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Neurons in all brain areas exhibit variability in their spiking activity. Although part of this variability can be considered as noise that is
detrimental to information processing, recent findings indicate that variability can also be beneficial. In particular, it was suggested that
variability in the motor system allows for exploration of possible motor states and therefore can facilitate learning and adaptation to new
environments. Here, we provide evidence to support this idea by analyzing the variability of neurons in the primary motor cortex (M1)
and in the supplementary motor area (SMA-proper) of monkeys adapting to new rotational visuomotor tasks. We found that trial-to-trial
variability increased during learning and exhibited four main characteristics: (1) modulation occurred preferentially during a delay
period when the target of movement was already known, but before movement onset; (2) variability returned to its initial levels toward the
end of learning; (3) the increase in variability was more apparent in cells with preferred movement directions close to those experienced
during learning; and (4) the increase in variability emerged at early phases of learning in the SMA, whereas in M1 behavior reached
plateau levels of performance. These results are highly consistent with previous findings that showed similar trends in variability across
apopulation of neurons. Together, the results strengthen the idea that single-cell variability can be much more than mere noise and may

be an integral part of the underlying mechanism of sensorimotor learning.

Introduction
Neurons throughout the brain exhibit a high degree of variability
in their spiking activity even in seemingly constant task condi-
tions (Bach and Kruger, 1986; Vogels et al., 1989; Arieli et al.,
1996a,b; Lee et al., 1998). This variability is probably the result of
intrinsic noise from molecular, cellular, and synaptic processes as
well as from extrinsic sources such as sensory inputs and muscle
activity (Vogels et al., 1989; Arieli et al., 1996a; Stein et al., 2005;
Bialek and Setayeshgar, 2008; Faisal et al., 2008). In general, vari-
ability is a confounding factor for information transmission and
has often been referred to as “noise.” From this standpoint, vari-
ability is detrimental to the message carried by the neurons, and
the brain should find ways to overcome it to extract the original
message (Bialek et al., 1991; Shalden and Newsome, 1998). How-
ever, recently it was suggested that variability can also be an im-
portant part of the signal itself (Stein et al., 2005; Faisal et al.,
2008; Maimon and Assad, 2009).

In the motor system, variability is apparent during movement
and force production and correlated with it (Jones et al., 2002;
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Hamilton et al., 2004). Recently, a number of specific roles have
been attributed to this motor variability. First, as an organizing
principle, the motor system may attempt to minimize overall
motor and sensory noise (Harris and Wolpert, 1998; van Beers et
al., 2004; Todorov, 2005). Second, neuronal variability might be a
signature of central mechanisms of movement planning. Vari-
ability has been observed before movement onset (MO) when
there was no apparent increase in peripheral sensory and motor
noise (Churchland et al., 2006a), gradually decreased along the
trial, reached its minimum before MO, and was correlated with
reaction times (Churchland et al., 2006b).

Computational and modeling studies have put forward the
intriguing idea that neuronal variability can be important for
learning in general (Kirkpatrick et al., 1983; Fusi, 2002) and for
motor learning in particular (Rokni et al., 2007; Fiete et al., 2007;
Faisal et al., 2008). In other words, variability enables dynamic
representations and continuous exploration of possible motor
states and appropriate neuronal configurations that can lead to
the desired state by trial and error. Recent research on bird song
learning (Kao et al., 2008) and purposeful reaching movements
(Paz et al., 2005; Zacksenhouse et al., 2007) lends weight to this
hypothesis. However, the direct trial-to-trial variability of neuro-
nal activity as a mechanism that underlies motor learning has
received little attention.

To explore this possibility, we analyzed data recorded from
M1 and supplementary motor area (SMA) while monkeys
adapted daily to rotational visuomotor transformations (Paz et
al., 2003). In both humans (Krakauer et al., 2000) and monkeys
(Paz et al., 2003), adaptation to such transformations takes sev-



15054 - J. Neurosci., December 2, 2009 - 29(48):15053-15062

Mandelblat-Cerf et al.  Learning-Related Variability in Motor Cortices

eral trials until performance stabilizes. We A Start of Target Go
could therefore compare variability dur- Onset Signal 45 Movemen_t45
ing different stages of learning in both Hold2 O
cortical areas. We show that trial-to-trial 1-1 /5_5 90 CT___’ _golearned
variability before MO was indeed modu- X+ a " direction
lated during learning. Typically, it first in-
creased and later decreased back to its I S
initial levels. The increase was temporally B
correlated with the progress of behavior
and emerged firstin SMA and only laterin ~ S€SSION  default,8-target task trart]SforrtntEd’k —p default, 8-target task
MI, in accordance with the learning flow (standard - pre-leaming) 0”%’ eaarr%ien g";‘s (standard - post-learning)
hierarchy.

. Figure 1.  Experimental design. 4, Single-trial flow (first row, from left to right) and session flow (second row). During period
Materials and Methods

Animals, recordings, and behavioral task
The experimental setup, behavioral paradigm,
and recording procedures were the same as de-
scribed in previous studies (Paz et al., 2003,
2005). Briefly, two female rhesus monkeys
(Macaca mulatta; ~4.5 kg) were trained to per-
form a center-out task and then were implanted with a recording cham-
ber (27 X 27 mm) above both the right and left hemispheres under
anesthesia and aseptic conditions. Animal care and surgical procedures
complied with the National Institutes of Health Guidelines for the Care
and Use of Laboratory Animals (1996) and with guidelines supervised by
the Institutional Committee for Animal Care and Use at the Hebrew
University.

This study uses data from recordings (with eight microelectrodes in
each hemisphere) of single-unit activity in the primary motor cortex
(M1) and SMAs (location mapped by magnetic resonance imaging and
microstimulation).

