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Top-Down Activation of Shape-Specific Population Codes in
Visual Cortex during Mental Imagery
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Visual imagery is mediated via top-down activation of visual cortex. Similar to stimulus-driven perception, the neural configurations
associated with visual imagery are differentiated according to content. For example, imagining faces or places differentially activates
visual areas associated with perception of actual face or place stimuli. However, while top-down activation of topographically specific
visual areas during visual imagery is well established, the extent to which internally generated visual activity resembles the fine-scale
population coding responsible for stimulus-driven perception remains unknown. Here, we sought to determine whether top-down
mechanisms can selectively activate perceptual representations coded across spatially overlapping neural populations. We explored the
precision of top-down activation of perceptual representations using neural pattern classification to identify activation patterns associ-
ated with imagery of distinct letter stimuli. Pattern analysis of the neural population observed within high-level visual cortex, including
lateral occipital complex, revealed that imagery activates the same neural representations that are activated by corresponding visual
stimulation. We conclude that visual imagery is mediated via top-down activation of functionally distinct, yet spatially overlapping

population codes for high-level visual representations.
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Introduction
High-level cognitive functions depend on interactions between
multiple levels of processing within distinct, yet highly intercon-
nected brain areas. In particular, interactions between perceptual
representations coded within posterior cortical regions and ante-
rior control systems in prefrontal cortex are thought to underlie
goal-directed attention (Desimone and Duncan, 1995), working
memory (Ranganath and D’Esposito, 2005), and, more generally,
executive control (Duncan, 2001; Miller and Cohen, 2001) and
conscious awareness (Dehaene et al., 1998; Baars and Franklin,
2003). Here, we explore the precision of top-down access to per-
ceptual representations during mental imagery. Using neural
classification procedures to characterize patterns of brain activity
associated with visual imagery, we demonstrate that top-down
mechanisms can access highly specific visual representations in
the complete absence of corresponding visual stimulation.
During normal visual perception, input from the retina selec-
tively activates specific population codes representing distinct
perceptual experiences. Each of the seemingly infinite number of
perceptual states that we can experience is differentiated by the
unique pattern of neural activity distributed across a specific sub-
population of cortical neurons. Importantly, the neural machin-
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ery engaged by direct visual stimulation is also accessed in the
absence of sensory input. For example, imagining a visual scene
activates the visual cortex, even when the eyes are closed (Kosslyn
etal., 1995), and functional deactivation of visual cortex degrades
the quality of such internally generated images (Kosslyn et al.,
1999). Similar to normal perception, the neural responses to
mental imagery are differentiated according to the content of the
experience. Imagining faces or places differentially activates vi-
sual areas associated with perception of actual face or place stim-
uli (Ishai et al., 2000; O’Craven and Kanwisher, 2000; Mechelli et
al., 2004). In this respect, mental imagery has been considered as
a special case of perceptual access (Kosslyn et al., 2001): whereas
normal perception is driven by sensory input, imagery is trig-
gered by internal signals from higher cognitive centers, such as
the prefrontal cortex (Mechelli et al., 2004). Although top-down
activation of visual cortex is well established (Miller and
D’Esposito, 2005), the extent to which internally generated activ-
ity in visual cortex resembles the fine-scale population coding
responsible for stimulus-driven perception is unknown. Here we
show that top-down mechanisms for visual imagery access the
same distributed representations within the visual cortex that
also underlie visual perception.

Using functional magnetic resonance imaging (fMRI), we
measured changes in brain activity while participants imagined
or viewed the letter “X” or “O” (see Fig. 1), and then applied
multivoxel pattern analysis (MVPA) (for review, see Haynes and
Rees, 2006; Norman et al., 2006) to determine whether observed
activation patterns could reliably discriminate between different
states of visual imagery, and/or stimulus-driven perception. Fur-
thermore, by extending the logic of the machine-learning ap-
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Figure 1.  The experimental design. A, During the imagery task, participants were cued (via
either a high or low pitch auditory tone) on a trial-by-trial basis to imagine either X or 0. The
intertrial interval (ITI) was randomized between 3 and 12 s. B, During the perceptual task,
participants were instructed to watch a series of visually presented letter stimuli (X or 0; dura-
tion 250 ms, ITI3—12's) and press the same button following the presentation of each stimulus.

proach, we were also able to formally compare activity patterns
associated with visual imagery and veridical perception. In our
experiment, accurate cross-generalization between the activation
patterns in visual cortex underlying perception and imagery con-
firmed that top-down visual coding shares significant similarity
to the corresponding visual codes activated during stimulus-
driven perception.

