
Symposium

Nutrition, Brain Aging, and Neurodegeneration

James Joseph,1 Greg Cole,2 Elizabeth Head,3 and Donald Ingram4

1USDA Human Nutrition Research Center on Aging at Tufts University, Boston, Massachusetts 02111, 2Geriatric Research, Education and Clinical Centers,
Veterans Affairs Medical Center, and Department of Medicine, University of California, Los Angeles, Sepulveda, California 91343, 3University of Kentucky
Sanders-Brown Center on Aging, Lexington, Kentucky 40536, and 4Pennington Biomedical Center, Baton Rouge, Louisiana 70808

The onset of age-related neurodegenerative diseases superimposed on a declining nervous system could enhance the motor and cognitive
behavioral deficits that normally occur in senescence. It is likely that, in cases of severe deficits in memory or motor function, hospital-
ization and/or custodial care would be a likely outcome. This means that unless some way is found to reduce these age-related decrements
in neuronal function, health care costs will continue to rise exponentially. Applying molecular biological approaches to slow aging in the
human condition may be years away. So, it is important to determine what methods can be used today to increase healthy aging, forestall
the onset of these diseases, and create conditions favorable to obtaining a “longevity dividend” in both financial and human terms. Recent
studies suggest that consumption of diets rich in antioxidants and anti-inflammatory components such as those found in fruits, nuts,
vegetables, and spices, or even reduced caloric intake, may lower age-related cognitive declines and the risk of developing neurodegen-
erative disease.

Introduction
By the year 2050, 30% of the total population will be over 65 years
of age. As the aged population expands, the economic burden of
care and treatment of those with age-related health disorders also
increases, necessitating measures to prevent or even reverse age-
related health disorders. One such potential option is the use of
nutritional substances such as berry fruit and fatty acids from
walnuts and fish oils. Research has recently shown that consump-
tion of the aforementioned substances can dramatically impact
the aging brain, possibly leading to improved cognition and mo-
tor abilities. It has been postulated that these behavioral and neu-
ronal declines are the result of an increasing vulnerability to
oxidative and inflammatory insults, thus creating a “fertile envi-
ronment” (Yu, 1994; Sadoul, 1998; Gilissen et al., 1999; Joseph et
al., 2001) for the subsequent development of age-related neuro-
degenerative disease such as Alzheimer disease (AD) (Markesbery,
1997; Behl, 1999; Praticò and Delanty, 2000; Sultana et al., 2006).
The destructive properties of oxidative stress in the aged brain are
evidenced by reductions in redox active iron (Gilissen et al., 1999;
Joseph et al., 2001), as well as increases in B-cell lymphoma 2
(Bcl-2) (Sadoul, 1998) and membrane lipid peroxidation (Yu,
1994). Studies have also shown that there are significant increases
in cellular hydrogen peroxide (Cavazzoni et al., 1999). Addition-
ally, there is significant lipofuscin accumulation (Gilissen et al.,
1999) along with alterations in membrane lipids (Denisova et al.,
1998), indicating the involvement of lipid rafts with oxidative
stress sensitivity (Shen et al., 2004). Importantly, the conse-
quences of these increases in oxidative stress at several levels may
result in reduced calcium homeostasis, alterations in cellular sig-

naling cascades, and changes in gene expression (Dalton et al.,
1999; Annunziato et al., 2002), which combine to contribute to
the increased vulnerability to oxidative stress seen in the aging
population (Halliwell, 2001; Rego and Oliveira, 2003) and which
is elevated in AD (Smith et al., 1991; Lovell et al., 1995; Marcus et
al., 1998) and Parkinson disease (PD) (Dexter et al., 1994; Spencer et
al., 1998). Together, these findings indicate that oxidative stress
increases during aging, leading to widespread damage to cellular
components, and ultimately manifesting in declines in motor
and cognitive abilities.

