-
crease of firing activity in corresponding neurons (i.e., IP neurons
and MNs) across the successive conditioning sessions (Trigo et al.,
1999; Gruart et al., 2000; Sánchez-Campusano et al., 2007).

Thus, the IP nucleus could modulate the pathway of transition
of functional information via bidirectional (see r5 in Fig. 7B) or
unidirectional (see R6, and R7 in Fig. 7B) coupling with OO MNs
or across a putative common source to the final common path-
way of the eyelid motor system (see R8 in Fig. 7B). This optimized
modulation may be a “modulating-reinforcing” indirect force for
learned movements. Strong “common source activity3 IP NRs”
and “common source activity3OO MN responses” coupling
may correspond to physically powerful “driving connections”
that permit spreading of an appropriate rate of discharge of IP
neurons and OO MNs during the CS–US interval and are, there-
fore, involved in the initiation and performance of learned motor
responses.

In the present study, we identified type A neurons by their
antidromic activation from the red nucleus, assuming that those
neurons are the one involved in the control of OO MNs, because
of their activation of red nucleus neurons projecting to the facial
nucleus (Gruart et al., 2000; Morcuende et al., 2002; Jiménez-
Díaz et al., 2004). But, according to a previous study (Gruart and
Delgado-García, 1994), type A neurons can also be activated an-
tidromically from the pontine nuclei, the medial longitudinal
fascicle, and the restiform body. It is still possible that some of the
type A neurons included in this study are GABAergic neurons
projecting to the medial accessory subdivision of the inferior
olive, because their axons pass very close to the red nucleus stim-
ulating site. This latter possibility is suggestive of a putative in-
volvement of inferior olive intrinsic circuits in the reinforcing
role play by the cerebellum in this type of associative learning. For
example, it has been recently shown that the electrotonic cou-
pling among olivary neurons by gap junctions is fundamental for
a proper timing of conditioned eyelid responses in wild-type and
Cx36-deficient mice (Van Der Giessen et al., 2008 for details).
Indeed, as shown in a previous study from our group, the rein-
forcing role of cerebellar circuits of ongoing conditioned eyelid
responses is highly dependent on its adequate phase modulation

with respect to intrinsic facial MN oscillatory properties (Sánchez-
Campusano et al., 2007).

In summary, the reinforcing-modulating role of posterior IP
neurons could help to explain cerebellar contribution to the
proper performance of ongoing motor responses but without
excluding prediction or a feedforward dynamics model. The IP
neurons are able to exert a phase-modulating action with indirect
predictive function. Thus, for a reevaluating process, the cerebel-
lum must use their previous activity during the preceding quan-
tum of movement to provide a phase-modulating action on the
following quanta across the CR (Fig. 8). Something is thus in
advance in the loop and the cerebellum is looking back for pre-
diction, but their actual action occurs not before but during the
learned action. Also, the contribution of the cerebellar cortex
could play an important function on the actual phase-modulating
mechanism of IP neurons during performance of learned move-
ments. Purkinje cells, acting via their collateral and interneuronal
networks in addition with the participation of the olivary system
(Velarde et al., 2004; Bracha et al., 2009), may contribute for
maintaining the information dynamics during and between trials
(Hong and Optican, 2008). The recent demonstration of the ex-
istence of the “brain states” (Poulet and Petersen, 2008) deter-
mined by oscillation of the membrane potential in synchronized
pyramidal cells may be compared with our experimental data
showing similar oscillation in the OO MNs (Trigo et al., 1999;
Sánchez-Campusano et al., 2007).
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