Materials and Methods

Participants and behavioral task. Participants (15; 6 female; aged 20-38;
right-handed) were screened for MR contraindications and provided
written informed consent before scanning. The Cambridge Local Re-
search Ethics Committee approved all experimental protocols.

The experiment was conducted over six scanning runs. Each run con-
tained one block (24 randomized trials; ~4 min) of each task: imagery
task and perceptual task (Fig. 1A, B). During the imagery task, partici-
pants were instructed via an auditory cue every 3-12 s to imagine either
the letter X or O (Fig. 1 A). During the perceptual task, a letter (X or O,
randomly selected) was presented for 250 ms every 3-12 s (Fig. 1B).
Participants responded as quickly as possible to each letter stimulus with
asingle button press (right index finger) regardless of letter identity. The
perceptual task was presented first during the first scanning run, and in
each subsequent run task order was randomized. Each block commenced
with an instruction indicating the relevant task (e.g., “Imagery”), and
blocks were separated by a 16 s rest period.

Visual stimuli were viewed via a back-projection display (1024 X 768
resolution, 60 Hz refresh rate) with a uniform gray background. Visual
Basic (Microsoft Windows XP; Dell Latitude 100L Pentium 4 Intel 1.6
GHz) was used for all aspects of experimental control, including stimulus
presentation, recording behavioral responses (via an MR-compatible
button-box) and synchronizing experimental timing with scanner pulse
timing. Central fixation was marked via a black point (~0.2°) at the
center of the visual display. Visual stimuli used during the perceptual task
were black uppercase letters X or O in Arial font (~3 X 4°). The cue
stimulus used to direct visual imagery was either a high (600 Hz) or low
(200 Hz) pitched tone presented for 100 ms via an MR-compatible ear-
phones. Participants were instructed before scanning to associate the
high-pitch tone with the letter X, and the low-pitch tone with the letter O.
Participants were also instructed to generate mental images as similar as
possible in actual detail to the visual stimuli.
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fMRI data acquisition. Functional data (T2*-weighted echo planar im-
ages) were collected using a Siemens 3T Tim Trio scanner with a 12-
channel head coil. Volumes consisted of 16 slices (3 mm) acquired in
descending order [repetition time = 1 s; echo time = 30 ms; Flip angle =
78°]. The near-axial acquisition matrix (64 X 64 voxels per slice; 3 X 3 X
3 mm voxel resolution with a 25% gap between slices) was angled to
capture occipital, posterior temporal and ventral prefrontal cortex. The
first eight volumes were discarded to avoid T1 equilibrium effects. High-
resolution (1 X 1 X 1 mm) structural images were acquired for each
participant to enable coregistration and spatial normalization.

Univariate data analysis. Data were analyzed initially using a conven-
tional univariate approach in SPM 5 (Wellcome Department of Cogni-
tive Neurology, London, UK). Preprocessing steps were: realignment,
unwarping, slice-time correction, spatial normalization [Montreal Neu-
rological Institute (MNI) template], smoothing (Gaussian kernel: 8 mm
full-width half-maximum) and high-pass filtering (cutoftf = 64 s).
At the first level single-participant analysis, events from each of the six
scanning runs were modeled using four explanatory variables: X e, ceptions
Operception Ximagery Oimagery These were derived by convolving the on-
sets for imagery and perceptual events with the canonical hemodynamic
response function. Constant terms were also included to account for
session effects, and serial autocorrelations were estimated using an AR(1)
model with prewhitening. Images containing the 8 parameter estimates
for each condition were then averaged across scanning runs, and entered
into a second-level random-effects analysis. The results from the second-
level group analysis were corrected for multiple comparisons using the
false discovery rate (FDR) of 5%.

