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The Sparseness of Neuronal Responses in Ferret Primary
Visual Cortex
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Various arguments suggest that neuronal coding of natural sensory stimuli should be sparse (i.e., individual neurons should respond
rarely but should respond reliably). We examined sparseness of visual cortical neurons in anesthetized ferret to flashed natural scenes.
Response behavior differed widely between neurons. The median firing rate of 4.1 impulses per second was slightly higher than predicted
from consideration of metabolic load. Thirteen percent of neurons (12 of 89) responded to <5% of the images, but one-half responded to
>25% of images. Multivariate analysis of the range of sparseness values showed that 67% of the variance was accounted for by differing
response patterns to moving gratings. Repeat presentation of images showed that response variance for natural images exaggerated
sparseness measures; variance was scaled with mean response, but with a lower Fano factor than for the responses to moving gratings.
This response variability and the “soft” sparse responses (Rehn and Sommer, 2007) raise the question of what constitutes a reliable
neuronal response and imply parallel signaling by multiple neurons. We investigated whether the temporal structure of responses might
be reliable enough to give additional information about natural scenes. Poststimulus time histogram shape was similar for “strong” and
“weak” stimuli, with no systematic change in first-spike latency with stimulus strength. The variance of first-spike latency for repeat
presentations of the same image was greater than the latency variance between images. In general, responses to flashed natural scenes do

not seem compatible with a sparse encoding in which neurons fire rarely but reliably.
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Introduction

It is debated how visual systems encode natural stimuli (Simon-
celli and Olshausen, 2001). Should we study neurons with natu-
ralistic rather than simple stimuli (Theunissen et al., 2001; Felsen
and Dan, 2005; Rust and Movshon, 2005)? Are rate codes suffi-
cient or do temporal codes give greater insights (Thorpe et al.,
2001; Butts et al., 2007)? Are spatiotemporal receptive fields de-
signed for efficient encoding of natural scenes (Srinivasan et al.,
1982; Atick and Redlich, 1992)? Discussion mostly stems from
the proposal by Barlow (1972) of “cardinal” cells as a strategy for
redundancy reduction, intermediate between the two extremes of
Sherrington (1941) of a “pontificate” (Lettvin’s “grandmother
cell”) or a “million-fold democracy” (a parallel distributed sys-
tem). Barlow proposed that only a small fraction of the neuronal
population need be active to reliably signal higher-order struc-
ture in each natural stimulus; different subsets of neurons being
activated by different stimuli.
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This leads to the concept of “sparse encoding” (Treves and
Rolls, 1991; Field, 1994; Rolls and Tovee, 1995; Rolls and Treves,
1997; Weliky et al., 2003). Computational models of efficient
encoding for natural visual scenes generate filters resembling the
receptive fields of V1 neurons only when constrained to exhibit
sparse encoding (Bell and Sejnowski, 1997; Olshausen and Field,
1997; van Hateren and van der Schaaf, 1998; Rehn and Sommer,
2007). Furthermore, because relatively few cortical neurons can
have high firing rates at any one time (Attwell and Laughlin, 2001;
Lennie, 2003), sparse encoding may minimize the metabolic costs
of neuronal encoding (but see Tolhurst et al., 2004). Although the
concept of sparse encoding seems straightforward, we have no
quantitative predictions to test and sparseness can be defined in
two ways that are surprisingly poorly correlated in simulations of
natural scene encoding. Most studies of visual cortex (Baddeley et
al., 1997) have focused on the response of individual neurons to
large stimulus sets: “lifetime sparseness” measures how often
each cell responds (Willmore and Tolhurst, 2001). Fewer studies
(Weliky et al., 2003; Lin et al., 2006; Yen et al., 2007) have tried to
investigate “population sparseness”: the proportion of neurons
activated by a given stimulus. But what constitutes a response,
which timescales are important for neural computation, and are
all spikes equal (Butts et al., 2007)?

Here, we investigate factors that might determine lifetime
sparseness values for the responses of individual V1 neurons to
natural images. The most commonly used measure of sparseness
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(Treves and Rolls, 1991) was introduced to measure the storage
capacity of associative neuronal networks, whether response is
binary or continuous. We examine this and other measures, and
investigate the impact of response variability (Tolhurst et al.,
1981, 1983) and of the different tuning bandwidths found for
“classical” stimuli such as sinusoidal gratings (Tolhurst and
Thompson, 1981). Finally, we examine the temporal characteris-
tics of neuronal responses to flashed natural scenes; in particular,
whether first-spike latencies might encode information about
natural scenes (Thorpe et al., 2001), as in the coding of contrast
(Gawne et al., 1996; Mechler et al., 1998; Reich et al., 2001; Geisler
et al., 2007).

Materials and Methods

Animal preparation and recording methods. Our experimental meth-
ods have been described in detail (Baker et al., 1998; Smyth et al.,
2003), and some of the results reported here involve evaluation of
data also examined by Smyth et al. (2003). Briefly, extracellular re-
cordings of action potential timings were made with tungsten-in-
glass microelectrodes from units in primary visual cortex of adult
pigmented ferrets (bred in Oxford, UK, or imported from Marshalls
Farms). During recordings, the ferrets were anesthetized by artificial
ventilation with 0.5-1.5% halothane in a mixture of 75% N,O and
25% O,. The animals were paralyzed by intravenous infusion of gal-
lamine triethiodide (10 mg- kg ' +h '), and the adequacy of anes-
thesia was assessed from monitoring the heart rate and the waveform
of the EEG. At the end of the experiments, the ferrets were injected
with a lethal dose of barbiturate while still under anesthesia. All pro-
cedures were approved under license from the United Kingdom
Home Office.

Visual stimulation. Visual stimuli were presented monocularly (the
eye ipsilateral to the recorded cerebral hemisphere was covered). Pu-
pils were dilated and accommodation was paralyzed by topical appli-
cation of 1% w/v homatropine. Clear zero-power contact lenses pro-
tected the corneas; auxiliary lenses were not used because the small
ferret eye has large depth of focus (Green et al., 1980; Price and
Morgan, 1987; Baker et al., 1998). Visual stimuli were presented in
shades of gray on cathode ray tube (CRT) computer monitors under
control of a Cambridge Research Systems VSG 2/4 graphics card. This
card has pseudo 15 bit analog output (Pelli and Zhang, 1991), allow-
ing precise control of the luminance of each pixel; natural-scene stim-
uli could be presented with 256 equally spaced gray levels, and low-
contrast grating stimuli could be presented with the same precision
and the same number of gray levels as high-contrast ones. Two dif-
ferent CRT monitors were used in these experiments. Some units were
studied with an Eizo Flexscan T562-T monitor with a viewable area of
28.5 X 21.5 c¢cm, frame rate of 100 Hz, and mean luminance of 36
cd - m 2 Later units were studied with a Sony GDM-500PST moni-
tor with 39.6 X 29.7 cm area, frame rate of 160 Hz, and mean lumi-
nance of 54 cd - m 2 [the latter display was used for the experiment
described in the supplemental material (available at www.
jneurosci.org)]; we moved to a higher frame rate because the re-
sponses of some neurons seemed to be entrained to the lower frame
rate (Williams et al., 2004). The monitors were placed 57 or 28.5 cm
from the ferret’s eye so that they subtended from 28.5 X 21.5° of
visual angle up to 79.2 X 59.4° of visual angle. The displays had 800 X
600 pixels, and were approximately centered on the receptive field of
each unit, which occupied 15-60% of the display, allowing scope for
the natural images stimuli to activate the surrounds to the classical
receptive fields (Vinje and Gallant, 2000, 2002; Guo et al., 2005).