It is clear that the incidence of many of the major disorders,
such as Alzheimer’s disease, vascular dementia, and cardiovascu-
lar disease, increase as a function of age, and that their etiology
may partially involve lifestyle determinants such as obesity, de-
creased sensitivity to insulin, and the metabolic syndrome. Un-
fortunately, there is a distinct lack of knowledge of these issues
among clinicians and physicians, where nutritional recommen-
dations could be used with traditional approaches in neuroger-
ontology. Research described below suggests that polyphenolic
compounds contained in berry fruits, walnuts, curcumin, and
fish oils exhibit potent antioxidant and anti-inflammatory activ-
ities that may reduce the age-related sensitivity to oxidative stress
or inflammation and may alter neurodegeneration. Interestingly,
the results found with respect to these nutrients are similar to
those seen with caloric restriction and caloric restriction mimet-
ics, suggesting a final common pathway among these various
interventions.

Berry fruit polyphenols
All plants, including fruit-, nut-, or spice-bearing plants, synthe-
size a vast array of chemical compounds that are not necessarily
involved in the plant’s metabolism but instead serve a variety of
functions that enhance the plant’s survivability. These include
combating oxidative stress and inflammation. In this respect,
previous studies have found that crude blueberry (BB) or straw-
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berry (SB) extracts significantly attenuated age-related motor
and cognitive deficits in aged rodents. Thus, these supplementa-
tions reversed age-related deficits in neuronal and behavioral
(cognitive) function in aged (19 months) Fischer 344 rats (Joseph
et al., 1999). The rodents in all diet groups, but not the control
group, showed improved working memory (short-term mem-
ory) performance in the Morris water maze (MWM). A later
study has suggested that, in addition to MWM performance,
blueberry supplementation was also effective in reversing cog-
nitive declines in object recognition (Goyarzu et al., 2004).
Furthermore, the beneficial effects of BB were seen even when
superimposed on an already healthy rodent diet, which was more
representative of a balanced human diet (Youdim et al., 2000). BB
supplementation also improved performance on tests of motor
function that assessed balance and coordination (e.g., rod walk-
ing and the accelerating rotarod) (Joseph et al., 1999). Thus far,
only blueberry, cranberry (Shukitt-Hale et al., 2005), strawberry
(Shukitt-Hale et al., 2006b), Concord grape juice (Shukitt-Hale
et al., 2006a), blackberry (Shukitt-Hale et al., 2009), or walnut
supplementations (Willis et al., 2009) have been effective in re-
versing motor behavioral deficits. Rats on the BB diet have
generally shown the greatest increases in motor performance,
as well as increases in carbachol-stimulated GTPase activity
and oxotremorine-enhanced dopamine (DA) release (both
markers of muscarinic receptor sensitivity).

Importantly, even though these diets were supplemented
based on equal antioxidant activity [as determined by the oxygen
radical absorbance capacity (ORAC) assay], they were not equally
effective in preventing or reversing age-related changes (Joseph et
al., 1999). Therefore, antioxidant activity alone was not predic-
tive in assessing the potency of these compounds against certain
disorders affected by aging. In fact, oxidative stress markers (as
measured by DCF fluorescence and glutathione levels in the
brain) were only modestly reduced by the diets (Joseph et al.,
1999), suggesting that berry fruit polyphenols may possess a mul-
tiplicity of actions aside from antioxidant activity. Other possible
mechanisms for the berry fruit’s positive effects include: direct
effects on signaling to enhance neuronal communication (Joseph
et al., 2003), the ability to buffer against excess calcium (Joseph et
al., 2004), enhancement of neuroprotective stress shock proteins
(Galli et al., 2006), and reduction of stress signals such as nuclear
factor � B (NF-�B) (Goyarzu et al., 2004). Additionally, the an-
thocyanins contained in blueberries have been shown to enter the
brain, and their concentrations were correlated with cognitive
performance (Andres-Lacueva et al., 2005).

