Journal Club

Editor's Note: These short, critical reviews of recent papers in the *Journal*, written exclusively by graduate students or postdoctoral fellows, are intended to summarize the important findings of the paper and provide additional insight and commentary. For more information on the format and purpose of the Journal Club, please see http://www.jneurosci.org/misc/ifa_features.shtml.

A Balancing Act: D₄ Receptor Activation and the Neurobiological Basis of Emotional Learning

Susannah J. Tye, 1 Dan P. Covey, 1,2 and Christoph J. Griessenauer 1,3

¹Department of Neurosurgery, Mayo Clinic, Rochester, Minnesota 55905, ²Department of Biological Sciences, Illinois State University, Normal, Illinois 61790, and ³Department of Surgery, Division of Neurosurgery, University of Alabama at Birmingham, Birmingham, Alabama 35294 Review of Lauzon et al.

The neural mechanisms by which emotionally significant memories are encoded and recalled, and their involvement in normal and disordered brain function, remain elusive. Glutamatergic projections from the basolateral amygdala (BLA) to the medial prefrontal cortex (mPFC) are critically implicated in both the acquisition and extinction of conditioned fear (Maren and Quirk, 2004). Dopaminergic efferents from the ventral tegmental area overlap with inputs from the BLA in the mPFC (Pinto and Sesack, 1999 in Floresco and Tse, 2007). These mesocortical dopaminergic inputs are particularly responsive to aversive situations such as fear conditioning (Yoshioka et al., 1996) and play an important role in the modulation of BLA-evoked changes in mPFC neuronal activity (Floresco and Tse, 2007). Dysregulation of these neural circuits is thought to underlie emotional and cognitive disturbances in diseases such as schizophrenia, depression, and drug addiction (Floresco and Tse, 2007). Elucidation of the mechanisms by which the mPFC processes associative information and emotional memory at the cellular level and in the context of behavior will offer important new insight into such disorders.

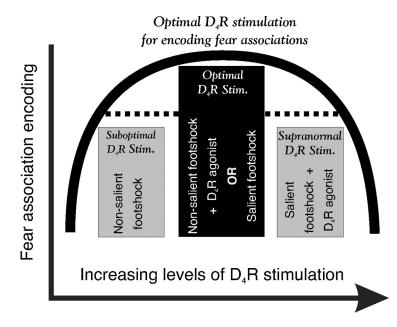
Lauzon et al. (2009) have recently demonstrated a key role for dopamine in the regulation of BLA-mPFC processing of fear-associated memories. Using an olfactory fear conditioning assay in rats, these researchers selectively manipulated D₁ and D₄ dopamine receptor subtypes (D₁R and D₄R) shortly before either conditioning (acquisition phase) or testing (challenge phase). Their work has demonstrated that bilateral activation of D₄Rs in the mPFC with a highly selective D₄R agonist immediately before the presentation of a mild, emotionally nonsalient footshock elicited a dose-dependent potentiation of associative fear conditioning. Yet, preconditioning D₄R activation with the highest dose of this agonist blocked the acquisition of this cueassociated learning for a stronger, emotionally salient footshock. The selectivity of the D₄R-mediated facilitation of cueassociated learning for the nonsalient footshock was confirmed with coinfusion of a competitive D₄R antagonist with the selective D₄R agonist. Conversely, D₄R activation before the testing phase did not significantly affect expression of the previously acquired conditioned response. These findings suggest that D₄R activation is necessary for the encoding, but not the retrieval, of a conditioned fear memory. Alternatively, the expression, but not the acquisition, of an emotionally pertinent memory (salient footshock) was selectively blocked by pharmacological activation of D_1Rs with a selective D_1R agonist.

D₄R-mediated potentiation of emotionally nonsalient associative fear conditioning was dependent on a functional connection between the BLA and mPFC (Lauzon et al., 2009). Although present at low levels on mPFC pyramidal neurons, D₄Rs are predominantly expressed in GABAergic interneurons that receive BLA input (Mrzljak et al., 1996; Gabbott et al., 2006). Pharmacological activation of mPFC D₄Rs decreases BLA-mediated activation of inhibitory neurons in the mPFC and may thereby serve to prime pyramidal neurons to receive inputs relevant to emotionally salient associations (Floresco and Tse, 2007). Laviolette et al. (2005) have demonstrated that a subpopulation of mPFC pyramidal neurons receiving inputs from the BLA displays strong associative increases in neuronal activity when the animal is exposed to odors predictive of footshock. The encoding of these neuronal responses and the expression of conditioned fear were blocked by inhibition of mPFC D₄Rs before conditioning. Together, the findings of Lauzon et al. (2009) and of Laviolette et al. (2005) demonstrate that mPFC DARs and BLA afferents critically mediate fear-associative learning.

Received June 15, 2009; revised July 27, 2009; accepted July 28, 2009.