Classification of units. We report experiments on 89 units. Their
receptive fields were usually mapped with hand-held stimuli so that
they could be provisionally classed as simple or complex according to
the qualitative definitions of Hubel and Wiesel (1959, 1962). Classi-
fication could be quantified to greater extent by measuring the “rel-
ative modulation” of response to a moving sinusoidal grating of op-
timal spatial frequency and orientation (Maffei and Fiorentini, 1973;
Movshon et al., 1978a,b). In the response poststimulus time histo-
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gram (PSTH), we calculated the amplitude of the Fourier component
at the same frequency as the moving grating, divided by the average
firing rate (we did not subtract the spontaneous level of activity from
this average firing rate). Often, neurons are classified as “simple” if
relative modulation is >1.0 and as “complex” if the value is <1.0
(Skottun et al., 1991). Although this dividing line is exactly midway
between the extreme possible values of 0.0 and 2.0, it is entirely arbi-
trary and any dip in the distribution of relative modulation at the
midway value of 1.0 may be an artifact of the measure (Mechler and
Ringach, 2002; Priebe et al., 2004). The distinction between the sim-
ple and complex classes may not be abrupt (Dean and Tolhurst, 1983;
Mata and Ringach, 2005); relative modulation may not be a perfect
measure for making a distinction (Mechler and Ringach, 2002; Priebe
etal., 2004), and, even for a given neuron, relative modulation can be
affected considerably by stimulus configuration (Bardy et al., 2006).
Thus, the relative modulation range of 0.8-1.2 should certainly be
regarded as ambiguous. The distinction in the relative modulation
measure is further blurred if, say, some simple cells have significant
spontaneous activity, which lowers the relative modulation measure.
Even within the simple cell “class,” a range of relative modulation
values is seen, reflecting significant differences between cells in their
receptive-field construction (Tolhurst and Dean, 1987, 1990). Here,
we shall assume that a relative modulation above ~1.2 is reasonably
associated with simple cells (39 units), although some might be “non-
linear simple cells” (Movshon et al., 1978a), whereas a relative mod-
ulation of <0.8 is associated with complex cells (42 cells); this leaves
8 “ambiguous” units.

Experimental design. We used moving high-contrast sinusoidal grat-
ings to determine the bandwidths (width at half-height) of the orienta-
tion and spatial-frequency tuning curves of each unit (for details, see
Baker et al., 1998). These curves were generally measured with gratings
with contrast 0.7 (70%) and were based on averaging the responses to 30
cycles of gratings moving at 1-2 Hz. These experiments also provided
estimates of “responsivity” [firing rate in impulses per second (i.p.s.) to a
high-contrast grating of optimal spatial frequency and orientation] and
of the relationship between response variance and mean response mag-
nitude (cf. Tolhurst et al., 1981, 1983). We generally presented only
enough grating orientations and spatial frequencies to clearly define the
half-width bandwidth; we did not study the full range of orientations,
and so we are unable to comment on global measures of orientation
tuning (Chapman and Stryker, 1993; Xing et al., 2004). In most of our
neurons, we made sufficient measurements of the low spatial frequency
tuning that we can calculate the “low spatial frequency variance” (LSFV)
(Xing et al., 2004), which is arguably a better overall measure of tuning
for comparison with the responses to natural images.

Then, the responses of each unit were recorded for a long sequence of
briefly flashed fragments of monochrome photographs of natural scenes
that had been digitized to >1000 distinct gray levels and that were cor-
rected for the nonlinear “gamma” of the photographic process (Tolhurst
etal., 1992). The corrected photographs were rescaled so that the darkest
pixel in each became zero (nominally, absolutely black on the display).
There were 256 equally spaced gray levels with the brightest being twice
the mean luminance of the display. No attempt was made to equate the
space-averaged mean luminance of the photographs to the mean lumi-
nance of the display, either across the whole photograph or across the
smaller central portion that might fall within the receptive field of a
neuron. Some photographs (Tolhurst et al., 1992) were of plants, people,
landscapes, and man-made objects, but others (photographed by D.
Smyth) were of ferrets or of “ferret’s-eye” views of terrain. Each image
fragment measured 150 X 150 pixels and was cut at random from a set of
128 whole digitized and linearized photographs, each measuring 256 X
256 pixels. When displayed on the CRTs, the fragments were “zoomed”
so that each fragment pixel was expanded to occupy 4 X 4 hardware
display pixels, thereby exactly filling the 600 pixel height of the display
(i.e., from21.5 deg? up to 59.4 deg?, depending on display). The effective
pixel size was, therefore, 0.14—0.4° of visual angle, depending on the
model of CRT and the viewing distance. For most ferret neurons, even
the larger effective pixel size would be smaller than their resolution limit
(Price and Morgan, 1987; Baker et al., 1998).
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In a typical experiment, 5000 photograph fragments were presented to
each neuron. These might be 5000 independent random selections
(150 X 150 pixels) cropped from the parent set of 128 photographs
(256 X 256 pixels). Or 500 fragments might be chosen from the set of 128
photographs, and then these 500 fragments would be presented up to 10
times each (24 neurons); the 500 stimuli would be presented once, and
then the order of presentation would be randomized before they were all
presented once again, and so on.

Each image fragment was presented statically for 100 ms (10 or 16
frames, depending on the display CRT frame rate). Between the sudden
offset of one image fragment and the sudden onset of the next, the screen
was held at a uniform gray: the mean luminance (i.e., 36 or 54 c¢d * m 2
depending on the display). The interval between image fragments, dur-
ing which the display was held a uniform gray, was usually 150-170 ms
(occasionally 100 ms), long enough for any “OFF” response to one frag-
ment to be distinct from the “ON” response to the next. This procedure
allowed clear decisions as to which action potentials were generated by
which images and, to an extent, stylizes natural viewing in which the
fixations between saccades to new targets might last 250 ms or more
(Stryker and Blakemore, 1972; Vinje and Gallant, 2000, 2002; Moeller et
al.,, 2004; Maldonado and Babul, 2007; Foulsham and Underwood,
2008). Furthermore, a 100 ms presentation is generally sufficient to allow
detection or discrimination in simple (Tolhurst, 1975) or complex visual
stimuli (Buracas et al., 1998; Miiller et al., 2001; Thorpe et al., 2001). Each
block of 500 image fragment presentations was preceded by a 5 or 10's
episode in which the level of spontaneous activity was measured. Figure
1 A shows a schematic of the stimulus presentation protocol.

We measured the response of each recorded unit to each 100 ms pre-
sentation of each image fragment. First, we constructed PSTHs to show
the average timing of action potentials with respect to the onset and offset
of the image fragments; responses were pooled across fragments, regard-
less of whether they were the same fragment or not. Figure 1 B-E shows
some examples of these PSTHs. Typically, image fragments would in-
crease the action potential generation of a neuron during their presenta-
tion (ON response) and/or would evoke a burst of activity on their re-
moval (OFF responses). In complex cells, a single image fragment might
evoke both an ON and an OFF response; in a well behaved simple cell, a
single image fragment would generate either an ON response or an OFF
response (Smyth et al., 2003). Responses typically began ~20-70 ms
after the stimulus onset or offset and were often transient (cf. Maldonado
and Babul, 2007). For most of the additional analysis, we chose a 100 ms
period that best included the responses of the neuron. Generally, a period
such as 30-130 ms after stimulus onset typified the response of a neuron,
although we used a period such as 100-200 ms for 13 neurons, which
gave much bigger OFF than ON responses (see Fig. 1E); nine of these
were simple cells, and we imagine that their OFF responses might have
been identical with the ON responses of unrecorded simple cells with
complementary receptive field organization.

Quantification of “sparseness.” A “sparse” lifetime response distribu-
tion (Willmore et al., 2000; Willmore and Tolhurst, 2001; Weliky et al.,
2003; Yen et al., 2007) is one in which a neuron gives a low (zero) re-
sponse to most stimuli, but high-magnitude responses to relatively few
stimuli (Field, 1994). For most analyses, the response of a neuron to each
image fragment was simplified and summarized as the number of action
potentials generated within the chosen 100 ms period. Because we are
interested in how neurons and populations of neurons encode the infor-
mation in a scene while it is actually present, we have not included both
the ON and OFF responses of any cells in our analyses. If we had pooled
ON and OFF responses, the sparseness of many neurons would have
seemed to be less. A good measure of sparseness should reflect the form of
the response distribution; however, most of the proposed sparseness
measures have weaknesses [discussed by Willmore et al. (2000), Will-
more and Tolhurst (2001), and Lehky et al. (2005)]. The different mea-
sures highlight different aspects of a response distribution, but, if all
response distributions did have the same form, then the measures would
be proportional to each other. We consider four different measures.