Multivoxel pattern analysis. The principal aim for MVPA is to incor-
porate information distributed across a set of voxels that might discrim-
inate between two or more experimental conditions (Haynes and Rees,
2006; Norman et al., 2006). Here, we adapted a correlation approach to
MVPA (Haxby et al., 2001; Williams et al., 2007). Because this approach
to neural classification is typically based on effect-size estimates of con-
tinuous regression functions (i.e., B parameters, see Williams et al.,
2007), correlation-based methods readily handle event-related fMRI
data. Furthermore, unlike other approaches to neural classification in-
cluding linear discriminant analysis and support vector machines, corre-
lation is scale-and mean-level-invariant, and therefore, not directly in-
fluenced by homogeneous differences in condition-specific activation
levels. This is important because it is the pattern of differential activity,
not magnitude differences, that constitutes the neural signature for dif-
ferential population coding.

To train our linear classifier, we first estimated the 3 parameters for a
subset of training data (five of the six scanning runs) using the same
design matrix described for the univariate analyses. For each voxel, the
relative activation bias associated with imagining (or viewing) X relative
to imagining (or viewing) O was then calculated by subtracting the mean
B estimates for the two conditions. The resultant set of voxel biases were
then scaled by the multivariate structure of the noise. Each set of voxel
biases was divided by a squared estimate of the voxelwise error covari-
ance matrix. This was derived by first calculating the residual variance
(i.e., observed-fitted data) of the training data at each voxel and then
estimating the covariance of the residual using a shrinkage procedure
(Kriegeskorte et al., 2006). The generalizability of the estimated training
vector of weighted voxels biases was then tested against the pattern of
voxel biases observed within the test data set. The 8 parameters were
estimated for the test data using the corresponding portion of the design
matrix, and the condition-specific contrast [i.e., imagining (or viewing)
X minus imagining (or viewing) O] was calculated for each voxel. The
test contrast vector was then divided by a training-independent estimate
of the noise, the squared error covariance of the test data. The accuracy of
classification was indexed by the correlation across space between the
training values for each voxel, and those calculated for the test data for
training. Correlation coefficients above zero were interpreted as correct
classifications of the (X—O) bias pattern, whereas coefficients of zero or
below were recorded as incorrect classifications. The overall percent cor-
rect classification score was then calculated from across the six possible
train-test permutations. Second level group analyses were then per-
formed on mean accuracy scores.
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Figure 2.  Activation results for the conventional univariate analyses. 4, During the imagery task, comparisons against baseline confirmed relative increases in activity distributed throughout
visual cortex, including cuneus (Cu), lingual gyrus (LiG) and middle temporal gyrus (MTG). Event-related increases were also observed within superior temporal sulcus/Heschl's gyrus (STG/HG). B,
During the perceptual task, a similar network of brain areas was also activated, with peaks in inferior occipital gyrus (10G), middle occipital gyrus (MOG), middle temporal gyrus (MTG) and fusiform
gyrus (FG). Beyond visual cortex, precentral gyrus (PrG) was also active during the perceptual task. All activation maps are corrected for multiple comparisons ( pj,, << 0.05). Shaded brain areas were
beyond the functional data acquisition field of view within at least one subject, and therefore not included in the group analyses. The calcarine sulcus (CcS) is indicated by the black line superimposed

over coronal slices.