Research has demonstrated the involvement of various signal-
ing molecules in the protective effects of berries in both cell cul-
ture systems and animal models. BB treatment of dopamine
(DA)-exposed COS-7 cells (Joseph et al., 2006) or primary hip-
pocampal neurons (Joseph et al., 2007a) significantly increased
protective mitogen activated protein kinase (MAPK) expression.
Additionally, BB-supplemented APP/PS1 mice exhibited greater
levels of hippocampal extracellular signal regulated kinase
(ERK), as well as striatal and hippocampal protein kinase C
(PKC) �, than seen in the transgenic mice maintained on the
control diet (Joseph et al., 2003). ERK has been shown to be
involved in diverse forms of memory, such as: contextual fear
conditioning [33]; long-term potentiation (English and Sweatt,
1997); striatum-dependent learning and memory (Mazzucchelli
and Brambilla, 2000); hippocampus-dependent spatial memory
(Selcher et al., 1999); and inhibitory avoidance (Schafe et al.,
1999). PKC has been implicated in the regulation of synaptic
plasticity and modulation of short- to long-term memory. Stud-

ies have shown that PKC activity is important in spatial memory
formation (for review, see Micheau and Riedel, 1999). Research
has also shown that BB treatment was effective in protecting
against amyloid � (A�42)- or DA-induced decrements in intra-
cellular calcium clearance (Joseph et al., 2007b) following depo-
larization in M1 muscarinic receptor (MAChR)-transfected
COS-7 cells or neonatal hippocampal neurons. This protection
involved increases in phosphorylated MAPK and decreases in
PKC� and phosphorylated cAMP response element binding pro-
tein (CREB). Blueberry supplementation has also been shown to
impact cell signaling molecule expression in vivo. BB supplemen-
tation reduced the toxicity of kainic acid on hippocampal cells
concomitant with reduced expression of stress signals and in-
creased expression of protective signals (Shukitt-Hale et al.,
2008a). These alterations in stress signaling were associated with
enhanced behavioral performance (Morris water maze) and re-
duced microglial activation (Bodles and Barger, 2004). An addi-
tional study showed that BB-supplemented aged animals had
increased ERK and insulin growth factor-1 (IGF-1) activation in
the dentate gyrus that was associated with increased neurogenesis
and enhanced cognitive ability (Casadesus et al., 2004). Similar
findings were observed with respect to microglial activity, BB and
stress signaling wherein BB treatment dose-dependently inhib-
ited the production NO, as well as the cytokines Il-1� and TNF-�
in lipopolysaccharide- (LPS-) activated BV2 microglia (Lau et al.,
2007). Overall, as shown in Table 1, we have proposed the follow-
ing schemes for the BB effects on stress and protective signaling.

Subsequent studies in progress have suggested that scheme
two may be the pathway most likely to be involved in the DA-
induced stress signaling and that BBs appear to be able to act at
multiple points in the pathway to prevent calcium dysregulation.

Walnut and fish polyunsaturated fatty acids
In addition to plant derived polyphenols, polyunsaturated fatty
acids (PUFAs) represent another potential dietary intervention
to forestall age-related neuronal and cognitive decline. PUFAs are
critical components of neuronal cell membranes, maintaining
membrane fluidity that is essential for synaptic vesicle fusion and
neurotransmitter communication within neural networks. In ad-
dition, membrane PUFAs serve as precursors for lipid messen-
gers, which can participate in signaling processes to promote
neuronal protection or induce neuronal dysfunction (Bazan,
2005). In the aged brain, studies have shown a deficit in the
amount of PUFAs in the hippocampus, cortex, and cerebellum,
all areas involved in cognitive and motor function (Little et al.,
2007). These deficits may be further increased in AD.