First, we start with a measure first proposed by Treves and Rolls
(1991), but we use the slight modifications of Vinje and Gallant (2000,
2002) and Willmore and Tolhurst (2001) as follows:
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Our version simply ensures first that a sparser response distribution gives
a larger value (unlike the original definition by Treves and Rolls). Fur-
thermore, the original measure was designed for use in situations in
which neurons have no spontaneous activity; this is particularly appro-
priate to primary visual cortex in which most neurons do have little
spontaneous activity, but we want also to apply the measure to hypothet-
ical distributions with mean of zero (hence the taking of absolute values).
For zero mean, the original Treves—Rolls formulation would give a value
of zero whatever the shape of the response distribution.

Second, we parameterize sparseness of a response distribution by sim-
ply counting the proportion of image presentations that evoked zero
response (P,). Sparse response behavior would generally be expected to
be accompanied by a high proportion of zero responses.

Third, we calculate the kurtosis of a response distribution (Olshausen
and Field, 1997) as follows:

X, =12[u] . @)

n&= o

where ; is the response to a particular image fragment, 7 is the average
response to all the fragments, 7 is the number of responses under con-
sideration, and o is the variance of the responses. This measures how
different the shape of a symmetrical distribution is from that of a normal,
Gaussian distribution (which has kurtosis of zero). A distribution more
concave (more leptokurtic) than a Gaussian (see Fig. 3E) has a kurtosis
greater than zero. The fourth power in Equation 2 means that the kurto-
sis measure gives particularly exaggerated measures of sparseness (Will-
more and Tolhurst, 2001).

Last, an “entropy” measure of sparseness has been proposed by Lehky
et al. (2005), which not only quantifies the shape of a response distribu-
tion but also carries implications about coding efficiency. The response
distribution is first normalized to have a variance of 1 and is then con-
verted to a probability density function p(r), with bin width of Ar as
follows:

Sp=2.047 + 2p(r,-)log2(p(ri))Ar, (3)

where kis the number of bins into which the n normalized responses have
been grouped. A Gaussian distribution has S, of zero; a sparser distribu-
tion has greater entropy. For a given distribution, the calculated value of
Sy depends on k, which is supposed to be set to be \/n (Lehky et al., 2005).
However, in most of our examples, \/n (usually 1/5000) was consider-
ably larger than the number of discrete (integer) response levels (gener-
ally <20); then we had to reduce k to match the number of discrete
response levels actually found. In the experiments in which we were able
to average the responses to 10 repetitions of each image fragment, \/n is
reduced to /500 while the number of possible response levels increases
dramatically (rather than integers, the averaged responses are now
spaced at an interval of 0.1). Such capricious differences in n and k make
it difficult to compare the entropy of the response distributions before
and after averaging the responses to repetitions of image fragments.

For 24 neurons, we examined how the form of the response distribu-
tion was affected by the inherent response variability of V1 neurons. In
that context, we summarized the form of the distribution of responses to
5000 image presentations as the ratio of the overall variance to the overall
mean (i.e., 0>/7).

Mutual information. For those 24 neurons in which we had presented
the same image set repeatedly, we were able to estimate the mutual in-
formation between the responses of a neuron and the image presented.
The uncertainty in the 500-strong stimulus set, H(S), is given by
log,(500), the probability that you could guess correctly which of the
stimuli had just been presented before examining the responses of the
neuron. The mutual information is given by H(S) — H(S|R) in bits,
where H(S|R) is the residual uncertainty that remains even with knowl-
edge of the responses of the neuron.
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H(S|R) = 2 X P(s,r) = loga(P(s/P(r) A

where P(r) is the probability of occurrence of a
given response level across the whole experi-
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Results

The overall pattern of responses to
natural scene stimuli

Figure 1B-E shows PSTHs of the re-
sponses of four neurons to 100 ms flashed
presentations of fragments of black-and-
white photographs of natural scenes. Be-
tween successive image fragments, the dis-
play was held at a spatially uniform
midgray for 100 ms (E) or 150—170 ms
(B-D). For the four neurons of Figure 1,
there were 500 different image fragments
in the experimental set, and the set of 500
was presented 10 times (in different ran-
dom order each time) to each neuron. The
PSTHs combine the action potential tim-
ings for all 5000 image presentations, to
show an “averaged form of response” to
the natural scene stimuli. The form of the
PSTH varied widely between neurons.
Some neurons (Fig. 1B) responded pri-
marily during the presence of the frag-
ments (ON response), whereas others
(e.g., E) responded more to stimulus offset
than to onset. In some neurons (e.g., B
and, to some extent, C), the response was
sustained for a full 100 ms, which, ac-
counting for a response latency, represents
a sustained response for the full duration
of the stimulus. Not surprisingly, OFF re-
sponses were usually relatively brief
(30—-50 ms) (Fig. IC-E), but ON responses
could also be brief (D, E). Complex cells
often gave both ON and OFF responses to individual image frag-
ments, whereas simple cells would usually give either an ON re-
sponse or an OFF response to any one fragment (Smyth et al.,
2003), as would be expected from the way that simple and com-
plex cells respond to the flashed presentation of simpler grating
or spot stimuli (Movshon et al., 1978a,b).

Although the PSTHs can reach peak firing rates of up to
30—40i.p.s., these peak rates are achieved only transiently so that
the firing rate averaged over the full 100 ms after response onset is
only between ~5 (Fig. 1 B) and 13 (Fig. 1C) i.p.s. in the illustrated
examples. Many other neurons had smaller averaged firing rates;
one gave a total of only 255 action potentials during the whole
experiment. This represented an average firing rate of only
0.34 i.p.s. during the 100 ms after response onset; yet, this small
response was consistent enough to allow us to reconstruct the
receptive field of the neuron [cell 32203 in the study by Smyth et
al. (2003)]. For the 89 neurons in our sample, the firing rate
averaged over all the 100 ms counting epochs of an experiment
ranged widely from 0.28 to 45.94 i.p.s.; the largest values were
recorded from neurons with substantial levels of spontaneous
activity. The heterogeneity of neuronal responses to natural stim-
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A, A schematic illustration of the protocol for presenting 150 X 150 pixel fragments of photographs of natural
scenes. Each fragment was turned on suddenly for 100 ms and then removed suddenly; between fragments, the display CRT was
held at a uniform midgray for 100 —170 ms. B-E, Poststimulus time histograms for four neurons, showing the most likely times of
action potential generation with respect to the presentation time of the natural scene fragments. The histograms are averaged
across all the image fragments presented to each neuron.

uli has also been emphasized by Yen et al. (2007). In our sample,
the median response was 4.10 i.p.s. (25 and 75 percentiles: 1.49
and 8.95 i.p.s.). These low firing rates are consistent with other
work on responses of single V1 neurons to natural-scene stimuli
in anesthetized and, importantly, in awake animals (Legéndy and
Salcman, 1985; Baddeley et al., 1997; Gallant et al., 1998; Ringach
etal., 2002; Guo et al., 2005; Maldonado and Babul, 2007; Yen et
al., 2007).

It can be seen in Figure 1, B-E, that the latency of response
onset could vary quite considerably from neuron to neuron, and
Figure 2 shows the latencies of response of 86 of the neurons,
estimated from their PSTH averaged over all stimuli. The onset
latencies (Fig. 2A) ranged from 17 to 67 ms, with a mean of 33.5
ms. The offset latencies (Fig. 2 B), when they occurred, covered a
similar range: from 15 to 61 ms, with a mean of 33.2 ms. Figure 2C
confirms the impression given by the example PSTHs in Figure 1
that, when cells give both onset and offset responses, the latencies
are similar (r = 0.769; n = 52). Most of the neurons had PSTHs
like Figure 1C-E, in which the onset response began abruptly.
However, 14 neurons had a more gradual response onset that
developed relatively slowly toward a peak response (Fig. 1 B); all
of these “slow cells” had response latencies exceeding 35 ms. We
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Figure2. A, The histogram shows the latency of response of 86 neurons to the onset of the
flashed natural scene stimuli. Latency is estimated from the PSTH averaged across all stimuli
(like those in Fig. T). This includes the latency of the small ON response for most of the neurons
inwhich we have analyzed the sparseness of their larger OFF responses. Three neurons of the 89
are not included because either they gave only OFF responses or their responses were so weak
thata clear “turn-up” in the PSTH at response onset was difficult to discern. B, The latency of the
offset response for those 52 neurons with a clearly defined offset response. €, The latency of the
offset response is plotted against the latency of the onset response. The symbols on the axes
show the many cases (x-axis) in which a clear offset response was not discernible and a single
case ( y-axis) in which no onset response was obvious.

could not identify any differences between the slow-onset and
abrupt-onset neurons in terms of, say, whether they were simple
or complex or whether they were sharply tuned or narrowly
tuned for orientation or spatial frequency.

