
40th Anniversary Retrospective

Editor’s Note: To commemorate the 40th anniversary of the Society for Neuroscience, the editors of the Journal of Neuroscience
asked several neuroscientists who have been active in the society to reflect on some of the changes they have seen in their respective
fields over the last 40 years.
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Introduction
The history of brain imaging has paralleled the growth of the
Society for Neuroscience, from its inception in 1973 with the
introduction of x-ray computed tomography (CT) to the present
(for a historical review, see Webb, 1990; Kevles, 1997; Raichle,
2000; Raichle, 2009). Since then, imaging of the human brain,
first with positron emission tomography (PET) and now with
magnetic resonance imaging (MRI), has become an increasingly
important part of research in neurosciences, as well as the social
sciences, and also an important face for brain research in the lay
community. The thirst for information about brain function is
universal, and imaging, for better or worse, has been used by
many as a medium for the discussion.

Growth in functional imaging research has been particularly
exceptional. Since its introduction in 1992 (Bandettini et al.,
1992; Frahm et al., 1992; Kwong et al., 1992; Ogawa et al., 1992),
functional MRI (fMRI) has accounted for nearly 12,000 papers
along with 10,000 additional papers using PET, according to
PubMed searches using the terms [“fMRI” and “brain”] and
[“PET” and “brain”].

Functional brain imaging has followed a long tradition in neu-
roscience: studying neuronal responses to stimuli and activity
during task performance. In this work, the role of bottom-up
versus top-down (or feed-forward vs feed-back) causality is fre-
quently discussed, reflecting a debate that extends back at least a
century on the relative importance of intrinsic and evoked activ-
ity in brain function [for a comprehensive historical review, see
Chapter 1 in the book by Llinas (2001)]. “Intrinsic activity” is
ongoing neural and metabolic activity that is not directly associ-
ated with subjects’ performance of a task. The distinction be-
tween intrinsic activity and task-evoked activity applies at many
levels of neurophysiological examination, including events at the
cellular level where ion channel proteins, receptors, and the com-
ponents of signal transduction pathways turn over with half-lives
of minutes, hours, days, and weeks (Marder and Goaillard, 2006).
Brain imaging has recently entered this discussion with informa-
tion that will likely be important in shaping future research. It

suggests to me an impending paradigm shift (Kuhn, 1996)
brought about by surprising discoveries in imaging research that
have occurred against a background of complementary work in
electrophysiology and cell biology. In this essay I briefly review
evidence that persuades me of this view.

Two views of brain function
Since the beginning of the 20th century and possibly earlier, two
views of brain function have existed (Llinas, 2001). One view,
pioneered by the early work of Sherrington (1906), posits that the
brain is primarily reflexive, driven by the momentary demands of
the environment. The other view is that the brain’s operations are
mainly intrinsic, involving the acquisition and maintenance of
information for interpreting, responding to, and even predicting
environmental demands, a view introduced by a disciple of Sher-
rington, T. Graham Brown (1914) [for a view of his work in a
modern context, see the study by Yuste et al. (2005)]. The former
has motivated most neuroscience research including that with
functional neuroimaging. This is not surprising because experi-
ments designed to measure brain responses to various stimuli and
carefully designed tasks can be rigorously controlled, whereas eval-
uating the behavioral relevance of intrinsic activity can be an
elusive enterprise. How do we adjudicate the relative importance
of these two views in terms of their impact on brain function?