Walnuts are well known for their high levels of PUFAs, specif-
ically the �-6 fatty acid linoleic acid (LA) and the �-3 fatty acid
�-linolenic acid (ALA). LA and ALA can either exist as mem-
brane components or can be metabolized via the arachidonic acid
cascade to generate numerous lipid messengers including pros-
taglandins, eicosapentaenoic acid (EPA), and docosahaenoic acid
(DHA), which are � 3 oils. Indeed, a recent study has shown that
walnuts improved cognitive function in aged rodents, much as
was seen with respect to berry fruit (Willis et al., 2009). Impor-

Table 1. Proposed signal transduction pathways possibly affected by berry fruit
polyphenols

1. DA/A�423 ROS3 PKC�/PKC�3 p38 MAPK3 CREB/ Nf�B3 increased ROS and
calcium dysregulation

2. 2 DA/A�423 ROS3 JNK3 p533 increased ROS and calcium dysregulation)

ROS, Reactive oxygen species.
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tantly, the aged animals on walnuts also showed reduced micro-
glial activity in the hippocampus. In addition to PUFAs, walnuts
also contain other bioactive constituents which have been shown
to influence brain function, including vitamin E, melatonin, and
antioxidant polyphenols such as ellagic acid (Venkatachalam and
Sathe, 2006) that could act synergistically with the PUFAs to
increase dietary polyphenolic absorption and uptake following
consumption (Huo et al., 2007).

PUFAs from fish oils may have similar beneficial effects. A 2005
�-3 meta-analysis assessing the quality of available epidemiology
and preclinical studies concluded clinical trials were warranted
(Maclean et al., 2005). To date, nine epidemiological studies associ-
ate increased fish consumption with reduced AD, while 8/10 studies
associate higher blood n-3 with reduced cognitive decline. More-
over, three studies indicate limited protection in ApoE4 carriers
(Cole et al., 2009). Four small completed trials with n-3 (typically fish
oil) suggest protection, but only in patients showing mild cognitive
impairment (MCI). Two trials with n-3 and other nutrients (� li-
poate or B vitamins and uridine-5�-monophosphate, a putative en-
hancer of DHA incorporation) seem to show some effect in AD
(Cole et al., 2009). A larger recently completed 6 month trial (MI-
DAS, 485 subjects with mild memory complaints) reported im-
provements in mild memory complaints with 900 mg of DHA
(Yurko-Mauro et al., 2009). A National Institutes of Health cooper-
ative DHA trial in mild to moderate AD (Quinn, 2009) reported
possible but nonsignificant slowing of progression in ApoE3, but not
ApoE4 subjects. Additional trials are in progress.

Similarly, DHA reduced amyloid � 42 (A�42) in AD mice
(Lim et al., 2005; Oksman et al., 2006; Green et al., 2007; Hooij-
mans et al., 2007) and production by cultured human neurons
(Lukiw et al., 2005). The mechanism involved in the DHA-
induced reductions in A�42 may be due to multiple effects, such
as: changes in lipid raft structure (Stillwell et al., 2005), alterations
in APP processing (Ehehalt et al., 2003), induction of anti-
amyloidogenic chaperones for APP (Ma et al., 2007), and A�
transthyretin (Schwarzman et al., 1994; Puskás et al., 2003). As
with the polyphenols, proposed neuroprotective mechanisms
also include increasing survival signaling. For example, insulin/
neurotrophin signaling, defective in AD, protects against A� oli-
gomer toxicity (Cole and Frautschy, 2007). AD and preclinical
models show synaptic and dendritic loss from a postsynaptic
attack by A� oligomers, which DHA blocks in vitro, consistent
with protection of the synaptic protein, drebrin, in APP Tg mice.

Insulin receptor substrate (IRS), an adaptor protein, couples
insulin/trophic factor signaling to PI3-K/Akt. Thus, DHA re-
duces A�42 production and protects against its toxicity via mul-
tiple mechanisms. This is important since DHA is enriched in
neuronal phospholipids where it may be in as high as 35% of
phosphatidylethanolamine (Salem et al., 2001). Because archi-
donic acid (AA) and DHA compete for esterification into the
labile SN-2 phospholipid position, DHA reduces proinflamma-
tory AA available for cyclooxygenase and lipoxygenase enzymes,
an anti-inflammatory NSAID-like property contributing to in-
terest in DHA and AD prevention (Cole et al., 2009). In sum-
mary, it appears that DHA reduces A�42 production and protects
against its toxicity via multiple mechanisms.