The PSTHs of Figure 1 are averaged across 500 different nat-
ural scene stimuli, and it is possible that the form of the response
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might vary from stimulus to stimulus. This turned out not to be
the case (as we shall show in Fig. 11), so it seems reasonable to
provisionally summarize the response of a neuron to a given
stimulus presentation simply as the total number of action po-
tentials evoked in a fixed time. In subsequent analyses, we shall
initially look at a time window of 100 ms from response onset, the
same duration as the stimulus (for 13 neurons we look ata 100 ms
window from stimulus offset). This is actually longer than the
transient burst responses of some neurons, so that a shorter time
window would make no difference. Furthermore, a 100 ms time
window fully covers the difference in response latencies of differ-
ent neurons, a factor we should consider in questioning how
populations of neurons encode information in flashed images or
movies (see Discussion).

Different measures of sparseness

The PSTHs in Figure 1 show the average response to natural-
scene stimuli; it is an important question to ask whether the
forms of response to different scenes are the same or different
for a given neuron. For instance, for the neuron in Figure 1B,
the single most effective image in the experiment evoked 14
action potentials in the 100 ms image flash; for the neuron of
Figure 1 E [illustrated in detail by Smyth et al. (2003), their Fig.
9], a different “best image” evoked 16 action potentials at
offset. Averaged over 100 ms (the flash duration), therefore,
the firing rates for these highly favored stimuli were 140 and
160 i.p.s., respectively, much higher than the firing rates aver-
aged across all images. Moreover, given the transience of its
OFF response (some 30 ms), the neuron in Figure 1 E will have
attained an instantaneous firing rate to its favored stimulus of
>500 i.p.s. We will quantify the “nonuniformity” of response
with measures of sparseness and entropy (see Materials and
Methods).

Figure 3 shows some stylized response distributions to illus-
trate how various measures of sparseness (see Materials and
Methods) reflect changes in the shapes of response distributions.
Figure 3A shows a Gaussian distribution with a mean of zero. The
kurtosis and entropy (Sg) are, by definition, near zero. Figure 3E
shows a distribution that is obviously more concave (more lep-
tokurtic) than a Gaussian; it has the same variance and the same
mean (zero) as that in Figure 3A. The modified TR measure, the
kurtosis, and entropy are all higher (0.489, 1.88, and 0.17, respec-
tively) than for a Gaussian (0.363, —0.085, and 0.079). The prob-
ability of obtaining a zero response (P,) is obviously higher for
the leptokurtic distribution of Figure 3E.

The number of action potentials generated by a neuron within
our 100 ms sampling period cannot, of course, be negative, and so
we should consider stylized distributions only of non-negative
response values. Figure 3, Band F, shows a simplified expectation
of the forms of simple-cell response distributions. The measured
responses of simple cells are hypothesized to be half-wave recti-
fied versions of the expected underlying linear responses (Movs-
hon et al., 1978a; Tolhurst and Dean, 1987; Heeger, 1992). Half-
wave rectification of the parent distributions (Fig. 3A,E)
obviously causes a massive increase in the proportion of zero
responses (note the breaks in the y-axes): over one-half of the
response values are now zero, which necessarily causes an in-
crease in the Treves—Rolls, kurtosis, and entropy measures. All
measures indicate that half-wave rectification causes a big in-
crease in response sparseness (presuming that we can ignore, say,
OFF responses in neurons in which we analyze only the ON re-
sponses); they also agree that the distribution in Figure 3F is
sparser than that in Figure 3B.
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Figure 3, C and G, shows potential re- A
sponse distributions for complex cells; we
have simply taken the absolute values of
the responses in the distributions of Figure
3, A and E, as if the responses of complex
cells might be full-wave rectification of r
their summed inputs (Movshon et al., 200
1978b). Full-wave rectification affects the
kurtosis and entropy measures to suggest
an increase in response sparseness; how-
ever, the TR measure and the probability
of obtaining a zero response (P;) are un-
changed (note the difference in y-axis
scales between Fig. 3C,G, and A,E). All
four measures (including TR) agree that
the distribution in Figure 3G is sparser
than that in Figure 3C. However, it is im-
portant to note that the response distribu-
tions for model complex cells are less
sparse than those for model simple cells
(Fig. 3, compare B with C, and F with G),
mostly because of the many zero responses
given by simple cells. 800

Figure 3D shows the hypothetical re- 600
sponse distribution for a simple cell with
spontaneous activity equal to five response
units. Starting with the distribution of Fig-
ure 3A but shifted five response units to
the right, we have made all negative re-
sponses become zero. The proportion of
zero responses necessarily falls when we
shift the parent distribution to the right.
The presence of spontaneous activity (Fig.
3D) reduces the amount of sparseness on
all four measures, compared with the more
usual situation in which simple cells have
little spontaneous activity (Fig. 3, compare
B, D). Figure 3H models the more likely 0
case (Movshon et al., 1978a; Schumer and
Movshon, 1984; Tolhurst and Dean, 1987;
Robson et al., 1988) that simple cells have a
response threshold and that their re-
sponses are, therefore, overrectified. We
have started with the Gaussian distribu-
tion of Figure 3A, have shifted it five re-
sponse units to the left, and have made all
negative values become zero. Compared
with the original (Fig. 3A) and the half-
wave rectified model (Fig. 3B), threshold-
ing has caused a big increase in sparseness
given by all four measures, especially kur-
tosis and the proportion of zero responses. A complex cell with
no spontaneous activity might also produce a response distribu-
tion of this form if its responses were also subject to a threshold.

In the examples of Figure 3, the four measures of sparseness
mostly go in the same direction. However, in detail, the four
measures describe different aspects of a response distribution
shape, and sometimes they do not agree as to which of two dis-
tributions is the “sparser” (for example, see the measures in Fig.
3D). The kurtosis measure generally exaggerates the differences
between different distribution forms. However, these detailed
differences in the behavior of the different metrics will not affect
the conclusions of this study.
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Sparseness measures for eight hypothetical response distributions. 4, A Gaussian distribution with mean response of
zero should have kurtosis and entropy of zero, by definition. B, The same distribution as in A, but with all negative values set to
zero; such “half-wave rectification” is a stylized model of the responses of simple cells with no spontaneous activity. €, The same
distribution as in A, but with all negative values made positive and reflected through zero; such “full-wave rectification” is a
stylized model of the responses of complex cells with no spontaneous activity. D, A stylized model of the response distribution of
asimple cell with spontaneous level of activity equivalent to a response of “5 units”: 5 is added to the Gaussian distribution of Aand
all negative values are then set to zero. E, A leptokurtic distribution (exponential) with the same mean (zero) and variance asin A.
F, G, Half-wave rectified and full-wave rectified versions of the exponential distribution in E. H, A stylized model of the responses
of a simple cell with no spontaneous activity and with a response threshold equivalent to a response of “5 units”: 5 is subtracted
from the Gaussian distribution of A, and all negative values are then set to zero.