The monkeys used a low-friction manipulandum to control the move-
ments of a cursor on a video screen. The manipulandum moved the
cursor from the starting point at the center of the screen (origin) to a
visual target in a delayed go-signal paradigm. The trial sequence and
session flow is shown briefly in Figure 1 and in more detail in the study by
Paz et al. (2003). Figure 1 A depicts the trial flow from left to right. Note
that in each trial, the monkey held its hand in the origin for a random
delay of 1000-1500 ms (Hold1) without receiving any information about
the type of upcoming trial. Later, after it was presented with a target, it
continued to hold its hand in the origin for another random delay of
1000-1500 ms until onset of the go cue (Hold2) and then made a move-
ment. Each recording session (day) involved three consecutive periods
(Fig. 1B): (1) the prelearning period, a standard, eight-target task in
which the target direction was randomly chosen from eight possible
directions uniformly distributed over the circle; (2) the learning period, a
transformed, one-target task in which only one target (upward, 90°) was
presented and a rotational transformation was introduced between the cur-
sor on the screen and the manipulandum; and (3) the postlearning period, in
which the default, eight-target task was presented again. Figure 1 A illustrates
learning of a —90° visuomotor rotation; when the target is presented at 90°
(upward), the hand should move toward 0° (i.e., a rightward hand move-
ment; red) in order for the cursor to move from the origin to the target at 90°
(upward cursor movement; green). The term “learned direction” (LD) in
this study refers to the direction of hand movement needed to bring the
cursor to the target during the visuomotor rotation learning .Rotations were
90, 45, —45, or —90° and were chosen randomly for each session but fixed
for the duration of the adaptation period in a session. Monkeys were trained
for several months with the default eight-target task but were not exposed to
visuomotor rotation before the recordings.

Data analysis

We selected single neurons for analysis that were activated during con-
tralateral arm movements and met two inclusion criteria: (1) well iso-
lated spikes and (2) stable recordings based on firing rates in the first hold
period (Holdl) for all trials. For the purposes of our analyses, it was
important to obtain as many trials as possible. Therefore, we included
only cells that were recorded reliably for N successful trials during learn-

HOLD?1, the monkey held the manipulandum in the center (origin) without moving it. The monkey kept holding at the origin after
TOforan additional delay (hold2) and moved after the go signal. Shown (rightmost design) is a learning trial with a rotation of 90°.
The red line shows arm movement (the LD), and the green line shows the resulting cursor movement. B, Session flow. Each day
(session) consisted of three different epochs, with standard trials prelearning and postlearning. For details of the experimental
design, see the study by Paz et al. (2003).

ing: N = 34 trials for M1 and N = 38 for SMA in monkey W; and N = 40
in monkey X, in which only M1 was sampled.

Behavioral performance during learning. The deviation in trajectories
was assessed by a signed normalized deviation (SND), calculated as a
directional deviation of the required hand direction minus the actual
hand direction (taken at peak velocity), normalized by the rotation
size in the session (—45, —90, +45, or +90°). See the learning curve
in Figure 2 B.

Fano Factor analysis. Fano Factor (FF) is a measure commonly used to
estimate process variability (Fano U., 1947). In our case, FF estimates the
trial-to-trial variability of spike counts of single cells in a given time
window (Lee et al., 1998; Shalden and Newsome, 1998). We calculate the
FF of a cell 7 in a selected group of trials p (a phase) for a time window T,
by the following:

variance(r;(p))

FF,(p) = mean(r(p))

(1)

where r;is a vector of the spike counts of cell i in the given time interval in
the sampled trials p. For a population of N cells, we calculate FF per phase
p by the following:

1 &
FR(p) = 32, FE(p) 2)

The FF (variance/mean) for a Poisson distribution (in which the variance
equals the mean) is 1. For processes that are sub- or supra-Poisson (more
or less regular than a Poisson process, respectively), the FF depends on
the observation length; for a very short observation, the FF tends toward
1, but as the length of the observation increases, the FF of a supra-/sub-
Poisson process increases/decreases, respectively (Nawrot et al. 2008).
Therefore, the dynamics and the relative change of FF between phases of
learning (all having a fixed time window) are more relevant than its
absolute values.

Relative FF. The FF during learning was normalized by dividing by the
averaged FFs measured during the prelearning standard task for each
direction separately:

1
N 2 FE(), (3)

D deD

where D is the directions that were sampled with at least seven trials each
and N, is the size of D.

Alternative FF calculation. For every FF computation of a given set
of trials, we eliminated two of the “suspected outlier” trials by either
(1) elimination of the two trials with the maximum and minimum
spike counts or (2) elimination of the two trials that deviated the most
from the average spike count of the given set of trials (see results in
Fig. 5B). An additional analysis compared FF computation for a
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Figure 2.  Typical dynamics of averaged FFs of M1 cells is temporally correlated to learning

dynamics, shown for monkey X (black; N,,; = 25) and monkey W (gray; N o, = 114). 4, The
average of relative FFs over all cells shows significant modulation of PA (left trace) but not of
MRA (right trace). Parallel lines denote averaged hootstrap results for FF of PA for each monkey
with corresponding colors. Large and small asterisks denote significant difference from chance
of 5% and 1%, respectively. B, Behavioral improvement during learning. Performance is ex-
pressed by averaged SND over all trials of each phase. Note that monkey X was a slow learner
and monkey W was much faster. Comparing the graphs in A4 and B shows the temporal
relationship between behavioral improvement and FF increase. €, Comparison of aver-
aged FF dynamics during learning recorded contralateral (con-lat.) to hand movement
(monkey W, solid black line, same data as in 4) to FF dynamics during ipsilateral (ipsi-lat.)
recordings, averaged over n = 107 cells (dashed black line with white circles). Parallel
solid and dashed lines denote averaged bootstrap results for the contralateral and ipsilat-
eral conditions, respectively. Note that here FF is given in absolute values. D, Behavioral
performance during repetition of movements to the same direction without visuomotor
rotation. Performance is expressed by angular error at peak velocity averaged over all
trials of each phase. Since there is no rotation, the angular error is not normalized as in B
above. Note that as expected, no improvement in performance is evident. E, Average FFs
across cells recorded during repetition sessions (rep.; N ., = 39) shows no modulation
along phases.

cells

smaller number of trials (with five, six, eight, or nine trials in each
calculation). This later analysis provides better temporal resolution
during learning at the expense of the reliability of the variability
estimation.