One means of evaluating the relative importance of evoked
and intrinsic activity is to examine their cost in terms of brain
energy consumption. In the average adult human, the brain rep-
resents �2% of the total body weight but accounts for 20% of all
the energy consumed (Clarke and Sokoloff, 1999). This high-
energy consumption occurs in the resting state, a behavioral state
characterized by quiet repose with either eyes closed or open,
with or without visual fixation. Furthermore, relative to the very
high rate of ongoing or “basal” energy consumption in humans,
the additional energy consumption associated with evoked
changes in brain activity is remarkably small, often �5% (Raichle
and Mintun, 2006). This low figure likely applies to stimulus-
independent thoughts (i.e., day dreaming) as well. From these
data, it is clear that the brain’s enormous energy consumption is
little affected by task performance, an observation first made
more than 50 years ago (Sokoloff et al., 1955) [for prescient early
insights, the interested reader may also wish to read Creutzfeldt
(1974)].
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What is the nature of this ongoing in-
trinsic activity that commands such a
large amount of the brain’s energy re-
sources? Measurements of brain energy
metabolism using magnetic resonance
spectroscopy (Sibson et al., 1997; Sibson
et al., 1998; Shulman et al., 2001, 2004) in
a variety of experimental settings have in-
dicated that 60 – 80% of overall brain en-
ergy consumption is devoted to glutamate
cycling and, hence, neuronal signaling.
Complementary analyses using extant an-
atomic, physiologic, and metabolic data
(Wong-Riley, 1989; Ames, 2000; Attwell
and Laughlin, 2001; Lennie, 2003) to as-
sess the cost of different components of
excitatory signaling in the gray matter
have arrived at similar conclusions. Such
estimates leave for future consideration
the demands placed on the brain’s energy
budget by the functional activity of
inhibitory interneurons (Ackermann et
al., 1984; McCasland and Hibbard, 1997;
Waldvogel et al., 2000; Chatton et al.,
2003; Patel et al., 2005; Buzsáki et al., 2007)
and astrocytes (Pellerin and Magistretti,
1997; Magistretti and Chatton, 2005). That
evidence notwithstanding, it is likely to re-
main the case that the majority of brain en-
ergy consumption is devoted to functionally
significant intrinsic activity. The challenge,
of course, is how to study these intrinsic
brain processes. Functional brain imaging
has provided some intriguing new insights.

Exploring intrinsic activity
It was a chance observation in neuroimaging, first with PET and
later with fMRI, that actually provided a new perspective on what
to look for in studying the brain’s intrinsic activity. This was the
occurrence of activity decreases during the performance of goal-
directed tasks when compared with the resting state.

The first formal characterization of task-induced activity de-
creases from a resting state was a large meta-analysis of published
PET data from our group (Shulman et al., 1997). This study
generated a set of iconic images of a constellation of brain regions
now generally referred to as the default mode network or DMN
(Fig. 1A) after our later paper on a default mode of brain function
(Raichle et al., 2001) [for a historical perspective, see Raichle and
Snyder (2007)]. The unique identity of this group of brain re-
gions was amply confirmed in later meta-analyses by Jeffery
Binder et al. (1999) at the Medical College of Wisconsin and
Bernard Mazoyer et al. (2001) in France. Similar observations are
now an everyday occurrence in laboratories throughout the
world, leaving little doubt that the specific brain areas that make
up the DMN, decrease their activity across a remarkably wide
array of task conditions when compared with a passive control
condition such as visual fixation. From this work has come an
increasing appreciation of the many unique features of this net-
work of areas [for example, see the studies by Buckner et al.
(2008), Hagmann et al. (2008)].

The discovery of the DMN provided a new, large-scale view of
the organization of the brain’s intrinsic activity. However, the
need for more detailed studies of intrinsic activity at a scale sug-

gested by the DMN was apparent. It was the discovery that the
large-scale network organization of intrinsic activity also emerges
from the study of patterns of spatial coherence in the spontane-
ous fluctuations (i.e., “noise”) of the fMRI BOLD signal that
provided the tool needed.

Spontaneous fluctuations in the fMRI BOLD signal
A prominent feature of fMRI is the noisiness of the raw BOLD
signal (Fig. 1B), prompting researchers to average their data to
increase the signal-to-noise ratio. As first shown by Bharat Biswal
et al. (1995) in the human somatomotor system, a considerable
fraction of this variance (i.e., noise) in the BOLD signal in the
frequency range �0.1 Hz exhibits striking patterns of coherence
within known brain systems (Fig. 1C).

The significance of this observation was brought forcefully to
our attention when Michael Greicius et al. (2003) at Stanford
University looked at the patterns of coherence in the DMN elic-
ited by placing a region of interest in either the posterior cingulate
cortex (Fig. 1A, yellow arrow) or the ventral medial prefrontal
cortex (Fig. 1A, orange arrow). The resulting time–activity
curves (Fig. 1B) reflected a pattern of coherence within the entire
DMN (Fig. 1C). Similar patterns of resting state coherence have
now been documented in most cortical systems in the human
brain [for example, see the studies by Fox and Raichle (2007),
Smith et al. (2009)], as well as in their subcortical connections
(Zhang et al., 2008).