Distribution of responses to different natural scene stimuli

Figure 4 shows the responses of three neurons to 100 natural-
scene stimuli. Each stimulus was presented 10 times for these
three neurons, and so Figure 4 shows the responses to 1000 of the
5000 stimulus presentations for each neuron. The area of each
square symbol is proportional to the number of action potentials
evoked in the 100 ms counting period associated with each rep-
etition of each natural-scene stimulus. Figure 4, A and B, shows
the response patterns of two simple cells with no spontaneous
activity (relative modulation to gratings of 1.63 and 1.59). There
are clear “columns” in the response rasters showing that the neu-
rons tended to respond reliably to the particular subsets of stimuli
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Figure 4.  The numbers of action potentials generated by three neurons during 100 ms

counting periods for 100image fragments; these are part of the records of experiments in which
500 fragments were presented 10 times each to each neuron. The abscissas give an arbitrary i.d.
code for which of the image fragments was presented (the responses to different fragments are
shown for the 3 neurons). The ordinate shows the 10 repetitions of each stimulus. The square
symbols show the number of action potentials generated in 100 ms for each repetition of each
fragment; the area of the square is proportional to the number of action potentials evoked in the
illustrated sequences (maximum responses: 4, 9; B, 12; €, 12). The neuron of C had substantial
spontaneous activity, and, to avoid clutter, only the responses to odd-numbered image frag-
ments are shown.

when these were repeated, and that some stimuli evoked strong
responses, whereas others evoked weak (but nonzero) responses.
It is obvious that the neuron of Figure 4A responded more
sparsely to the stimulus presentations than did the neuron of
Figure 4 B. It is also very clear that the responses of the neurons to
repeated presentations of the same stimuli were not identical:
there is variance in the responses to natural scene stimuli, as there
is for moving sinusoidal gratings (Dean, 1981; Tolhurst et al.,
1981, 1983; Vogels et al., 1989; Wiener et al., 2001). Response
variability makes it difficult to be certain whether the generation
of, say, one action potential is a response to a stimulus or is, in
fact, a very rare spontaneous event. Comparing the responses to
repetitions of the same stimuli greatly increases the experimen-
talist’s confidence at deciding whether the neuron has responded
to stimuli, but, in a very sparsely responding neuron (like Fig.
4A), there may still be some doubt (see, e.g., its responses to
fragments 25-70).

The neuron of Figure 4C had spontaneous activity of ~16 Hz;
it was probably a simple cell, but the high spontaneous activity
gave it a low relative modulation for gratings (0.78). During each
100 ms natural-scene presentation, we would expect 1.6 action
potentials to be evoked on average, and to avoid clutter only the

J. Neurosci., February 25,2009 - 29(8):2355-2370 « 2361

responses to odd-numbered stimuli are shown in Figure 4C. In-
deed, action potentials were evoked during the presentation of
most repetitions of most stimuli. Much of this may be regarded as
spontaneous activity, but it is clear that a few stimuli evoked more
activity than the average (e.g., fragments 249 and 251), whereas
others seem to have suppressed the spontaneous activity (e.g.,
fragments 215 and 239) as would be expected of a simple cell.
Given the response variability, it is not possible to subtract the
spontaneous activity from the firing pattern to leave the true
evoked responses to the stimuli.

Figure 5A—D shows how often responses of different magni-
tude were evoked by natural-image presentations. Three of the
neurons (Fig. 5A—C) are the same as those illustrated in Figure 4.
Each histogram shows the proportion of times (of 5000 total
presentations) that particular responses were evoked; the present
analysis considers the 10 repetitions of each image fragment as 10
independent data (plots in Fig. 5E, F, describing averaged data,
will be discussed later). The figure shows the four sparseness
measures (see Materials and Methods) that describe the form of
each histogram. Figure 4, A and B, implied that, of the two simple
cells, the responses of A were sparser: it gave responses to very few
of the 100 image fragments. This is mostly confirmed by the four
sparseness measures shown in Figure 5, A and B: the modified
Treves—Rolls measures, the probability of a zero response and the
kurtosis are all higher for neuron A. Curiously, the entropy mea-
sure is lower for A. Spontaneous activity (Fig. 5C) causes a sub-
stantial reduction in all four sparseness measures (compare with
Fig. 3B, D).

The forms of distributions in Figure 5A—C are typical of those
that we have measured. The Treves—Rolls measure is the one
most often adapted and used (Vinje and Gallant, 2000, 2002;
Weliky et al., 2003; Yen et al., 2007), and our range of values (Fig.
6A) is compatible with previous studies. For neurons with little
or no spontaneous activity, the most frequent response was gen-
erally zero: Py was 0.804 (SD, 0.161) on average for the 66 neurons
with little or no spontaneous activity. Of these 66, 33 could be
classed unambiguously (see Materials and Methods) as simple
and their average P, was 0.854 (SD, 0.125), whereas unambigu-
ously defined complex cells (27) had lower P, of 0.724 (SD,
0.181). This difference between simple and complex cells is con-
sistent with the argument given by Figure 3, and was significant
on a Kolmogorov—Smirnov two-sample test and a Student’s ¢ test
(t = 3.28). For 23 neurons with substantial spontaneous activity
(Figs. 4C, 5C), P, was understandably lower: average, 0.384 (SD,
0.232; 23 neurons). The difference between neurons with and
without spontaneous activity was highly significant (¢ = 9.56).

Thus, the most frequent response was zero for most neurons,
although for neurons with substantial spontaneous activity, the
most frequent responses might have been one or two action po-
tentials in the 100 ms counting period. For response magnitudes
greater than the most frequent magnitude, the frequency of oc-
currence declined approximately exponentially with increasing
response magnitude (Baddeley et al., 1997), as is shown in Figure
5A-C. Almost all the neurons exhibited “soft sparseness” of this
kind (Rehn and Sommer, 2007). Often there was a tail to the
distribution, in which only one or two stimulus presentations
might have evoked a relatively large response. The arrows in Fig-
ure 5 show the largest response evoked in each experiment. An
exponential response distribution has been argued to be the most
efficient (Baddeley et al., 1997).

The distribution shown in Figure 5D was unique in our study,
being the only one showing “hard sparseness” (Rehn and Som-
mer, 2007). The most frequent response is again zero, but there is
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avery obvious distinct mode centered on a
response of ~15 action potentials in 100

Tolhurst et al. ® Response Sparseness in Ferret V1

ms; some 25% of responses are in that 0.05F P, = 0.945 020 P, = 0.727
mode (responses, >8). This neuron fired o 0.04F ke =72.77 0.15} ks =21.89
in bursts of 4—15 action potentials with e  o0.03} TR = 0.961 0.10 TR =0.832
interspike intervals of 1.5-4.5 ms. The P, 2 o002} S = 0.661 ' S =177
and Treves—Rolls sparseness measures are 3 o001k 0.05f
quite similar for the distributions in Figure 8 o.ool ' - { ' r o.ooL § - ' ' 4 '
5, Band D, but the kurtosis in Figure 5D is S 0 5 10 15 20 0 5 10 15 20
surprisingly low, whereas the entropy is > C D
the highest that we measured. The highen- 7
tropy may partly arise from the larger 8 020F 020 B = 0.696
number of response bins in Figure 5D (44 © o015} 0.15}F p—
compared with 17 or less in the other e 010k 010k
cases) (see Materials and Methods). In ' '
general, the highest response evoked by a 0.05[F 0.05F
single stimulus rarely exceeded 20 spikes 0.00L 0.00k
in a 100 ms window for our population of 0 5 10 15 20 0 10 20 30 40 50
neurons, and was often as low as 6. . . . . .
If the response distributions of the 89 response magnitude (action potentials per image presentation)
neurons had the same basic form, we @
o
should expect the four sparseness mea- ¢
sures to be highly correlated. Figure 6 A-C g E : F )
shows plots of the Treves—Rolls measure 3 0-100 | £ 0.100f
[modified so that the greater the sparse- 8 0.075 Po = %g Z)g 0.075 Po = %g %%
ness, the greater the measure (Eq. 1)], kur- g 0.050 .i?.“R _ 0912 0.050 'l?R _ 0.791
tosis and entropy against P, the probabil- 2 ™ S = 2301 ' S = 1,647
ity of a zero response. Table 1 lists 7 0.025 0.025
. . . m
parametric correl.atlon lc)oefﬁaentlsl fo; all S 0,000 | : : : 0.000 Ly : :
pairwise comp.arlsc?ns etween the qur = 0 25 50 7.5 10.0 0 25 50 7.5 10.0
measures. Py is highly correlated with . . . .
Treves—Rolls (TR) (Fig. 64) (r = 0.992). response magnitude (average action potentials per image)
The correlation between kurtosis and P, Figure 5.  A-D, The distribution of response magnitudes for experiments on four neurons. A-C are the distributions for the

(Fig. 6B) is not as high, but this results
mostly from the fourth-power aspect of
the calculation of kurtosis (Eq. 1), which
leads to the rapid acceleration in the graph
at high values of P,. Nonparametric (rank
order) correlations (Table 1, values in
brackets) show that kurtosis is highly cor-
related with TR and P,. However, the en-
tropy measure of Lehky et al. (2005) is only
weakly correlated with the other three
measures (Table 1), as is confirmed by the
scatter in the plot of P, against entropy in Figure 6C, in which the
gross outlier belongs to the unique distribution shown in Figure
5D. Entropy is measuring a different aspect of response distribu-
tions compared with the other three measures. Given these cor-
relations, we will use only the P, measure in the next section of
this study, although TR would give identical conclusions.