Curcuminoids
In addition to the polyphenols found in walnuts and berry fruits,
polyphenols (curcuminoids) found in the curry spice turmeric
may have similar effects. The biophenolic curcumin was isolated
as the active yellow component of turmeric, a food preservative
inhibitor of lipid peroxidation with potent anti-inflammatory

and anti-cancer activities and a long history of use in Asian tra-
ditional medicines (Aggarwal et al., 2007). In AD models, cur-
cumin reduced proinflammatory cytokines, oxidative damage,
A�42 and cognitive deficits (Frautschy et al., 2001). Like Congo
red, it is an amyloid binding dye and direct inhibitor of A� oli-
gomer and fibril formation that can enter the brain to directly
label plaques and markedly reduce A�42 and plaques even in old
APP Tg mice, suggesting a possible “vaccine-like” clearance (Cole
et al., 2003). Direct evidence for curcumin stimulation of amyloid
plaque clearance and dystrophic neurite reduction was provided
by elegant in vivo imaging before and after curcumin (Garcia-
Alloza et al., 2007). Curcumin has other pleiotropic anti-AD ac-
tivities including limiting the tau kinase JNK (c-Jun N-terminal
protein kinase) and stimulating neurogenesis and BDNF (Cole et
al., 2007). Cucumin synergized with fish oil in reducing insulin
signaling defects in triple Tg AD model mice (Ma et al., 2009).
These pleiotropic anti-AD activities led to studies assessing cur-
cumin/DHA combinations in aging tau transgenic mice and pos-
itive effects were seen against cognitive deficits. A major obstacle
with curcumin in the clinic has been limited bioavailability of
supplements, but this problem has been solved with new lipi-
dated formulations (Begum et al., 2008), currently in clinical
trials. While there are many new treatment approaches, the major
advantages of these nutritional interventions is their safety, broad
spectrum utility, low cost, and suitability for prevention, espe-
cially in diets that contain polyphenols with more “traditional”
antioxidants such as vitamin C and vitamin E. A subset of these
studies is described in the next section.

The canine antioxidant diet
In this respect it has been shown (Zandi et al., 2004) that the
dietary intake of antioxidants in foods is superior to supplements
in human studies on cognition and risk of developing AD (Morris
et al., 2002; Barberger-Gateau et al., 2007). Furthermore, the ad-
dition of mitochondrial cofactors that target mitochondrial func-
tion and reduce reactive oxygen species may enhance the effects
of cellular antioxidants such as vitamin E. These considerations
led to studies involving administering an antioxidant diet to aged
beagles. Dogs are particularly useful because they naturally de-
velop cognitive decline with age, accumulate oxidative damage
and AD-like neuropathology, and absorb dietary nutrients in a
similar manner as humans (Cotman and Head, 2008).

Aged beagles (between �8 –12 years) were used in this study.
An antioxidant-enriched diet was formulated to include a
broad spectrum of antioxidants and two mitochondrial cofac-
tors (Milgram et al., 2005), which were well within those used in
human clinical trials. The daily doses for each compound were
800 IU or 210 mg/d (21 mg/kg/d) of vitamin E, 16 mg/d (1.6
mg/kg/d) of vitamin C, 52 mg/d (5.2 mg/kg/d) of carnitine, and
26 mg/d (2.6 mg/kg/d) of lipoic acid. Fruits and vegetables were
also incorporated at a 1 to 1 exchange ratio for corn, resulting in
1% inclusions of each of the following: spinach flakes, tomato
pomace, grape pomace, carrot granules, and citrus pulp. This was
equivalent to raising fruits and vegetable servings from 3 to
5– 6/d. Vitamin E was increased �75% by the antioxidant diet in
treated dogs (Milgram et al., 2002). A second intervention in-
cluded a behavioral enrichment condition consisting of: (1) ad-
ditional cognitive experience (20 –30 min/d, 5 d/week), (2) an
enriched sensory environment (housing with a kennel-mate, ro-
tation of play toys in kennel once/week), and (3) physical exercise
(2 � 20 min walks/week outdoors) (Milgram et al., 2005).