All pattern analyses (implemented in Matlab using customized proce-
dures and SPM 5 for image handling) were performed on minimally
preprocessed data to preserve the participant-specific high spatial fre-
quency information used to index differential population codes (Haxby
et al., 2001; Haynes and Rees, 2005; Kamitani and Tong, 2005). Func-
tional images were spatially aligned/unwarped and slice-time corrected,
but not spatially normalized or smoothed. The time-series data from
each voxel were high-pass filtered (cutoff = 64 s) and data from each
session were scaled to have a grand mean value of 100 across all voxels
and volumes. Each classifier was based on the pattern of activity observed
within a sphere, radius = 10 mm, corresponding to ~90 voxels (median
of 91 voxels across all regions, and all participants). Initially, we per-
formed ROI analyses on predefined regions-of-interest (ROIs); however,
to explore the data more generally, we also performed a searchlight pro-
cedure (Kriegeskorte et al., 2006) (see also Haynes et al., 2007; Soon et al.,
2008). During this multiregion MVPA, the ROI was centered on each
cortical voxel in turn, and classification accuracy was recorded at the
central voxel to construct a discrimination accuracy map. Accuracy maps
for each discriminative analysis were then spatially normalized to the
MNI template, and assessed via a random-effects group analysis. As with
the standard univariate analyses, the group results were corrected for
multiple comparisons (FDR <5%).

Results

Activation analysis of visual imagery and

stimulus-driven perception

Before more detailed pattern analyses, we first examined the data
for overall changes in regional activation levels within each task
(imagery vs baseline; perception vs baseline), and also between
the stimulus conditions within each task (Xjagery V8 Oimagerys
Xperception V8 Operception)- These conventional univariate analyses
revealed significant activation of visual cortex during both imag-
ery and perception. Activation peaks were observed within the
calcarine sulcus, cuneus and lingual gyrus, and extending anteri-
orly along the inferior/middle occipital gyri, above-baseline ac-
tivity was also detected in fusiform and middle temporal gyri (Fig.

2). The cue-related visual response during the imagery task is
consistent with previous evidence for selective activation of visual
cortical areas during visual imagery (Kosslyn et al., 1995, 1999).
Anterior insula/frontal operculum (al/fO) was also activated
during both tasks, and superior temporal sulcus/Heschl’s gyrus
were activated during the imagery task (in Fig. 2A), presumably
owing to the presence of the auditory cue stimuli. Above-baseline
activity was also observed within the precentral gyrus during the
perceptual task, in line with the motor demands associated with
the response to visual stimuli. Contrasting imagery and
perception-related activity revealed greater activation of early vi-
sual cortex, including calcarine sulcus, during imagery relative to
perception (supplemental Fig. 1A, available at www.jneurosci.
org as supplemental material); and conversely, inferior/middle
occipital gyri were activated more robustly during the perceptual
task relative to imagery (supplemental Fig. 1B, available at
www.jneurosci.org as supplemental material). Importantly, no
differences were observed between the magnitude of activity as-
sociated with either stimulus type during the imagery task
X, vs O, ) or the perceptual task (X Vs

imagery imagery perception

perception/*

Imagery and perceptual coding in area lateral

occipital complex

For the principal analyses, we examined patterns of neural activ-
ity using a train-test regime (schematized in Fig. 3 A, B) to identify
imagery (and perceptual) coding within anterior and posterior
subregions of the lateral occipital complex (aLOC, pLOC) (Fig.
3C). These regions were derived from a previously published
detailed analysis of category-specific processing areas within the
ventral visual cortex (Spiridon et al., 2006). Coordinates from
this study were averaged across left and right hemispheres for
symmetry about the mid-sagittal plane, resulting in the following
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Figure 3.

Region-of-Interest

A, B, Train-test neural classification was used to index population coding during visual imagery () and perception (B). C, Pattern analyses were performed in aLOC and pLOC of both

hemispheres, shown here on a rendered brain surface. Shading indicates the regions beyond the functional data acquisition field of view. D, Differential population coding of the two alternative
states of imagery was observed within all subregions of area LOC. E, During the perceptual task, there was a trend toward above-chance discrimination across all subregions of LOC, however,
perceptual classification was only significantly above-chance within the left and right pLOC. Error bars represent == 1 SEM, calculated across participants.

xyz coordinates in MNI space: =37, —51, —14 (aLOC); *45,
—82, —2 (pLOC).