Figure 6 D shows how many neurons exhibited each level of
sparseness. The range is considerable, with the least sparse neu-
rons being ones that exhibited appreciable spontaneous activity
(>3 1i.p.s., filled blocks). Theoretical studies of sparse coding un-
fortunately do not predict what values we should expect.

Image sparseness and the responses to sinusoidal gratings

The graphs of Figure 6 show clearly that the sparseness of re-
sponse to natural-image stimuli varies greatly from neuron to
neuron, and the question arises whether differences in response
sparseness are associated with differences in the ways that neu-
rons respond to simpler stimuli such as sinusoidal gratings (cf.
Vinje and Gallant, 2000, 2002). We have already argued (Fig. 3)

three neurons whose rasters are shown in Figure 4 A—C, respectively. The histograms show the proportion of image presentations
of the total 5000 in which a particular action potential count was obtained. No account is taken at this stage that the 5000
presentations may have consisted of 10 repetitions of only 500 different images. The arrows point to largest response evoked for
any one image presentation (9, 16, 17, and 44); the ordinate scales are such that the histogram bins for the most infrequent
response magnitudes are difficult to discern from the abscissa lines. Four sparseness measures are shown for each histogram. For
histograms 4, B, and D, the full height of the bin is not shown at a response magnitude of zero; the proportion of zero responses
is given by the P, sparseness metric. E, F, Distribution of the averaged response magnitudes for neurons A and B after the
responses to the 10 repetitions of each image fragment are averaged together. Note the magnified x and y scales compared with
histograms A and B. Note also that averaged responses are no longer integers but can be binned in steps of 0.1. The change in bin
size has large effects on the calculation of distribution entropy.

that simple cells should show sparser responses than complex
cells, and that the presence of significant spontaneous activity
would reduce sparseness, both predictions borne out in our data
(Figs. 5, 6 D). Now, the distinction between simple and complex
cells is not absolute (Dean and Tolhurst, 1983; Mechler and
Ringach, 2002; Priebe et al., 2004; Mata and Ringach, 2005); in-
stead, there is a continuous range of response behaviors than can
be described parametrically by the “relative modulation” of re-
sponse to moving sinusoidal gratings (Movshon et al., 1978a;
Dean and Tolhurst, 1983). Figure 7A plots sparseness of response
to natural images (P,) against relative modulation for sinusoidal
gratings; there is a weak but very significant correlation (r = 0.52;
n = 89) (Table 2). The presence of spontaneous activity is also not
all-or-none, but is graded from one neuron to the next. Figure 7B
plots sparseness of response to natural images (P,) against spon-
taneous activity; although there is a stronger, inverse correlation
(r= —0.68; n = 89) (Table 2), it is still the case that sparseness
also varies among neurons with little spontaneous activity. A
regression of P, against both relative modulation and spontane-
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that it would also respond sparsely to sinu-
soidal gratings (Vinje and Gallant, 2000,
2002) (i.e., neurons with the narrowest
tuning curves for grating parameters
might respond most sparsely to natural
images). Figure 7 plots P, against orienta-
tion bandwidth ( C) and spatial-frequency
bandwidth (D) calculated as width at half-
height. As predicted, the negative correla-
tion coefficients are extremely statistically
) significant (Table 2), although they are low

o
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o
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(—0.47, —0.48). The multivariate correla-
tion on the two bandwidths is stronger
(r = 0.58), but orientation and spatial fre-
quency bandwidth are not fully indepen-
dent factors (Tolhurst and Thompson,
1981; Baker et al., 1998; Xing et al., 2004).
For 71 of the neurons, we were also able to
calculate a more global measure of spatial-
— frequency tuning, LSFV (Xinget al., 2004).
The correlation between P, and LSFV was
—0.53, compared with a correlation of

sl —0.51 against bandwidth at half-height for
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Figure 6.  For the 89 neurons under study, the graphs in A—C plot the Treves—Rolls sparseness measure (7R) (4), kurtosis (k,)

(B), and entropy (S;) (C) against the probability of obtaining a zero response (Py). The gross outlier in C with entropy >3.0is for
the response distribution shown in Figure 5 D. The correlation coefficients for these plots are given in Table 1. D, A histogram to

the same 71 neurons. Table 2 shows the
multivariate correlation coefficient for P,
against all five of the “grating” factors that
we have discussed: the coefficient is 0.818,
representing 67% of the variance in the
widespread values of sparseness in our
population.

show how many neurons were found with each level of sparseness; the filled blocks are for neurons with spontaneous activity >3

ips.

Table 1. The correlations between the four measures of the sparseness of response
distributions such as those in Figure 3

Probability of Treves—

zero response (Py) Kurtosis (k) Rolls measure
Kurtosis 0.607 (0.949)
Treves—Rolls 0.992 0.603 (0.971)
Entropy (Sp) 0.434 0.073 (0.471) 0.474

The table shows Pearson’s rwith 87 df for each pairwise comparison between the measures. The numbersin brackets
show Spearman’s p based on rank orders for those comparisons involving kurtosis, which obviously varies mono-
tonically but nonlinearly with the other measures.

ous activity gives a multivariate correlation coefficient of 0.748
(Table 2).

A third factor of interest in the responses to sinusoidal grat-
ings is the responsivity of the neuron. We would expect that a
neuron that responds weakly to gratings will also respond weakly
to natural images, and that “weak responsiveness” would imply
frequent responses of zero, especially if the low response magni-
tudes were caused by a high response threshold (compare Fig.
3H). We would expect, therefore, sparseness to natural images to
be inversely related to the maximal response to a high-contrast
sinusoidal grating of optimal spatial frequency and orientation.
Indeed, Table 2 shows that P, and peak response had a correlation
coefficient of —0.57, whereas the multivariate regression coeffi-
cient for P, against relative modulation, spontaneous activity,
and peak grating response was 0.781. Relative modulation, spon-
taneous activity, and peak response are not, however, indepen-
dent variables (see Discussion).

If a neuron responds sparsely to natural images, it might be

The effects of response variability

Figure 4 shows clearly that the responses of

V1 neurons to natural image stimuli are
subject to response variability or “noise”; the form of the noise
distribution is likely to have contributed to the form of the re-
sponse distributions and, therefore, to the measures of sparseness
reported above. For instance, if a particular image were to evoke
a response of 1-2 on average, it would quite likely evoke re-
sponses of zero on individual trials, thereby increasing P,. Fur-
thermore, those few images that evoke large responses on average
will sometimes evoke particularly large responses by chance, ex-
aggerating the distribution tail that so contributes to the kurtosis
measure in particular. The increase in P, and the lengthening of
the response distribution tail would be expected to increase the
various sparseness measures. Figure 8 shows schematically how
“clean” response distributions (redrawn from Fig. 3 B, H) might
be affected by the kinds of response noise seen with moving sinu-
soidal gratings, in which the response variance is approximately
equal to twice the response mean (Dean, 1981; Tolhurst et al.,
1981, 1983; Vogels et al., 1989; Snowden et al., 1992; Geisler and
Albrecht, 1997; Wiener et al., 2001) (but see Gur et al., 1997; Kara
et al., 2000). The distributions of Figure 8, A and B, are consid-
ered as the distributions of the mean responses to individual
images; the values in Figure 8, C and D, are given by sampling
from noisy distributions with those means and with variances
twice the means. All four sparseness measures are increased by
the response variability.

To determine the actual effect of response variance on re-
sponse sparseness, we measured the responses of 24 neurons to 10
repeated presentations of a set of 500 natural image stimuli. For
each neuron, we could consider the 5000 image presentations as
independent events (as in Fig. 5A-D), or we could average the 10
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evoked responses for each stimulus before
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sures are all reduced by the averaging as
predicted (Fig. 8). Averaging the responses
to stimulus repetitions seems to have
caused an increase in response entropy,
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sented the same image fragments 10 times, (degrees) (octaves)

Figure 9A plots P, after averaging the 10
repetitions of each of the 500 stimuli against
P, calculated from the overall distribution of
5000 responses. The results all lie below the
line of equality showing that response noise
had, indeed, increased the measured re-
sponse sparseness over that expected from
clean responsiveness. The same was found
with the Treves—Rolls and kurtosis measures
of response sparseness. In Discussion, we

Figure 7.