The dogs were evaluated over a 2.8 year period. Treatment
with the antioxidant diet lead to cognitive improvements in
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learning that were rapid and within 2 weeks of beginning the diet;
aged animals showed significant improvements in spatial atten-
tion (landmark task) (Milgram et al., 2002). Subsequent testing
of animals with a more difficult complex learning task, oddity
discrimination, also revealed benefits of the diet (Cotman et al.,
2002). Improved visual discrimination and reversal (frontal
function) learning ability was maintained over time with the an-
tioxidant treatment while untreated animals showed a progres-
sive decline (Milgram et al., 2005). Interestingly, the antioxidant
diet benefitted from the inclusion of behavioral enrichment and
aged dogs receiving both treatments were superior to either treat-
ment alone (Milgram et al., 2004, 2005). As predicted, oxidative
damage was reduced in antioxidant-fed dogs and in particular
within the group of animals receiving the combination of anti-
oxidants and behavioral enrichment (Opii et al., 2008). Endoge-
nous antioxidant activity was also increased (Opii et al., 2008).
Interestingly, behavioral enrichment but not the antioxidant diet
protected against neuron loss in the hilus of the hippocampus of
treated dogs (Siwak-Tapp et al., 2008). These results suggest that
cognitive benefits of cellular antioxidants and mitochondrial co-
factors can be further enhanced with the addition of behavioral
enrichment due to different yet synergistic mechanisms of action
in the brain (reducing oxidative damage, maintaining neuron
health). These findings suggest that studies in humans may be
more efficacious if combinations of antioxidants are adminis-
tered and dietary intake of antioxidants considered in treatment
protocols.

Caloric restriction
Furthermore, however, as compelling as the data concerning the
various antioxidant/anti-oxidant diets may be with respect to
reducing behavioral deficits in aging, a large literature exists to
support the view that caloric restriction rather than caloric selec-
tion may provide an additional approach for reducing age-
related behavioral deficits. Epidemiological studies have reported
the inverse relationship between caloric intake and risk of AD and
PD (Luchsinger et al., 2002; Mattson et al., 2002; Mattson, 2003).
These findings fit well within the context of the calorie restric-
tion (CR) paradigm, one of the most robust in gerontology
(Weindruch and Sohal, 1997; Weindruch and Walford, 1998;
Masoro, 2005; Piper and Bartke, 2008). As demonstrated in
numerous animal models, CR has proven to be the most effec-
tive means to retard aging, including brain aging. Reducing
intake of a nutritious diet by 20 –50% can increase lifespan,
reduce incidence and retard onset of chronic diseases, enhance
stress protection, and maintain youthful behavioral function
accommodated by preserved features of neural anatomy and
activity (Weindruch and Sohal, 1997; Weindruch and Walford,
1998; Masoro, 2005; Piper and Bartke, 2008). Recent studies in
mouse models of AD confirm that restricting caloric intake 30 –
40% from normal levels can markedly slow pathogenesis of the
disease (Qin et al., 2006b; Halagappa et al., 2007). A� deposition
in squirrel monkeys on a CR regimen is also reduced (Qin et al.,
2006a). Similarly long-term studies of rhesus monkeys con-
ducted at the National Institute on Aging and the University of
Wisconsin have produced data indicating that CR animals (30%
less than controls) are healthier than fully fed counterparts based
on reduced incidence of various diseases, on exhibition of better
indices of predisposition to disease, and slower rates of aging
based on analysis of several biomarkers (Ramsey et al., 2000;
Roth et al., 2004; Mattison et al., 2007; Raman et al., 2007). A
recent report also indicates a significant increase in survival in CR
monkeys as well as attenuation of the age-related declines in brain

volume in selected regions (Colman et al., 2009). Thus, in a spe-
cies closely related to humans, CR has shown promise as an in-
tervention that could retard brain aging and neurodegenerative
disease. In fact, recent reports of persons electing to practice CR
close to levels applied in nonhuman primate studies have also
noted many indices of reduced risk of age-related diseases, such
as improved blood lipids, cardiac function, enhanced insulin sen-
sitivity, and reduced measures of inflammation (Fontana et al.,
2004; Meyer et al., 2006). Formal clinical studies of CR lasting
only 6 months in duration have also documented positive impact
on many indices of health and risk factors for chronic disease
(Civitarese et al., 2007).