A number of additional observations make these surprising
patterns of spatial coherence of interest. First, they appear to

Figure 1. A, B, A comparison of activity decreases during the performance of goal-directed tasks in the DMN (A) and sponta-
neous BOLD fluctuations (B) within the same network in the resting state derived from regions of interest placed in the posterior
cingulate/precuneus (yellow arrow) or the medial prefrontal cortex (orange arrow). The remarkable degree of coherence between
activities obtained from these two distant loci within the same system is evident on inspection of these time–activity curves. The
degree of system-wide coherence within the DMN is shown in C when all voxels in the brain are examined for their correlation with
a region of interest in the posterior cingulate/precuneus (yellow arrow in A). Such a well delineated pattern of coherence within a
known system is typical of all large-scale cortical systems and their subcortical connections. This figure was adapted with permis-
sion from M. E. Raichle (2009).
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transcend levels of consciousness, being present under anesthesia
in humans (Greicius et al., 2008), monkeys (Vincent et al., 2007),
and rats (Lu et al., 2007) (although in this study, as the level of
anesthesia was increased the strength of coherence between the
two cerebral hemispheres was diminished and finally elimi-
nated). They are also present during the early stages of sleep in
humans (Fukunaga et al., 2006; Larson-Prior et al., 2009). These
observations make it unlikely that the patterns of coherence and
the intrinsic activity they represent are primarily the result of
unconstrained, conscious cognition, i.e., mind-wandering or day
dreaming (Christoff et al., 2009).

Second, resting state patterns of coherence respect patterns of
anatomical connectivity in both monkeys (Vincent et al., 2007)
and humans (Zhang et al., 2009), but they are not constrained by
these anatomical connections (Vincent et al., 2007; Zhang et al.,
2008). For example, the absence of monosynaptic connections
between right and left primary visual cortex in the monkey (Vin-
cent et al., 2007) does not preclude the existence of functional
connectivity as expressed in the maps of resting state coherence.

Third, the strength of coherence between nodes within systems
increases during development in humans. Illustrative in this regard
is the DMN (Fig. 2). This observation is consistent with the role of
experience and, possibly, spontaneous activity itself [for example,
see the studies by Yuste (1997) and Huberman et al. (2008)] in
sculpting and maintaining these functional relationships in the hu-
man brain.

Finally, spontaneous fluctuations in the BOLD signal contrib-
ute significantly to both variability in evoked signals (Fox et al.,
2006) and to variability in the associated behavior (Fox et al.,

2007). These observations become important as we consider the
neurophysiologic correlates of the spontaneous BOLD fluctua-
tions. What follows is a brief description of the direction the
neurophysiologic work is taking beginning with the electrical
correlates of the fMRI BOLD signal.

The neurophysiology of BOLD
There has been an active effort to ascertain the electrical corre-
lates of the fMRI BOLD signal [for summaries of this work from
different perspectives, see the studies by Raichle and Mintun
(2006), Khader et al. (2008), Logothetis (2008)]. The conclusion
is that the fMRI BOLD signal is best correlated with local field
potentials (LFPs). LFPs are complex signals arising from the in-
tegrated electrical activity in presynaptic and postsynaptic termi-
nals of the brain and are recorded with microelectrodes placed
within brain tissue. Brain electrical activity recorded from the
scalp with EEG or from the surface of the brain with electrocor-
ticography (ECoG) constitutes a summation of a population of
LFPs. LFPs are usually described in terms of their band-limited
frequency components (�, 1– 4 Hz; è, 4 – 8 Hz; �, 8 –12 Hz; �,
12–24 Hz; and, �, 24 – 80 �Hz).

Given the relationship between LFPs and BOLD, it is important
here to focus on those LFP phenomena that exhibit frequencies sim-
ilar to that of spontaneous BOLD fluctuations (i.e., 0.1– 4.0 Hz).
Two LFP phenomena fall into this category: fluctuations in the
power of higher frequencies where particular attention has been
paid to the gamma frequency band because of its association with
cognition (Fries, 2009; Uhlhaas et al., 2009); and raw frequencies
that approximate that of the spontaneous BOLD signal. These
include the � band (1– 4 Hz) and infra-slow fluctuations or ISFs
(Monto et al., 2008). ISFs are centered between 0.01 and 0.1 Hz
(Vanhatalo et al., 2004; Monto et al., 2008) in the LFP frequency
spectrum. These electrical potentials vary so slowly that they are
sometimes called direct current (DC) potentials. ISFs are much
less often recorded because of the amplifier requirements and
concerns about artifacts (Khader et al., 2008). The � frequency
band and the ISFs have been combined and referred to as slow
cortical potentials or SCPs (Rockstroh et al., 1989). Because it is
likely that this envelope of frequencies is not functionally homo-
geneous (Steriade et al., 1993; Petersen et al., 2003; Watson et al.,
2008) it is important to understand exactly what is reported. As
these references indicate, an important additional phenomenon
falls into this frequency range, namely “up and down states,”
which have important effects on neuronal function and behavior
through rhythmic changes in cell excitability.