Plots to show the associations between the sparseness of response to natural image stimuli and other response
properties. A, Relative modulation in the responses to moving sinusoidal gratings of optimal orientation and spatial frequency. B,
Spontaneous activity. €, The bandwidth of the orientation tuning curve measured with moving sinusoidal gratings of optimal
spatial frequency (see Baker et al., 1998). D, The bandwidth of the spatial-frequency tuning curve measured with moving
sinusoidal gratings of optimal orientation. Bandwidths were measured as full width at half-amplitude. The correlation coefficients
for these plots are given in Table 2. Filled symbols, Relative modulation, <<1.0; open symbols, relative modulation, >1.0, the
arbitrary dividing line by which some separate complex cells from simple cells (Skottun etal., 1991).

Table 2. The correlations between the sparseness of response to natural image stimuli (P,) and five different
aspects of the responses of the neurons to moving sinusoidal gratings

will consider how these observations might

Factor in the response to sinusoidal gratings

make population coding of stimulus features

] than is implied by th Relative Spontaneous Peak Orientation Frequency Multivariate
€8s sparse than 1s implied by the sparseness 4 qylation activity response bandwidth bandwidth r coefficient n
of response of single neurons.
To determine the magnitude of the ef- v 0.520 8
. . v —0.680 89
fects of response noise, we characterized J 0569 89
the forms of response distributions as the J 0474 85
ratio of the overall variance of the response J/ 0482 86
distribution divided by the mean response
magnitude. If there were no response vari- v/ v 0.748 89
ability, then averaging of the responses to v v v 0.781 8
" . J / 0.584 8
10 repetitions of each stimulus would have J / / Y, ¥, 0818 s
no effect on the variance/mean ratio of the '
response distribution. However, if the va-  / _ / / J/ 0.681 63

riety of responses to individual stimulus
presentations is attributable entirely to the
form of the noise distribution (such that
the averaged response to all stimuli was
actually the same), then averaging the responses to 10 repetitions
should lead to a 10 times reduction in the variance/mean ratio.
Figure 9B plots the variance/mean ratio of the response distribu-
tions after averaging stimulus repetitions against the variance/
mean ratio of the individual, unaveraged responses. The results
do lie below the line of equality confirming that response vari-
ability has contributed to the form of the response distribution,
but the variance/mean ratio is not nearly reduced by a full factor
of 10 by averaging the responses to 10 stimulus repetitions; thus,
response variability contributes no more than ~20-50% of the
variance in the distribution of the responses to individual stimuli.

statistically significant.

The single-factor correlations (first five rows) are given by Pearson’s r with 83— 87 df. The multivariate correlation coefficient is always positive whatever the
direction of the regression. The bottom row (with low n) excludes those neurons with spontaneous activity >3 i.p.s. All correlation coefficients are highly

The nature of the response variability

Figure 10, A and B, further examines the nature of the response
variability for the two neurons illustrated in Figures 4, A and B,
and 5, A and B, and E and F. For the 500 image fragments, the
graphs plot the variance of the responses to the 10 repetitions of
each fragment against the mean response to that fragment (zero
values are omitted from the log—log graphs). The graphs have an
obvious positive slope showing that response variance for natural
image fragments is proportional to the mean response (is “mul-
tiplicative”), just as it is for moving sinusoidal gratings (Tolhurst
etal., 1981, 1983). The graphs show the lines of equality and it can
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Figure8.  Schematics to how the potential effects of response variability on the forms of simple cell response distributions for

natural image stimuli. A and B show “clean” thresholded Gaussian distributions (replotted from Fig. 3 B, H, respectively). Each of
these occurrences is considered to be the mean value in a Poisson-like distribution, the underlying noise-free response to an
image. Each occurrence in A and B is replaced in Cand D by noise-corrupted values: each “clean” occurrence is first replaced from
arandomly chosen sample from a Poisson distribution with parameter equal to the “clean” response; then, that sample is in turn
replaced with a randomly chosen sample from a second Poisson distribution with parameter equal to the interim “noisy” value.
This gives variance approximately equal to twice the mean response level for any particular stimulus. Note that response noise
increases the number of zero responses and also the length of the distribution tail at high response magnitudes.

A Probability of zero response B variance:mean ratio

1.0

(&)

IS

N

0475

average of 10 repetitions
o
(e}
1

average of 10 repetitions
w

o

0.0 ~{oo ;0 op ] )
0.0 02 04 06 08 1.0 o 1 2 3 4 5

individual image fragments individual image fragments

Figure9.  For 24 neurons, 500 image fragments were presented 10 times each. The graphs show the effects on the response
distributions of averaging the responses to the 10 repetitions of each fragment. The abscissas show measures of the distributions
of the 5000 individual responses; the ordinates show the equivalent measures of the distributions of the 500 averaged responses.
The solid lines are the lines of equality. 4, P, the probability of obtaining a zero response either to individual stimulus presenta-
tions (abscissa) or on average to particularimage fragments (ordinate). B, The variance of the distribution of responses divided by
the mean response. The overall variance of the distribution is lowered by averaging responses to stimulus repetitions, but the
mean response is, of course, unchanged. The dashed line has a slope of 1/10 and shows how much the variance of the response
distribution could have been reduced by averaging 10 repetitions, if the whole variety of responses to natural images was
attributable to response variability.
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response mean. The slope close to unity is
similar to that often reported for experi-
ments on moving sinusoidal gratings
(Dean, 1981; Tolhurst et al., 1981, 1983).
However, the ratio of variance to response
is lower than has generally been reported
for moving gratings. Figure 10C confirms
that, in the present experiments, response
variance for 100 ms flashed presentations
of natural image fragments was lower than
the response variance for gratings moving
at 1-2 Hz. The figure plots the ratio of re-
sponse variance/mean for the natural im-
age stimuli against the variance/mean ratio
of the same neurons for moving sinusoidal
gratings. The data mostly lie well below the
line of equality. In the present experiments
on ferrets, the variance of response to grat-
ings was 2.79 times the mean response on
average, comparable with our first reports
on response variance in cat V1 (Tolhurst et
al., 1981).

Information transfer

We can summarize many aspects of the
responses to natural stimuli by calculating
the mutual information between response
and stimulus (Eq. 4). For the 24 neurons
for which we examined response reliability
by presenting 500 different stimuli repeat-
edly, the information conveyed in their re-
sponses about which image was presented
ranged from only 0.130 to 1.247 bits
(mean, 0.551 bits). Three factors contrib-
ute to these low values. First, we have char-
acterized the response to each stimulus
presentation as a single integer number,
and few neurons generated >20 different
response states to distribute across 500 or
more different stimuli, whereas many neu-
rons produced <10 states. Second, there is
inherent response variability so that a
given image does not generate a unique
response, and the few response states are
not a reliable measure of which image is
presented. Last, in many neurons, the high
sparseness of response means that a large
number of different images give the same,
nonvariable response (i.e., zero spikes).

Temporal factors

It may be too simplistic to characterize
neuronal response only as an integer spike
count in, say, a 100 ms interval. In partic-
ular, we asked whether the responses to the

be seen that response variance is only slightly greater than (Fig.
10A) or lower than (Fig. 10B) the mean response level. Given
only 10 repetitions, mean responses below ~0.2—0.4 tell us little
interesting about the detailed form of response variability. Thus,
we have analyzed only those data for which the mean response is
0.4 action potentials per presentation and above. Generally, the
slopes of regression lines on log—log axes were close to unity (Fig.
10, legend), and, on average, the variance was 1.502 times the

most powerful stimuli are of the same form as responses to
weaker stimuli. Figure 11 shows some examples. For each neu-
ron, we averaged its responses to the 10 repetitions of each natu-
ral scene stimulus and then ranked the 500 images in order of
averaged response. The upper row shows, for each neuron, the
PSTH generated by summing the responses for the 20 most pow-
erful stimuli; the second row shows the summed responses to
stimuli ranked 41-70; whereas the bottom row shows the
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summed responses to 50 much weaker
stimuli. The overall form of the response
PSTH is little affected by the changes in
response magnitude, apart from the
change in balance between the ON and
OFF responses of the simple cell in Figure
11 B, which is the same as Figure 1C. Here,
the strongest responses were ON re-
sponses to some stimuli, whereas the OFF
responses to other stimuli were generally
weaker. It is interesting that the obvious
shoulder in the overall PSTH (Fig. 1C) at
~40 ms after stimulus onset is evident in
all three PSTHs of Figure 11B; it is not
that, say, the more powerful and the
weaker stimuli differ in latency to cause
the shoulder. The histograms of Figure
11C all show pure OFF responses; this is
the same simple cell as in Figure 1E, in
which the ON/OFF overall PSTH is de-
rived from pure ON responses given to
some stimuli, but pure OFF responses
given to other stimuli.