Definition of “phases” and sliding window technique

Phase p with n = 10 consecutive trials are in the range of [j* (p — 1) +
1...j%(p— 1)+ n],wherej = 2is the size, in number of trials, of a step
between phases. For instance, phase 1 consists of trials 1-10, phase 2 is
trials 3—12, and so forth.

According to this definition, recordings from M1 were included if they
consisted of at least 13 phases. A similar computation yielded 15 phases
for SMA recordings in monkey W and 16 phases for M1 recordings in
monkey X.

Note that neighboring phases include overlapping trials to different
degrees and that there are no overlapping data at distances of five phases
or more. For example, phase 1 and phase 6 show FF computed from trials
1-10 and 11-20, respectively. Therefore, the fact that neighboring phases
at a distance less than five are both significantly different from bootstrap
may be attributable to the overlapping data and were not considered as
independent variables.
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Since the window must be kept large enough for a reliable estimate of
FF, the sliding window is a compromise to provide a higher resolution of
the process dynamics by estimating FF in smaller steps compared to the
window size. Thus, we can observe any triplet of independent phases
(suchas 1, 6,and 11 or 3, 8, and 13) to examine FF modulation. In short,
the sliding window makes it possible to compare independent groups of
trials by enabling flexibility when selecting the correct phases to observe
the dynamics.

Tuning properties of single cells. We divided the cells into subgroups
according to their tuning properties.

(1) A cell was said to be “tuned” if (1) the result of a one-way ANOVA
showed a significant effect for direction ( p < 0.05) and (2) a cosine fit
[r(d) = a + b* cos(d — d,)] that exceeded R* = 0.55. Otherwise, a cell
was defined as “untuned.”

(2) The peak of the fitted cosine tuning curve was defined as the pre-
ferred direction (PD) of the cell. Each cell was also characterized by the
absolute distance of its PD from the LD, the direction used during the
learning session in which the cell was recorded.

Learning completion phase and maximal FF phase (“Maxphase”).
Learning completion phase (LCP) is a metric for learning completion
that is computed according to the SND as follows:

Errs( p) = mean, (SND(tr)) tr = {trials of phase p} is the average error
for phase p.

Limit = Errs(1) — 0.8 * (Errs(1) — Errs(Nppqges))> where Nj,, e is the
number of phases, is the limit for learning completeness, defined by 80%
of the difference between the initial error and the last error.

LCP = min,,(Errs( p) <limit) is the index of the first phase that crosses
the limit.

LCP was evaluated for all sessions in which the learning curves showed
consistent improvement (80% of the sessions in M1 recordings from
monkey W, 75% of the sessions in M1 recordings of monkey X, and 71%
of the sessions in SMA recordings from monkey W).

We examined the relationship between LCP and FF modulation. Cell ¢
was included in the analysis if (1) its averaged FF along learning was
larger than the averaged FFs in standard over all cells; (2) FFs showed a
considerable modulation, namely the following:

max(FFs) — min(FFs) .
=
max(FFs) + min(FFs) 7

(4)

and (3) LCP was defined.

Maxphase, is the phase in which FFs for cell ¢ peaked during learning,
denoted as FFy;, hase,, and LCP, is the LCP for the session in which cell
¢ was recorded.

Cells were divided into two groups with sizes N1 and N2 according
to their relationships between Maxphase and LCP for each cell:
Maxphase. < LCP_ or Maxphase. = LCP,. For each group, we evalu-
ated the variability index (VI):

Ni

1
variability index, VI; = N, +N, C;FFMMPMSM (5)

wherei =1, 2.

To test for a significant difference between these two groups, we
used a bootstrap technique as follows: in each simulation, we ran-
domly divided the cells into two groups and evaluated the VI for each
group. The differences VI,—VI, and N,-N, were tested against the
distributions of 1000 differences between simulated pairs of VIs
and Ns

Significance of modulation. We defined the FFs discussed above as the
“observed FFs”: bsFF, , p = 1 ... Npppee € = 1. . Ngiy Where N is the
number of cells and obsFF, is a vector of all FFs in phase p.

To test the significance of obsFF modulations along phases, we used
abootstrap technique across trials, computing 1000 simulated FFs per
cell. In each simulation, for each cell, we randomly chose 10 trials
(length of a phase) from all the learning trials (from the session in
which the cell was recorded) and computed the FF for the spike
counts in these trials, denoted as simFF__ [c = 1 .. number of cells,
s=1..1000].
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To evaluate obsFFP, we used two criteria: (1) a Z test to check whether
obsFF,, was significantly different from the distribution of 1000 simu-

lated averages calculated as follows:

1 Neells

E simFF, , (6)

cells c¢=1

simFF1(s) =

where s = 1.. 1000 and where for each simulation we averaged its sim-
ulated FFs over all cells; and (2) a Z test to check whether obsFFP was
significantly different from the distribution of the N_;;;’” simulated aver-
ages of N_, calculated as follows:

ells

ells

1000

simFF2(¢) = 1000 ZSimFFM, (7)
s=1

where ¢ = 1..N_y,
simulated FFs.