The research shows that the spontaneous fluctuations in the
BOLD signal are best correlated with LFP activity in the range of
the SCPs (Lu et al., 2007; He et al., 2008). Indeed, failure to
consider SCPs in seeking electrical correlates of the BOLD signal
have led some (Leopold, 2009; Sirotin and Das, 2009) to the
erroneous conclusion that the BOLD signal and its metabolic/
vascular underpinnings can operate independent of the brain’s
electrical activities. As is the case with the BOLD signal (see
above) the spatial patterns of coherence exhibited by SCPs are
maintained across levels of consciousness ranging from wakeful-
ness to REM and slow-wave sleep (He et al., 2008) and during
anesthesia (Lu et al., 2007). In contrast, power in the gamma
frequency band is only correlated spatially with the BOLD signal
during wake and REM sleep (He et al., 2008) (see also Nir et al.,
2008). This finding is consistent with the role of gamma-band
coherence in the mental activities associated with conscious
awareness (Fries, 2009; Uhlhaas et al., 2009).

Figure 2. A graphic visualization of the correlation matrix within nodes of the DMN is pre-
sented in children (aged 7–9) on the left and adults (aged 21–31) on the right. The width of the
line between two nodes depicts connection strength based on coherence of the resting-state
fMRI BOLD signal (see Fig. 1). Noteworthy in these data is the differences in resting-state
functional connectivity that accrue as the result of brain maturation. These data were repro-
duced with permission from D. A. Fair et al. (2008). inf., Inferior; lat., lateral; post., posterior;
sup., superior.
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A broader view
Knowing that SCPs and spontaneous fluctuations in the BOLD
signal are related provides a bridge to a highly relevant, rich, and
diverse neurophysiologic literature on low-frequency oscilla-
tions/fluctuations [for example, see the studies by Rockstroh et al.
(1989), Varela et al. (2001), Buzsáki and Draguhn (2004), Monto
et al. (2008), and Schroeder and Lakatos (2009)]. Emerging from
this extensive literature are several important themes.

First, SCPs and their BOLD counterpart (which includes op-
tical imaging techniques) represent highly organized fluctuations
in cortical excitability whose phase affects both evoked responses
(Arieli et al., 1996; Fiser et al., 2004; Fox et al., 2006) and behav-
ioral performance (Fox et al., 2007; Lakatos et al., 2008; Monto et
al., 2008). Entrainment of SCPs to an expected, predictable
stimulus [for example, see the studies by Lakatos et al. (2008),
Montemurro et al. (2008), Gao et al. (2009), and Sirotin and
Das (2009)] is an attractive means of matching predictions
instantiated in intrinsic activity with the natural regularities of
the environment (Bressler et al., 2008; Schroeder and Lakatos,
2008), a theme complementary to the concept of the “proactive”
brain (Ingvar, 1985; Bar, 2009). An alternate state exists, as Schr-
oeder and Lakatos (2008) posit when circumstances are unpre-
dictable. Here, the brain may suppress low-frequency oscillations
which, I would posit, may be seen as activity decreases in the
DMN (Fig. 1A) (Fransson, 2006). This formulation provides one
way of thinking about the give and take that exists between the
DMN and what we have dubbed the task-positive network, a
relationship instantiated even in the resting state (Fox et al., 2005,
2009; Popa et al., 2009).

Second, SCPs exhibit a remarkable relationship with other
elements of the frequency spectrum of brain electrical activity
(Monto et al., 2008) (Fig. 3) including the spiking activity of
neurons (Montemurro et al., 2008). This cross-frequency cou-
pling (i.e., nesting), with SCPs serving an overarching coordinat-
ing role within and across systems, provides the basis for
integration in both space and time. One of the potential results of
this, of course, might well be the emergence of consciousness (He
and Raichle, 2009).

As we move forward, the scope of the inquiry will undoubt-
edly expand even further into the realm of cell biology where
events related to ion channel proteins, synaptic receptors, com-
ponents of signal transduction pathways (Marder and Goaillard,
2006), and even cellular redox states (Vern et al., 1998) exhibit tem-
poral dynamics very similar to the work reviewed above. Integrating

across these many levels of analysis will obviously be challenging.
Help will come from theoretical modeling approaches where cre-
ative work has already begun (Holcman and Tsodyks, 2006; Ghosh
et al., 2008; Bullmore and Sporns, 2009). For all, the road ahead looks
most exciting.
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