However, it is evident implementation of such a stringent
regimen would be problematic due to difficulties of compliance,
as well as other quality of life issues impacted by CR (McCaffree,
2004; Dirks and Leeuwenburgh, 2006). This has engendered in-
creased attention on the development of calorie restriction mi-
metics (CRM) (Hursting et al., 2003; Ingram et al., 2004, 2006;
Chen and Guarente, 2007), compounds which can mimic CR by
targeting metabolic and stress response pathways affected by CR,
but without restricting caloric intake. One of these candidates is
resveratrol (Baur and Sinclair, 2006; Knutson and Leeuwen-
burgh, 2008; Markus and Morris, 2008). This polyphenol is
found in high concentrations in red grapes and was noted to
activate SIRT2 in invertebrates. SIRT1, its homolog in mammals,
has actions similar to that of CR. This class of sirtuins represent
NAD-dependent histone deacetylases that regulate a variety of
stress responses, including CR (Guarente, 2007; Michan and
Sinclair, 2007; Lavu et al., 2008). Knock-out of sirt2 in inverte-
brates eliminated the lifespan extension induced by CR while
overexpression increased lifespan similar to CR (Guarente, 2007;
Michan and Sinclair, 2007; Lavu et al., 2008). Results from a
variety of recent studies in rodent models show that resveratrol
can produce a remarkable range of beneficial effects including
protection against high fat diets, neurodegeneration and age-
related pathologies, such as cardiac function and cataracts (Baur
et al., 2006; Fukuda et al., 2006; Kim et al., 2007; Lu et al., 2008;
Pearson et al., 2008), and motor declines (Pearson et al., 2008),
but did not significantly increase lifespan in mice on a normal
diet (Pearson et al., 2008).

The fact that resveratrol is a naturally occurring polyphenol
that is produced in response to fungal attack has created an in-
teresting connection to CR (Sinclair, 2005; Howitz and Sinclair,
2008) since, as described above, diets rich in fruits and vegetables
have also been related to enhanced health and longevity in human
studies (Ferrari, 2004; Heber, 2004; Stanner et al., 2004), while
animal studies demonstrate anti-aging effects of such diets paral-
leling those observed in CR (Shukitt-Hale et al., 2008b). It may be
that the convergence point for CR and polyphnolic research may
actually involve hormetic-enhanced stress protection (Gems and
Partridge, 2008). Thus, moving beyond their demonstrated ac-
tions as antioxidants, plant polyphenols appear to have direct
actions on signaling pathways involved in stress protection in
neurons as described in other parts of this summary. This view
provides further support for the potential for effective nutritional
interventions to attenuate brain aging, neurodegeneration, and
functional declines.

Conclusions
Together, the findings discussed in the previous sections provide
compelling evidence to suggest lifestyle changes involving caloric
selection through alterations in berry fruit, nut, fish oil, and cur-
cumin intake, and caloric restriction mimetics may provide ben-
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eficial effects in aging and prevent or delay the onset of
neurodegenerative diseases such as AD. These changes along with
those not discussed in this review, such as environmental enrich-
ment, may provide the most efficacious methods thus far for
increasing “health span.” Interestingly, while many of the mech-
anisms for the beneficial effects of these nutritional interventions
have yet to be discerned, it is clear that they involve decreases in
oxidative/inflammatory stress signaling, increases in protective
signaling, and may even involve hormetic effects to protect
against the two major villains of aging, oxidative and inflamma-
tory stressors.
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