We considered a phase to be significantly different from chance if p
values were smaller than 1% under these two criteria. When the p value
was between 1% and 5%, significance is denoted by a small asterisk (even
if it was 1% for one of the two).

Significance of the temporal difference between two FF curves. We calcu-
lated the temporal difference (in phases) between two curves (averaged
FF values per phase) by the difference between their peaks. The peak for
each curve was obtained by two methods: (1) fitting a cosine function. A
good cosine fit ensures that both simulated groups approximately had
the same FF pattern of modulation as the real data, therefore making the
computation of a temporal shift meaningful; and (2) a generic peak-
finding algorithm: the phase with a maximum FF was detected ( P). The
peak was detected by a quadratic least-squares curve-fitting of phases
[P—1PP+1].

To test for a significant temporal difference between the two curves, we
ran a bootstrap analysis as follows: we pooled the data of the two curves
(FFs ofall cells from all phases). In each simulation, we randomly split the
data into two groups and computed the temporal difference between
them according to both peak-finding methods. We ran the simulation
1000 times and tested whether the temporal difference obtained accord-
ing to method 1(2) could come from the distribution of temporal differ-
ences computed by method 1(2) we obtained by bootstrap.

and where for each cell we averaged over all its

Results
Behavior
The behavioral task was reported by Paz et al. (2003) and is sum-
marized here in Materials and Methods and illustrated in Figure
1. Analyses of the monkeys’ behavior were also reported by Paz et
al. (2003). In brief, trajectory deviations were taken at peak ve-
locity and normalized to the magnitude of transformation (see
Materials and Methods). The deviations appeared to be the larg-
est for the target used in the learning epoch and decreased as a
function of angular distance from this target and as a function of
trial number after learning (Paz et al., 2003) (Fig. 2A). Thus, the
aftereffects showed limited generalization across the work space.
During the learning epoch itself, more than 10 trials, on aver-
age, were required to reach a behavioral performance plateau
with small and stable errors (Paz et al., 2003) (Fig. 2A). As in
other studies, learning consisted of two phases: a transient phase
during the first 10 trials, followed by a slower phase. The next
recording day, no aftereffects of the previous learning day were
observed. Furthermore, a different LD (see Fig. 1 legend) from
the previous day was always chosen to further ensure that learn-
ing occurred on a daily basis, making it possible to pool neurons
across recording days.

Neuronal data

We analyzed neuronal activity in two epochs of the trial: (1)
activity from 100 to 600 ms after target onset (TO; before the go
signal, when the animal is instructed to avoid any movement) was

Mandelblat-Cerf et al.  Learning-Related Variability in Motor Cortices

termed “preparatory activity” (PA); and (2) the activity around
MO (from 100 ms before to 400 ms after) was termed
“movement-related activity” (MRA). Note that we use these tra-
ditional terms for convenience. The first period is distinctly dif-
ferent from the second only by the design of animal training
(in the first, the monkeys are not allowed to move, and in the
second, they should move to reach success). This temporal
separation allows some separation of the process choosing the
action (from TO and on) and initiation of the response (from
go signal and on).

The sample totaled 139 cells (114 in monkey W and 25 in monkey
X) from M1 and 78 cells (all in monkey W) from the SMA. Criteria
for selecting cells are described in Materials and Methods.

The analysis focused on evaluating variability of trial-to-trial
neuronal activity during adaptation to visuomotor rotation.
Variability was assessed for spike counts of single cells, expressed by
the FF (see Materials and Methods). We show the dynamics of vari-
ability modulations by calculating averaged FF across populations of
cells (except for Fig. 4, which shows the FFs for single cells).

Analysis of neuronal activity in M1 and SMA-proper revealed
the specific dynamics of this variability. The sections below de-
scribe the dynamics, characterize the group of cells that were
primarily involved in the generation of these dynamics, and com-
pare the two cortical areas.

FF analysis of single-cell activity in M1

FF during PA versus MRA

Figure 2A compares the averaged variability across the sam-
pled population of cells during different epochs of the trial
shown separately for each of the two monkeys (black, monkey
W; gray, monkey X). For each monkey, it shows the relative FF
(see Materials and Methods), calculated separately for PA
(left) and MRA (right).

The figure shows that FF for PA increased in a series of con-
secutive phases. For monkey W, a significant increase was already
visible at phase 6 until phase 9, whereas for monkey X, the in-
crease was significant from phase 11 to phase 13. The phases with
a statistically significant increase are marked by asterisks (boot-
strap analysis; large asterisks, p << 0.01; small asterisks, p < 0.05;
see Materials and Methods). The figure also shows that increased
FFs were only observed during the PA epoch and not during
MRA (similarly, there were no significant FF changes during the
Hold1 period; data not shown). FF curves of monkeys W and X
peaked at phases 7.9 and 11.8, respectively, according to a cosine
fit and at phases 8.1 and 12.6 according to a generic peak-finding
algorithm (see Materials and Methods). A temporal difference of
3.9 and 4.5 phases in the first and second methods were signifi-
cant (p <0.01).

The increase emerged at different phases in the two monkeys.
To better understand this difference, we looked at the learning
curves of the two monkeys and computed the averaged direc-
tional error at peak velocity for each phase. These learning curves
are compared in Figure 2 B. Note that monkey W (black line) was
a faster learner; monkey X (gray line) showed little reduction in
directional error in the first five phases, whereas monkey W had
almost completed learning at this time.