Classification accuracy data for imagery and perception in
area LOC are shown in Figure 3, D and E, respectively. During the
imagery task, classification of imagery states was significantly
above chance (50% classification accuracy) within all LOC sub-
regions [aLOC left: t,, = 3.4, p = 0.004; aLOC right: t,, = 4.9,
p <0.001; pLOC left: #,, = 3.3, p = 0.005; pLOC right: t,,, = 2.9,
p = 0.012]. In the perception task, discrimination was only sig-
nificantly above chance within the pLOC [left: ¢, = 2.6,p =
0.021; right: t,, = 3.4,p = 0.004; for all comparisons against
chance inaLOC, p > 0.052]. Classification accuracy data for both
tasks within each of the ROIs were also analyzed using a three-
way repeated-measures ANOVA, with factors for task (imagery,
perception), ROI (aLOC, pLOC), and laterality (left, right). Al-
though there were trends toward a main effect of laterality ( p =
0.053), and an interaction between ROI and laterality (p =
0.066), no other terms approached significance ( p > 0.126).

Cross-generalization: predicting imagery from a perceptual
classifier in LOC

Accurate discrimination between patterns of visual activity asso-
ciated with imagining the letters X and O provides evidence for
differential population coding of imagery states within higher-
level visual cortex. Moreover, the spatial overlap between coding

for imagery and stimulus-driven perception in LOC is consistent
with the hypothesis that imagery is mediated via top-down acti-
vation of the corresponding perceptual codes. However, the spa-
tial coincidence of imagery and perceptual discrimination alone
does not strictly require access to a common population code. It
remains possible that imagery activates population codes in vi-
sual cortex that are functionally distinct from the visual codes
activated in the same cortical areas during stimulus-driven per-
ception. To test the relationship between population coding of
imagery and stimulus driven perception more directly, we next
examined whether a perceptual classifier trained only on patterns
of visual activity elicited by visual stimulation could predict the
contents of visual imagery during the imagery task. Cross-
generalization from visual perception to imagery should be pos-
sible only if both mechanisms access a common representation.
First, we trained a perceptual classifier to discriminate percep-
tual states from visual activity observed during the perceptual
task, and then using the trained perceptual classifier, we sought to
classify imagery states during the imagery task (Fig. 4A). Focus-
ing this cross-generalization analysis on the predefined ROIs de-
scribed above (Fig. 4 B), we found that the neural classifier trained
on perceptual data from the left aLOC could accurately discrim-
inate between imagery states [t,, = 3.4, p = 0.004; for all other
ROIs, p > 0.354 (Figure 4C)]. Successful cross-generalization
from perception to mental imagery confirms that the neural code
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Cross-generalization MVPA reveals the coding similarity between visual imagery and perception. 4, First, a perceptual classifier was trained to discriminate between patterns of visual

activity associated with alternative perceptual conditions during the perceptual task. Second, the perceptual classifier was used to predict the imagery state associated with visual activity observed
during the imagery task. B, Cross-generalization pattern analyses were performed in aLOCand pLOC of both hemispheres, shown here on a rendered brain surface with shading toindicate the regions
beyond the functional data acquisition field of view. C, Accurate cross-generalization between perception and imagery confirms significant similarity between respective population coding in the

left aLOC. Error bars represent = 1 SEM, calculated across participants.

underlying visual imagery shares significant similarity to the cor-
responding code for veridical perception.

Imagery and perceptual coding in other cortical areas

So far, we have examined population coding only within pre-
defined ROIs for high-level visual cortex. Next, we further ex-
plore our data using a searchlight MVPA procedure (Krieges-
korte et al., 2006, 2007; Haynes et al., 2007; Soon et al., 2008) to
identify other cortical regions coding for alternative states of vi-
sual imagery and perception. Classification accuracy maps for
each discrimination condition (imagining X vs imagining O; and
seeing X vs seeing O) were assessed at the group level via a one-
sample ¢ test comparison against chance [50% classification ac-
curacy: for other examples of random-effects second level evalu-
ation of MVPA searchlight data, see Haynes et al. (2007); Soon et
al. (2008)]. Above-chance discrimination between imagined let-
ters X and O was observed in activation patterns from visual
cortical areas during the imagery task (Fig. 5A), with discrimina-
tive peaks observed within lingual gyrus, and extending anteri-
orly along inferior occipital gyrus, in and around pLOC, to the
fusiform regions including aLOC. As expected from previous
evidence of stimulus-driven activation of visual population codes
(Haynes and Rees, 2005; Kamitani and Tong, 2005; Williams et
al., 2007; Kay et al., 2008), training a perceptual classifier on
visual activity during the perceptual task also resulted in above-
chance prediction as to whether participants were viewing the
letter X or O, with distinct discrimination peaks within inferior
and middle occipital gyri (Fig. 5B).