S.J.T. was supported by an American Australian Association Sir Keith Murdoch Fellowship and a National Alliance for Research on Schizophrenia and Depression Young Investigator Award, D.P.C. by a National Science Foundation grant (DBI-0754615) and by the Phi Sigma Biology Honor Society (Illinois State University), and C.J.G. by an Austrian Academy of Sciences DOC-Fellowship. We thank Drs. Kendall Lee, Paul Garris, Charles Blaha, Mark Frye, and Helen Mayberg for their ongoing support and mentorship.

Correspondence should be addressed to Susannah J. Tye, Department of Neurosurgery, Mayo Clinic, 200 First Street SW, Rochester, MN 55905. E-mail: tye.susannah@mayo.edu.


DOI:10.1523/JNEUROSCI.2822-09.2009

Copyright © 2009 Society for Neuroscience 0270-6474/09/2910785-03\$15.00/0

Other recent work has also demonstrated that D₄R activation is a key molecular mechanism mediating neuronal plasticity in the PFC. Yuen and Yan (2009) have shown that D₄R activation either by an exogenous agonist or by endogenous dopamine suppresses AMPA receptormediated synaptic transmission in PFC GABAergic interneurons through calciumdependent actin/myosin-mediated regulation of AMPA receptor trafficking. D₄R actions also mediate downregulation of GABA_A or NMDA receptor expression in PFC pyramidal cells via actin/myosindependent (Graziane et al., 2009) or Ca²⁺/calmodulin-dependent protein kinase II (CaMKII)-dependent (Wang et al., 2003) mechanisms, respectively. Thus, mediation of synaptic plasticity and network integrity through D₄R regulation of receptor trafficking in mPFC GABAergic interneurons and pyramidal cells activated by BLA inputs may, at least in part, regulate emotionally salient cueassociated learning.

A critical level of D₄R activation, however, appears necessary to fine-tune BLAmediated encoding in the mPFC. In this regard, D₄R agonist treatment before conditioning augmented the encoding of mild, nonsalient footshock associations yet blocked learning of fear associations paired with stronger, salient stimuli (Lauzon et al., 2009). This blockade of conditioned fear associations is similar to that observed with intra-mPFC preconditioning application of a selective antagonist that prevented endogenous dopamine activation of the D₄R (Laviolette et al., 2005). Given that stressful and aversive stimuli strongly induce the release of dopamine in the mPFC and that such release is associated with conditioned fear learning (Yoshioka et al., 1996), it is possible that agonist supplementation of normally sufficient endogenous D₄R stimulation in the study by Lauzon et al. (2009) served to disrupt normal associative learning processes to emotionally salient stimuli. This suggests that suboptimal or supranormal D₄R stimulation in the mPFC impairs the encoding of emotional memory (Fig. 1), similar to that reported for the relative effects of PFC D₁R stimulation on working memory (Zahrt et al., 1997).

The mechanism(s) by which neuroplasticity is modulated by this inverted U-shaped dose–response curve for dopamine receptor activation (Zahrt et al., 1997; Monte-Silva et al., 2009) to regulate associative learning warrants further consideration. A reduction of GABAergic feedforward inhibition (Floresco and Tse, 2007)

Figure 1. Hypothesized inverted U-shaped D_4R response curve illustrating that either suboptimal or supranormal D_4R stimulation could impair encoding of conditioned fear associations. The suboptimal condition represents insufficient endogenous dopamine stimulation of D_4R s during subthreshold nonsalient footshock. The supranormal condition represents excessive D_4R stimulation from the combined actions of an intra-mPFC D_4R agonist and endogenous dopamine (mediated by suprathreshold salient footshock stimulation). In contrast, an optimal level of D_4R stimulation (dotted line) would enable the encoding of emotional associative fear memories. Optimal stimulation resulted from an effective intra-mPFC dose of the D_4R agonist administered before subthreshold mild footshock conditioning, or the actions of endogenous dopamine mediated by strong suprathreshold footshock stimulus. Figure adapted from Zahrt et al. (1997).

and downregulation of AMPA and GABA receptor expression in GABAergic and pyramidal cells, respectively (Graziane et al., 2009; Yuen and Yan, 2009), may contribute to facilitating emotionally salient associative learning when levels of D₄R activation are optimal. This could explain the ability of the D₄R agonist to augment cueassociated learning for nonsalient stimuli that do not elicit sufficient dopamine release on their own (Lauzon et al., 2009). Conversely, blockade of endogenous dopamine activation of the D₄R would prevent this D₄R-mediated disinhibition and receptor trafficking, and in turn, the learning of cues associated with the salient stimulus (Laviolette et al., 2005). However, the mechanism by which supranormal D₄R stimulation induced by endogenous plus pharmacological D₄R activation inhibits associative learning is less clear. If this optimal D₄R response indeed involves downregulation of AMPA and GABAA receptor expression in mPFC GABAergic and pyramidal cells, respectively (Graziane et al., 2009; Yuen and Yan, 2009), supranormal stimulation may prevent activation of these calcium-dependent actin/myosinmediated mechanisms.