To quantify learning dynamics, we calculated for each mon-
key and for each session the phase number at which the direc-
tional error was reduced by 80%. We called this phase the LCP
(see Materials and Methods). Monkey W showed an oversessions
averaged LCP of 6.2, and monkey X had an LCP of 9. This differ-
ence of 2.8 phases between the learning curves of the two mon-
keys is statistically significant (ANOVA, p < 0.05).
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Table 1. Relation between FF increase and learning completeness

J. Neurosci., December 2, 2009 - 29(48):15053-15062 * 15057

Percentage of cells’ Vi
Recording area Monkey, number of cells Maxphase > LCP Maxphase << LCP pvalue Maxphase > LCP Maxphase << LCP pvalue
M1 Monkey W, n = 33 76% 24% 1 3.13 0.88 1
Monkey X, n =12 75% 25% 5 3.67 0.83 5
Both monkeys, n = 45 75% 25% 1 3.27 0.95 1
SMA Monkey W, n = 42 23% 77% 1 0.75 29 1

Cells are divided to two groups according to the relationship between Maxphase and LCP for each cell: Maxphase > LCP or Maxphase << LCP. For each monkey and cortical area, the data show the percentage of cells and VI of each group.
The p value is the significance of the difference between the percentage of cells (on the left) and Vis (on the right) of the two groups.

“Cells were included if: (1) variability criterion: averaged FF along learning > averaged FF of STD over all cells; (2) modulation criterion (maxFF — minFF)/(maxFF + minFF) > 0.4; and (3) LCP was defined.

To further explore the apparent relationship between FF
modulation and improvement in performance, we investigated
the relationship between the phase in which FFs of single cells
reached its peak (Maxphase) and the LCP. Although the overall
correlation was weak;, a clear relationship was found when divid-
ing the cells into two groups, one with Maxphase < LCP (cells
that showed peak of FF modulation before LCP) and the other
with Maxphase = LCP. For each of the monkeys, we found that
the first group was significantly smaller than the second group
(monkey W, p < 0.01; monkey X, p < 0.05). Namely, in fewer
cells, Maxphase preceded LCP, and it had a significantly lower VI
(see Materials and Methods; statistical significance was p < 0.01
for monkey W and p < 0.05 for monkey X) than the second group
(Table 1). Thus overall, this analysis supports the notion that the
dynamics of neuronal variability are related to the dynamics of
learning. In both monkeys, variability in M1 was low in the early
learning trials when improvement was fast (Fig. 2 B). The increase
in FF did not emerge, in either monkey, before the end of this
fast-learning stage. However, the increase was not tightly coupled
to LCP epoch and could also occur in later phases of learning.

At the very end of the learning block, the FFs decreased again
to their initial values (monkey W, phase 10; monkey X, phase 14).
This profile of transient increased variability during the learning
block is termed here “typical FF dynamics during learning.”

In the sliding window technique, as stated previously, phases
that are at least five phases apart do not overlap; for example,
phases 3, 8, and13 correspond to groups of trials 5-14, 15-24, and
25-34. For every phase p (marked by an asterisk in the figures),
we can construct a triplet of phases [p — 5 p p + 5]. In all such
triplets, only phase p significantly increased while the other two
did not. Therefore, although the sliding window yields an overlap
between phases, each such triplet exhibits the typical dynamics
without any overlapping. In the example of the triplet [3,8,13] in
monkey W, FF did not increase above chance in the first and third
groups of trials but showed a significant increase for the second
group (Fig. 2A).

We tested FF of the PA in several conditions against the FF of
the cells shown in Figure 2A for monkey W. First, we compared
the FF modulations of these cells recorded in the contralateral
hemisphere to 107 cells that were recorded in the ipsilateral hemi-
sphere. Figure 2C (solid vs dashed black lines; absolute FF values
without normalization that was used in 2 A) shows that ipsilateral
activity failed to reach a significant level of modulation (boot-
strap, p > 0.1).

Second, some sessions served as a “repetition control,” which
entailed a one-target task without visuomotor rotation. These
were helpful to preclude the possibilities that the observed effect
was merely attributable to repetition of a given movement during
the learning epoch and that FF modulation can occur without an
improvement in performance taking place. Our findings clearly
show that although directional error did not change along the
repetitive movement executions (Fig. 2D), values of FF (~1.5,
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Figure3. Averaged FFs (top row) and PETHs (bottom row) during epochs around (4) T0 and
(B) MO for phases 3, 8, and 13. No difference between the phases was found around MO for
either PETHs or FFs (right column). Around TO, PETHs did not show any difference between the
phases, whereas FFs of phase 8 after TO deviated significantly above phases 3 and 13 (left
column, bottom row). The blue dashed line marks the time of event occurrence, and black lines
mark the time windows of PAand MRA, as defined in this work. Large and small asterisks denote
significant difference from chance of 5% and 1%, respectively.

computed from 39 cells) never deviated from chance during any
of the phases (Fig. 2E) and did not differ from FF of standard
trials (data not shown; bootstrap, p > 0.1).