Overall, imagery discrimination was more distributed
throughout visual cortex relative to perceptual discrimination. In
particular, above-chance imagery classifications were observed
throughout higher levels of the visual processing hierarchy, in-

cluding anterior portions of inferior occipital gyrus and fusiform
cortex corresponding to aLOC. Nevertheless, despite these
trends, there were no significant differences between imagery and
perceptual classification results, and even at a more liberal statis-
tical threshold ( p < 0.01, uncorrected) there was only a trend
toward greater discrimination between imagery states relative to
perception within left superior occipital gyrus and middle occip-
ital gyrus (supplemental Fig. 2, available at www.jneurosci.org as
supplemental material). For completeness, we also explored our
principal searchlight results at a less stringent statistical threshold
(p < 0.01, uncorrected). These exploratory tests recapitulated
the general pattern of above-chance classifications presented in
Figure 5, with additional hints toward accurate imagery classifi-
cation in earlier visual cortex, including calcarine sulcus (supple-
mental Fig. 3A, available at www.jneurosci.org as supplemental
material), and trends toward perceptual classification in higher
visual areas, including more anterior occipital cortex corre-
sponding to aLOC (supplemental Fig. 3B, available at www.
jneurosci.org as supplemental material). Finally, searchlight
analysis of cross-generalization classifications did not reveal any
discriminative clusters that survived correction for multiple
comparisons; however, trends toward accurate imagery discrim-
ination from a perceptual classifier were observed in inferior/
middle occipital gyrus (supplemental Fig. 3C, available at www.
jneurosci.org as supplemental material).

Beyond visual cortex, above-chance classification accuracies
were also observed within the anterior al/fO during both the
imagery and perceptual task. Exclusive to the imagery task, and in
line with our use of two distinct auditory tones to cue the gener-
ation of visual images, MVPA of superior aspects of the temporal
lobe, corresponding to primary auditory cortex (Rademacher et
al., 2001), also discriminated between the two imagery condi-
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Figure 5.  Population coding during visual imagery and perception. 4, Searchlight MVPA revealed differential population coding of the two alternative states of imagery within the high-level
visual areas, including inferior occipital gyrus (10G), middle occipital gyrus (MOG), fusiform gyrus (FG) and middle temporal gyrus (MTG). Searchlight analyses also identified discriminative clusters
insuperior temporal gyrus/Heschl’s gyrus (STG/HG), and anterior insula/frontal operculum (al/f0). B, Searchlight MVPA of visual perception revealed a similar network of discriminative clusters, with
the exception of STG/HG. Classification accuracies are shown for voxels that survived correction for multiple comparisons (FDR <<5%), and shading indicates brain areas that were beyond the
functional data acquisition field of view within at least one subject, and therefore notincluded in the group analyses. For reference, anterior lateral occipital complex (aLOC), posterior lateral occipital

complex (pLOC) and calcarine sulcus (CcS) are superimposed in black.

tions. To examine more explicitly imagery, and perceptual, cod-
ing beyond the visual cortex, but within the field of view of our
relatively limited functional acquisition, we also performed ROI
analyses centered over previously defined al/fO [£36, 18, 1, in
Duncan and Owen (2000)]. Classification performance was
above chance for both imagery and perception within the right
al/fO (imagery: t,, = 3.0, p = 0.010; perception: t,, = 3.2, p =
0.006), but not in the corresponding regions of the left hemi-
sphere (p > 0.240). However, despite the trend toward more
accurate classification within the right, relative to left al/fO, an
ANOVA (factors for task: imagery, perception; and laterality: left,
right) did not reveal any significant terms ( p > 0.142).