Lauzon et al. (2009) speculate that mPFC D_4R -mediated biphasic regulation of CaMKII activity may account for the differential effects of the D_4R agonist in

mediating the acquisition of associative fear memories during subthreshold and suprathreshold footshock conditioning. They suggest that low versus high levels of mPFC neuronal activity may have resulted from the nonsalient and salient footshock conditions, respectively, such that D₄R activation would correspondingly enhance or inhibit CaMKII activity (Gu and Yan, 2004). However, findings of Laviolette et al. (2005) demonstrated that D₄R antagonist treatment blocked BLAmediated associative learning in response to the same salient footshock, suggesting that the level of mPFC neuronal activity was not the mediating factor. Instead, we propose that D₄R activation by what was considered to be the effective D₄R agonist dose, in addition to the corelease of dopamine in the mPFC in vivo, may have tipped the facilitory actions of these receptors to an inhibitory action with respect to effects on the encoding of associative fear memories, possibly via a calcium-dependent mechanism. Whether this involves CaMKII remains to be determined. Unfortunately, the dose-response relationship established for the nonsalient fear conditioning was not conducted for the salient response. This would have provided some insight into the validity of our proposed mechanism.

The appropriate level of D₄R activity required within the mPFC to enable the

encoding of a conditioned fear response remains to be elucidated. Optimal D₄R activation together with synchronized input from BLA afferents is necessary for the encoding of such responses, indicating that D₄R activity modulates information processing in this pathway. The recent work of Lauzon et al. (2009) has enhanced our current understanding of the dopamine mechanisms mediating associative memory formation within the mPFC and provides important directions for future research. Whereas the cellular mechanisms remain to be determined, appropriate dopamine stimulation of mPFC D₄Rs appears to be critical for the encoding of emotionally salient cues. Thus, either deficient or excessive D₄R stimulation may produce marked mPFC dysfunction, with important implications for dopamine mechanisms involved in neuropsychiatric illness. As the cellular mechanisms governing this inverted U-shaped response become established, pharmacological targets could be devised to reestablish the physiologic balance between salient and nonsalient emotional information processing disrupted in neuropsychiatric disorders such as schizophrenia, depression, and drug addiction.

References

- Floresco SB, Tse MT (2007) Dopaminergic regulation of inhibitory and excitatory transmission in the basolateral amygdala–prefrontal cortical pathway. J Neurosci 27:2045–2057.
- Gabbott PL, Warner TA, Busby SJ (2006) Amygdala input monosynaptically innervates parvalbumin immunoreactive local circuit neurons in rat medial prefrontal cortex. Neuroscience 139:1039–1048.
- Graziane NM, Yuen EY, Yan Z (2009) Dopamine D4 receptors regulate GABAA receptor trafficking via an actin/cofilin/myosin-dependent mechanism. J Biol Chem 284:8329–8336.
- Gu Z, Yan Z (2004) Bidirectional regulation of Ca2+/calmodulin dependent protein kinase II activity by dopamine D4 receptors in prefrontal cortex. Mol Pharmacol 66:948–955.
- Lauzon NM, Bishop SF, Laviolette SR (2009) Dopamine D_1 versus D_4 receptors differentially modulate the encoding of salient versus nonsalient emotional information in the medial prefrontal cortex. J Neurosci 29:4836–4845.
- Laviolette SR, Lipski WJ, Grace AA (2005) A subpopulation of neurons in the medial prefrontal cortex encodes emotional learning with burst and frequency codes through a dopamine D₄ receptor-dependent basolateral amygdala input. J Neurosci 25:6066–6075.

- Maren S, Quirk GJ (2004) Neuronal signalling of fear memory. Nat Rev Neurosci 5:844–852.
- Monte-Silva K, Kuo MF, Thirugnanasambandam N, Liebetanz D, Paulus W, Nitsche MA (2009) Dose-dependent inverted U-shaped effect of dopamine (D_2 -like) receptor activation on focal and nonfocal plasticity in humans. J Neurosci 29:6124-6131.
- Mrzljak L, Bergson C, Pappy M, Huff R, Levenson R, Goldman-Rakic PS (1996) Localization of dopamine D4 receptors in GABAergic neurons of the primate brain. Nature 381:245–248.
- Pinto A, Sesack SR (1999) Basolateral amygdala afferents to the rat prefrontal cortex: ultrastructural and relation to dopamine afferents. Soc Neurosci Abstr 21:1216.
- Wang X, Zhong P, Gu Z, Yan Z (2003) Regulation of NMDA receptors by dopamine D₄ signaling in prefrontal cortex. J Neurosci 23:9852–9861.
- Yoshioka M, Matsumoto M, Togashi H, Saito H (1996) Effect of conditioned fear stress on dopamine release in the rat prefrontal cortex. Neurosci Lett 209:201–203.
- Yuen EY, Yan Z (2009) Dopamine D_4 receptors regulate AMPA receptor trafficking and glutamatergic transmission in GABAergic interneurons of prefrontal cortex. J Neurosci 29:550–562.
- Zahrt J, Taylor JR, Mathew RG, Arnsten AF (1997) Supranormal stimulation of D_1 dopamine receptors in the rodent prefrontal cortex impairs spatial working memory performance. J Neurosci 17:8528–8535.