To obtain a better understanding of the origin of FF dynamics,
we depict an additional analysis of the neuronal data from mon-
key W in Figure 3. The figure shows the averaged FFs in the top
row and perievent time histograms (PETHs) in the bottom row
for all sampled neurons of this monkey in 100 ms bins, around
TO (A) and around MO (B). The FFs and PETHs are shown for
three distinct phases: phases 3, 8, and 13. Only phase 8 (red)
showed high FF (see Fig. 2), whereas phases 3 (blue) and 13
(green) did not. Clearly, there was a significant FF increase only
during PA, and only in phase 8 in comparison to phases 3 and 13.
Note that this difference was not correlated with the firing rate
modulation as shown by the PETHs for the same time interval,
as there was no significant difference between the responses in
phases 3, 8, and 13 (ANOVA, p > 0.5). Figures 2 and 3 there-
fore show that FF modulations of the population of cells oc-
curred only during the preparatory epoch (PA). Figure 4
shows examples of these modulations in three single cells. For
cell 1, it shows the raster plots around TO (first row) and MO
(second row) and spike counts in each trial for PA and MRA,
respectively (Fig. 4A). Two red dashed lines delimit the trials
of phase 8, and the red circles mark spike counts. Figure 4 B
shows the FFs during PA for this cell (black line), depicting the
peak modulation in phase 8, whereas in MRA (gray line), no
significant changes in FF were observed. Red circles mark the
FFs of phase 8 in both cases.
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To explore possible relationships between spike counts and
FFs for this single cell, we examined phases 8 and 10 (delimited by
asquare bracket in the top right plot of Fig. 4 A). The spike counts
increased along the trials of phase 8 (to 14). The transition from
low counts to high counts in this phase is reflected by the high FF.
It could be claimed that the high FF is merely a result of the high
counts. However, this does not reconcile with the relationship
between spike counts and FF in phase 10, where the average spike
count was even higher (18.4) than in phase 8 (14) but the FF was
much lower (as seen in Fig. 4 B). In fact, FF in phase 10 was close
to FFs in the first few phases, when the spike counts were the
lowest (9.6). Therefore, the increase in FF in this cell was not
attributable to an increased spike count but rather caused by the
modulation from low to high spike count. Figure 4, C and D,
depict spike counts (Fig. 4C) and FFs (Fig. 4 D) of two other cells
that illustrate two additional ways for FF to increase because of
spike count modulations. FF may increase without a change in
spike count, but merely because of an increase in variability (Fig.
4C,D, top row) or a sudden and temporary decrease in spike
counts (Fig. 4C,D, bottom row). Altogether, the observed FFin a
given phase could not be predicted by the average spike counts in
that phase.
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the LD. 4, FF dynamics for monkey W (black, circle) and monkey X (gray, square), splitinto tuned
(solid lines) and untuned (dotted lines) cells. Tuned cells (monkey W, N, = 17; monkey X,
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denote significant difference from chance of 5% and 1%, respectively.

The remainder of the results focuses only on the PA (i.e., the
epoch that showed significant modulations of the FF).

Relationship of single-cell directional tuning and its FF dynamics
during learning

Figure 5A shows plots of FF values as a function of phase (as in
Fig. 2) calculated separately for tuned (solid lines) and untuned
(dotted lines) cells (see Materials and Methods), for each of the
two monkeys (monkey W, black with circles; monkey X, gray
with squares). The FF of tuned and untuned cells was not signif-
icantly different in the first and last phases (ANOVA, p > 0.1).
During learning, the tuned cells exhibited significantly more pro-
nounced typical FF dynamics than the untuned cells [i.e., an
ANOVA showed (p < 0.01) a significant difference between
tuned and untuned cells only in phases 6—8 in monkey W and
phases 11-13 in monkey X] (Fig. 5A).

To examine the relationship between FF modulation and di-
rectional tuning more closely, we divided the tuned cells into two
groups: the first had PDs close to the LD (“closely tuned”; 0-90°
from LD: note that LD is the actual direction of hand movement
used during learning), and the second had PD away from the LD
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(“distantly tuned”; —90 to 180°). To calculate with a sufficient
number of cells, we pooled all neurons from the two monkeys. As
mentioned above, we found that the temporal difference in dy-
namics of FF modulation between the two monkeys was related
to the dynamics of learning (Fig. 2). To compare the typical FF
dynamics in the two monkeys, we aligned the phases in which
modulation increased in the two monkeys according to the first
phase, which showed a significantly increased FF (“starred
phase”). Thus, we used the phases starting from five phases before
the starred phase until five phases after it. These phases are de-
noted 1,6-11,16 in Figure 4, B and C, for monkeys W and X,
respectively. As expected from Figure 4 A, there was a clear differ-
ence between the FF modulations for tuned cells (black) and
untuned cells (gray) after alignment (Fig. 5B, left trace). Further-
more, closely tuned cells (black) showed the typical FF modula-
tion, whereas the distantly tuned cells (gray) showed no
modulation. The clear difference as seen in Figure 5C (left trace)
is statistically significant ( p < 0.01).

Although the group of tuned cells exhibited a higher firing
rate, on average, than the untuned ones (Fig. 5B, right trace), as
was the case for the closely tuned cells compared with the dis-
tantly tuned cells (Fig. 5C, right trace), the results indicate that the
different firing rates could not be the direct source of FF modulation
during learning. This is apparent from the analysis that shows that
the firing rates do not show any significant modulation in different
phases, including the relevant ones (phases 6—38).

Controls for FF modulation

To further test the validity of FF modulations, we conducted
additional controls. First, we tested whether this typical modula-
tion of FFs during PA could also be observed in single sessions
(Fig. 6A). The modulation of the tuned cells (while naturally less
significant for fewer data) was evident even in single sessions.
Second, we controlled for the possibility that the increase in vari-
ability was not merely attributable to a change in the spike count
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of a single trial, but rather to an overall propensity for an increase
in variability during learning. To do so, FF was computed after
eliminating the two trials with the most extreme spike counts
using two approaches (see Materials and Methods). In both ap-
proaches (Fig. 6 B), we obtained FF values that were, by virtue,
somewhat lower than the original ones but maintained the typical
dynamics of modulation during learning (namely phases 7-9,
and only these were found to increase significantly above chance;
bootstrap, p < 0.01). Third, we computed the FF for different
window lengths (e.g., different number of trials in a phase; tested
for nine, eight, six, and five trials per phase). Note that as the
number of trials in a phase decreases, the FF captures more local
changes from trial to trial and cannot capture slower changes;
however, as shown in Figure 6C, for all window lengths we ob-
served similar dynamics of FF modulation during learning.