Discussion

These data demonstrate that visual imagery activates content-
specific neural representations in the same regions of visual cor-
tex that code the corresponding states of stimulus-driven percep-
tion, including LOC. Moreover, using a cross-generalization
approach to formally compare differential neural patterns asso-
ciated with perception and imagery, we further demonstrate that
top-down and stimulus-driven mechanisms activate shared neu-
ral representations within high-level visual cortex.

The visual coding properties observed in this study are con-
sistent with previous evidence implicating mental imagery as a
special case of perception in the absence of the corresponding
sensory input (as for review, see Kosslyn et al., 2001). Previous
neuroimaging evidence reveals how mental imagery activates to-
pographically appropriate regions of perceptual cortex. At a
global level, visual, auditory and somatosensory imagery selec-
tively activate respective visual (Kosslyn et al., 1995), auditory
(Zatorre et al., 1996) and somatosensory (Yoo et al., 2003) corti-
cal areas. Within the visual modality, imagery at distinct spatial
locations has been shown to activate the corresponding areas of
retinotopically specific cortex (Kosslyn et al., 1995; Slotnick et al.,

2005; Thirion et al., 2006). Finally, beyond retinotopically orga-
nized earlier visual cortex, content-specificity has also been ob-
served for category-selective areas of higher-level extrastriate cor-
tex (Ishai et al., 2000; O’Craven and Kanwisher, 2000; Mechelli et
al., 2004). However, to date, no studies have examined imagery-
driven activation of overlapping neural populations. Conse-
quently, the pattern-analytic methods used here extend previous
imagery studies to show that top-down mechanisms engaged
during mental imagery are capable of accessing highly specific
population codes distributed across functionally distinct, yet spa-
tially overlapping, neural populations in higher-level visual
cortex.

The degree of neural coordination required for detailed men-
tal imagery presents a major computational challenge, and exem-
plifies the wider issue of how top-down control mechanisms can
access precise representations within distant cortical areas. In-
deed, if top-down control signals only required selectivity be-
tween anatomically distinct neural populations, functional con-
nectivity could be mediated via relatively coarse-grained
anatomical pathways linking distinct neural structures. However,
the problem of selective access to overlapping representations
presents a far greater connective challenge. This problem is fur-
ther compounded if coding units within control areas are flexible,
adaptively representing different parameters depending on task-
demands (Duncan, 2001). The results of the current study pro-
vide evidence that the brain can indeed meet this challenge, ac-
cessing specific population codes in perceptual cortex during
visual imagery. The goal for future research will be to reveal the
precise mechanisms underlying top-down control over spatially
overlapping visual representations.

The critical role of extra-striate cortex, including area LOC, in
visual shape perception is uncontroversial (Reddy and Kan-
wisher, 2006). However, increasing evidence for interactions be-
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tween the various sensory modalities challenges the notion of
purely unimodal perceptual cortex (Driver and Noesselt, 2008).
For example, area LOC has been shown to integrate visual and
tactile information during shape perception (Amedi et al., 2001).
In the current study, auditory tones were used to manipulate the
contents of visual imagery. As a likely consequence of our choice
of cue stimuli, pattern analysis of the event-related activity within
auditory cortex discriminated between the two imagery condi-
tions. However, if auditory stimuli could also drive tone-specific
activation of visual cortex, then above-chance classification of
imagery states from a neural classifier trained on the cue-related
response in visual cortex could, in principle, be driven by
stimulus-driven cross-modal effects. Although we are unaware of
any evidence for tone-specific coding in area LOC, the possibility
that a small subset of auditory neurons within this highly visually
responsive brain area cannot be ruled out. Nevertheless, even if
auditory coding was robustly manifest within area LOC, our
cross-generalization results argue against a simple stimulus-
driven cross-modal account. Above-chance discrimination of
imagery states from a classifier trained only on perceptual data
from LOC implies that there were significant similarities in the
response patterns observed during imagery and visual percep-
tion. This degree of similarity would not be expected from a
cross-modal response driven purely by the auditory properties of
the imagery cues. In this respect, the cross-generalization results
extend beyond simple neural decoding, which could be based on
any difference between the two imagery conditions, to provide a
direct link between the differential patterns observed during im-
agery and visual perception.