SMA analysis

The same analysis was applied to recordings of single-cell activity
in SMA (monkey W only). Figure 7A shows examples of two
single cells: spike counts of PA along trials (left) and the corre-
sponding FFs of PA along phases in black; and FFs of MRA in gray
(right). For each cell, the spike counts of the phase with the max-
imal FF are denoted in red circles and bounded by two red dash
lines. Averaged spike counts before, during, and after this phase
are denoted above the trace. Similarly to M1 cells (Fig. 4), FFs of
PA increase in SMA cells occur because of different patterns of
spike count modulations.

Figure 7B depicts the averaged FFs (top row) and spike counts
(bottom row) across all SMA cells. No significant dynamics were
found in the FFs and spike counts of MRA (Fig. 7B, blue traces).
The FF of the PA is depicted in Figure 7B (top row; red). As in
Figure 2 A, the typical FF dynamics during learning were evident
for SMA cells as well, without a significant modulation in the
spike counts (Figure 7B, bottom row, red). Neuronal activity
recorded ipsilateral to the movement (Fig. 7B, top row, dashed
red line) show weak and insignificant FF modulation (again, as in
M1) (Fig. 2C). However, there was a marked difference between
FF modulation in M1 and SMA; in SMA, the increase in FF oc-
curred earlier in learning and became significant as early as phase
4. For easy comparison, both FF curves are aligned together by
normalization in Figure 7C. In SMA (red), FFs started to diverge
almost immediately at the beginning of the learning block (phase
3), reached a maximum by phase 5, and converged to baseline by
phases 8—9. In M1 (black), it occurred later with a delay of about
three phases. This difference was statistically significant as found
by bootstrap analysis ( p < 0.05; see Materials and Methods).
Cosine fits for the SMA and M1 curves peaked at 4.4 and 7.9,
respectively, showing a marked temporal difference of 3.5 phases.
A generic peak-finding algorithm (see Materials and Methods)
resulted in peaks at 5.2 and 8.1, again showing a significant dif-
ference of 2.9 phases ( p < 0.05).

Inspection of the relationship between Maxphases of single
cells in SMA and LCPs (see Materials and Methods) showed, as
expected from Figure 7B, the opposite distribution of cells com-
pared with M 1. As shown in Table 1, for most SMA cells, the peak
of FF did not exceed LCP ( p < 0.05), whereas in M1 only few cells
had a Maxphase that preceded LCP. Moreover, this group of
SMA cells had a significantly higher VI than the group of SMA
cells that peaked after LCP (p < 0.01).

The SMA has weaker directional tuning properties in general,
and in our recordings specifically. Therefore, we did not study the
relationship of FF modulation and directional tuning in the SMA.
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Figure7.  FFanalysis in the SMA (N, = 78) shows the typical dynamics of PA that tempo-
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cells recorded contralateral to the moving hand display the typical dynamics (solid red),
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(blue). Bottom row, Averaged spike counts for PA (red) and MRA (blue) for contralateral SMA
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Discussion

This study shows dynamic modulations of trial-to-trial variabil-
ity of firing rate of single cells in the primary and premotor cor-
tices when monkeys adapt to a novel visuomotor rotational task.
We found that variability increased during learning and returned
to baseline as learning progressed. These changes occurred early
in learning in the SMA and only later in M1 after the learning
curve had almost reached its plateau. The modulations were re-
lated to the learning curves in each monkey and consistently
reflected the different learning rate of the two monkeys (the slow
learner showed the modulation later). The changes were much
more pronounced in cells with PDs close to the one direction
experienced during the adaptation. Importantly, the changes oc-
curred primarily in the premovement delay period, after the TO
but before the go signal. Below, we discuss these findings in detail
and propose possible roles for increased variability in learning
and memory.

Mandelblat-Cerf et al.  Learning-Related Variability in Motor Cortices

Premovement variability and motor states

The increased variability occurred preferentially in the premove-
ment delay period, when the animal could know the required
movement but was not allowed to initiate it. Numerous studies
have suggested that the activity in motor areas during this period
reflects preparation of movement (Kurata and Wise, 1988; Mitz
etal., 1991; Tanji and Mushiake, 1996; Wise et al., 1998; Paz et al.,
2003; Padoa-Schioppa et al., 2004).

It was recently shown that trial-to-trial variability during
this period reflected properties of the upcoming movement
(Churchland et al., 2006a) and is correlated with movement re-
action time (Nawrot et al., 2003; Churchland et al., 2006b). We
suggest that the increased variability during the delay period
could reflect several aspects of adjustments and consolidation of
the internal models that control sensorimotor associations
(Wolpert et al., 1995; Kawato and Wolpert, 1998, Shadmehr and
Krakauer, 2008). For example, modulation of variability might
represent adjustments of the forward model that the brain can
use to test different movement plans to minimize on-line correc-
tions. Alternatively, the variability may represent the process se-
lecting the association between an instruction (TO) and a new
specific action (movement direction) (Wise et al., 1996; Zach et
al., 2008). The association requires few (if any) changes in the
kinematics to dynamics transformations since there was no alter-
nation in the relationship between movement and muscle activ-
ity. We therefore hypothesize that in force-field adaptation tasks
(Shadmehr and Thoroughman, 1998; Li et al., 2001) that require
changes of kinematics to dynamics transformations, trial-to-trial
variability should be observed during movement as well.

Learning in motor cortical hierarchy

We report that changes in variability occur in the SMA in early
trials of learning and only later in M1. Several studies have shown
that the late period, but not the early period, is accompanied by
changes of activity in M1 (Karni et al., 1995; Sanes and Donoghue,
2000; Ungerleider et al., 2002; Kleim et al., 2004). These changes
may evolve even within one single session (Laubach et al., 2000; Li
et al., 2001; Cohen and Nicolelis, 2004). Specifically, in the same
task used here, changes in the neuronal activity in M1 arose in the
late learning trials (Paz et al., 2003). It was suggested that initial
learning is mediated by other areas such as the cerebellum, basal
ganglia, and parietal cortex (Doyon et al., 1997; Hikosaka et al.,
2002; Ungerleider et al., 2002), as well as the premotor cortices
and the SMA (Nakamura et al., 1998; Hikosaka et al., 2002;
Padoa-Schioppa et al., 2002; Lee and Quessy, 2003; Krakauer et
al., 2004). These findings suggest that the fast and slow stages of
learning (Karni et al., 1998; Krakauer et al., 2000) are represented
differentially in the two sampled cortical areas. The neuronal
changes during the early and fast improvement of behavior are
reflected in the SMA but not in M 1, whereas the slower stage with
moderate improvement of behavior is reflected more in M 1. This
finding supports previous results showing similar differences for
cross-neuron variability (but within a single trial) (Paz et al.,
2005). The trial-to-trial variability measured here also supports
the notion of hierarchical processing of motor learning. The first
stage is reflected in premotor areas (the SMA, in this case), and
onlylater in M1. We speculate that the SMA is involved directly in
finding a neuronal configuration that results in a minimal error
of trajectory, whereas M1 involvement is not as straightforward.
It might be involved in modifying the forward model (Wolpert et
al., 1995; Karni et al., 1998) or in consolidation, since new repre-
sentations were shown to exist when returning to standard con-
ditions after learning (Paz et al., 2003; Zach et al., 2008).
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The temporary increase in variability in each area may re-
flect increases in variability in the inputs or in the synapses to
the sampled cells (Rioult-Pedotti et al., 1998, 2000) because of
a gradual recruitment and reorganization of brain areas
(Imamizu et al., 2007) (e.g., from the parietal cortex to SMA
and other premotor cortices) (Andersen and Buneo, 2002),
and from SMA to M1.

Specificity for movement directions

Visuomotor tasks have been used extensively in various studies
(Abeele and Bock, 2001; Krakauer et al., 2005; Bock et al., 2009).
Here, we used only one movement direction during learning (out
of the eight possible ones). It is well known that this mode of
learning induces “local learning” with limited generalizations.
Namely, the effect on movement directions decays as a function
of the distance from the LD (the hand movement direction that
was experienced during learning). This was shown for humans
(Pine et al., 1996; Krakauer et al., 2000) and monkeys (Paz et al.,
2005).

We found that cells with a PD (Georgopoulos et al., 1982)
close to the LD (<<90°) showed increased trial-to-trial variability,
whereas the population of cells with a PD far from the LD did not
present this increase. This is in line with our previous findings
that these cells underlie the adaptation process (Paz et al., 2003;
Paz and Vaadia, 2004). Moreover, it provides an important in-
herent control and support for the hypothesis that this variability
reflects searching within a restricted range of putative states,
rather than a general increase in noise in the system that would be
exhibited in all neurons regardless of their tuning.

Suggested framework for motor learning

In a simple stationary deterministic network, under noiseless
conditions, there is a one-to-one correspondence between neu-
ronal configurations and actions; namely, a single configuration
always results in the same action. If the motor cortex is seen as the
output stage of such a control system, its activity should be fixed
and stable to generate precise and replicable movements. How-
ever, if the motor cortex is also part of an adaptive system, such
fixed activity would not allow flexibility and plasticity that can
cope with noise and changing conditions.

Using the concepts of attractor states (Hopfield, 1982; Hopfield
and Herz, 1995; Goldberg et al., 2004) it may be the case that
under constant conditions (control of highly stereotypical precise
movements) this network stays in a fixed point, which represents
a single neuronal configuration in the neuronal space. It was
recently suggested that redundancy in the motor cortex provides
robustness to noise in the system by allowing changes in neuronal
activity that do not significantly affect behavior. Thus, the initial
low trial-to-trial variability (which we observed) has been defined
as “background” variability, which reflects a stable optimal man-
ifold (rather than a single point) in the neuronal space in which
all points produce a similar end result, but with different motor
commands (Rokni et al., 2007).

This approach is attractive since trial-to-trial variability, while
slightly impairing accuracy (Chestek et al., 2007), can facilitate
plasticity. When confronted with a novel sensorimotor environ-
ment (like visuomotor rotation), the neuronal configuration is
no longer optimal. Variability facilitates plasticity by allowing the
network to leave the current configuration and search for a new
appropriate configuration (Sutton and Barto, 1998). We suggest
that the increase in variability during learning reflects this search,
and when a new appropriate configuration is found, variability
decreases once again. Furthermore, the increase to relatively large
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variability during learning could serve to prevent convergence to
local minima and thus may make it possible to achieve optimal
neuronal configurations (Kirkpatrick et al., 1983).

In summary, this notion implies that the observed variability
facilitates learning since the required transitions can end when
one of many optimal solutions spanned by the stable optimal
manifold (network configurations) is reached, rather than a sin-
gle stable point.

Conclusion

An adaptive system like the brain is required to perform as accu-
rately as possible and, at the same time, still adapt to ongoing
changes. This induces a natural tension between the need for
reliable (stable) neuronal configurations and (less stable) neuro-
nal plasticity that enables adaptation and learning. Here, we sug-
gest that variability represents a motor learning mechanism in
which the system can balance these opposing requirements using
limited and controlled variability. It allows for searching, reaching,
and remaining in an optimal manifold with appropriate neuronal
configurations that preserve reasonably accurate performance. This
may serve as the basis for acquisition and consolidation of desired
neuronal states, a mechanism that serves learning and memory of
reaching movements.
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