Our results also provide a more general insight into the preci-
sion of top-down mechanisms in the cerebral cortex. Although
the precision of top-down control is a fundamental neurophysi-
ological parameter in models of interregional interaction and
integration, the evidence for top-down modulation of posterior
brain areas is generally limited to topographical specificity. For
example, while fMRI studies reveal top-down activation of func-
tionally distinct, and content-specific, cortical regions in the ab-
sence of corresponding visual input during attentional control
(Chawla et al., 1999; Ress et al., 2000; Giesbrecht et al., 2006;
Slagter et al., 2007), evidence for top-down access to overlapping
perceptual codes is less clear. In recent years, MVPA has been
used to demonstrate that selective attention can modulate func-
tionally specific neural codes elicited during on-going visual
stimulation (Kamitani and Tong, 2005, 2006). Even more re-
cently, Serences and Boynton (2007) examined activation pat-
terns associated with attending to either one of two directions of
motion within dual-surface random dot displays presented either
bilaterally, or unilaterally. They found that the direction of at-
tended motion could be decoded from activation patterns within
both left and right visual cortex, even when the perceptual input
was only presented to one visual field (Serences and Boynton,
2007). Finally, recent evidence also demonstrates that emotion-
specific information contained with human body stimuli modu-
lates specific subpopulations within body-selective visual cortex
(Peelen etal., 2007), which may also arise from top-down control
mechanisms. Using visual imagery, we provide evidence for
template-specific population coding in visual cortex that cannot
be explained by any differential input to the visual system. These
results demonstrate that the same patterns in early visual cortex
are reproduced during visual imagery as in veridical perception,
however further research is required to investigate whether the
same level of specificity can be extended to other top-down
mechanisms, such as goal-directed attention.
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Although representations in the visual cortex were the pri-
mary focus of this experiment, we also identified differential ac-
tivity patterns in prefrontal/insula cortex associated with the al-
ternative imagery (bilateral al/fO), and perceptual conditions
(right al/fO). Differential coding of the two imagery conditions
within this anterior brain area is consistent with previous evi-
dence implicating the prefrontal cortex as a source of top-down
imagery control (Ishai et al., 2000; Mechelli et al., 2004). More
generally, convergent evidence also suggests that this region is
involved in a broad range of higher-level cognitive functions
(Duncan and Owen, 2000), and that prefrontal neurons adapt
their response profiles to represent behaviorally relevant infor-
mation for goal-directed action (Duncan, 2001). Although no
previous studies have explicitly analyzed prefrontal activation
patterns during imagery, the population response from related
prefrontal areas codes different sorts of task-relevant informa-
tion, including learned stimulus categories (Li et al., 2007) and
behavioral intentions (Haynes et al., 2007). In our experiment,
accurate discrimination between the alternative perceptual states
within prefrontal cortex probably reflects differential coding of
the visually presented letter stimuli, whereas prefrontal discrim-
ination during the imagery task could reflect a range of possible
task-relevant coding parameters, from representation of the au-
ditory cue to differential states of conscious recognition following
imagery generation within visual cortex. One intriguing possibil-
ity is that these differential codes might be involved in generating
top-down control over visual cortex. Nevertheless, future re-
search is needed to determine the precise role of differential im-
agery coding within al/fO, and/or whether other prefrontal areas
generate content-specific control signals for precise activation of
selective perceptual codes in visual cortex observed in this study.

In summary, the results of this investigation demonstrate that
top-down control mechanisms engaged during visual imagery
are able to activate precise neural populations within high-level
visual cortex. Our cross-generalization approach further verifies
that these top-down codes share significant similarity to the vi-
sual codes accessed during stimulus-driven perception.
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