Although there is no systematic change
in response form with the overall strength
of response, it may still be that the exact
timings of spikes may vary in a consistent
manner between stimuli so that, say, a re-
sponse of “eight spikes” to one stimulus
could be treated as a different code from a
response of eight spikes to a different stim-
ulus. Figure 12 shows spike—time rasters
for four of the neurons for which we made
10 or more repeated presentations of stim-
uli. The rasters are arranged so that the 10
responses to a given stimulus are closely
grouped together, with those stimuli giv-
ing the most powerful responses (on aver-
age) being listed at the top of the panels.
The lower halves of the panels show the
repeated responses to stimuli that were so
weak that they evoked spikes on only
~50% of presentations. The black and red
dots show the times of action potentials,
the red dots showing the timing of the first
spike in each response (i.e., the latency of
the response). The green symbols show tri-
als in which the neurons failed to respond
at all. Because response latency to flashed
gratings varies with contrast or stimulus
strength (Gawne et al., 1996; Reich et al.,
2001; Geisler et al., 2007) and because it
has been argued that first-spike latency
could be important in encoding stimulus
information (Thorpe et al., 2001; Van Rul-
len et al., 2005), we particularly investi-
gated the consistency of first-spike latency
(red symbols).

It is very clear that, for the most power-

ful stimuli (in the top one-half of the figure), there are small
differences in response latency between stimuli (up to 15 ms in
Fig. 12A; up to 30 ms in Fig. 12 B), and that the tonic or phasic
nature of the response may also vary. This is most obvious for
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Figure 10. A, B, The variance of response to 10 repetitions of each natural image fragment is plotted against the mean
response to that fragment for the two neurons illustrated in Figures 4, A and B, and 5, A and B, and £ and F. Data with mean
response of zero cannot be plotted on the log—log axes; there are fewer data plotted in A because the responses of this neuron
were sparser than the responses of B (Figs. 44, B, 54, B). The lines are the lines of equality. Regression lines fitted to those points
with abscissa value 0.4and above had slope and intercept: 0.951, 1.238 (4),and 0.707,0.783 (B). The intercept is the average ratio
of variance to mean response for that neuron. €, For 24 neurons, the average variance/mean-response ratio was calculated for
those flashed natural image stimuli giving a mean response of at least 0.4 action potentials per presentation and is plotted as
ordinate against the variance/mean-response ratio for moving high contrast sinusoidal gratings. The ratio for natural image
stimuli was calculated from 10 repetitions of up to 500 stimuli; the ratio for gratings was calculated for 30 cycles of up to 12 stimuli,
varying in spatial frequency or orientation. The line is the line of equality.

200~ :
. images:
sl 200 Y
1-20

100k 100f=
= ]
g 0 0 0
(&)
B 30
o 100f= 100k images:
o
Py 41-70
2 5o 50f-
2
£ o 0 Moo 0
2
o 40f- images:
o 20
£ 20} 101-150
= 20f=

0 ol 0 sa
0 50 100 150 200 0 50 100 150 200 0 50 100 150 200
time from image onset (ms)
Figure 11.  For three neurons (A—C, respectively), the figure shows three PSTHs summarizing the responses to three different

image sets. Neuron B is the same as in Figure 1C; neuron Cis the same as in Figure 1 E. For each neuron, the 500 stimulus images
were ranked according to the number of action potentials evoked over the whole stimulus interval including the blank between
images. The top row of histograms shows PSTHs summed only across the 20 most powerful stimuli for each neuron; the middle
rows sums the responses to stimuli ranked 4170 for each neuron; whereas the bottom row sums the responses to stimuli ranked
101-150 for each neuron. The response bins are 4 ms. Note the expansion in the y-axis scale as one proceeds down the rows.

neurons A and B. Indeed, for these two neurons, among the re-
sponses to the 20 most powerful images, the variance of the la-
tencies within the repeated presentations of single stimuli was less
than the variance between the latencies to different stimuli (A,
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Figure 12.

The rasters show the times of action potentials of four neurons in response to repetitions of different subsets of the 500 images. For each neuron, the responses are shown for the 20

images that evoked the greatest response on average from the respective neuron and a further 20+ images that evoked weak responses. The rows of the rasters are grouped in 10 (4, ¢, D) (or 11s;
B), the number of repeats, with gaps to separate the responses to the different images. The black and red symbols show the times of action potentials after stimulus onset (B-D) or offset (A); the
red symbols show the first spike after the stimulus transition in each raster row. The green symbols show those stimulus presentations that elicited no action potentials at all.

interstimulus variance, 25.6 ms?; intrastimulus variance, 15.1
ms?; B, 24.31 vs 37.2 ms?). Although neuron C (and perhaps D)
shows some evidence that response timings differ between stim-
uli, the intrastimulus variance is more than double the inter-
stimulus variance (C, interstimulus variance, 74.4 ms?; intra-
stimulus variance, 153.7 ms?; D, 35.9 vs 101.4 ms?). Although
there may be small differences in response latency between stim-
uli that are evident from repeated presentations, these are over-
shadowed on any single trial by the large variability of latency and
spike count in the responses to any single stimulus image (note
the wide dispersal of the red symbols within each block of 10
raster lines in Cand D). Apart from neurons A and B, all the other
neurons in our sample with repeated presentations of stimuli
behaved like neurons C and D: either there was no evidence that
response timings differed between stimuli, or the differences be-
tween stimuli on average were smaller than the inherent response
variability to the same stimulus.

The bottom one-half of Figure 12 shows the repeated re-
sponses of the four neurons to stimuli that were so weak that they
rarely evoked more than one spike (note how few black symbols
are present) and sometimes no spikes at all (green symbols). The
variability of first spike latency is clearly greater for the weak
responses, but the earliest spikes still have much the same latency
as the more regular first-spikes for stronger stimuli. Confirming
the implications of Figure 11, there is no systematic change in
response form as the stimuli get weaker; any change in average
latency is artifactual and is accompanied by a great drop in reli-
ability. There may still be evidence of small timing differences
between stimuli on average, but, trial by trial, spike timing in a
single neuron would be a poor code for stimulus identity, given
the variability of latency and the frequent failure to fire at all. At
these low response levels, the great variability is such that tempo-

ral cues are unlikely to be useable for determining whether a
response has occurred or not, unlike the situation in auditory
cortex (DeWeese et al., 2003, 2005).

If we consider response as a simple spike count in 100 ms,
neuron A in Figure 12 gave 17 different integer response levels
(0-16). The mutual information between response and stimulus
was only 0.796 bits. However, this neuron clearly showed differ-
ent response timing to different stimuli, and so this must be an
underestimate of the amount of information that could be con-
veyed in the responses of this neuron. Although the response to a
given stimulus may not be the same on each presentation, it
might still be that those different response patterns are unique to
that stimulus. If we take the extreme and unrealistic view that
every nonzero response is unique in its exact timing details, neu-
ron A gave 1357 “different” nonzero responses. The mutual in-
formation increased to 2.62 bits (500 stimuli needs 8.97 bits).
This extreme upper limit on information transmitted presumes
an immense level of precision in the interpretation of spike tim-
ings (e.g., the neuron gave only one spike on 576 of the 100 ms
presentations). If these really were to be treated as 576 different
responses, we would have to presume that the code is precise to
0.2 ms or less.

Discussion

We have examined responses of ferret striate cortex neurons to
flashed natural scenes, using a stimulation protocol mimicking,
in a stylized way, the static fixations interspersed with sudden
saccades of “natural” vision. The supplemental material (avail-
able at www.jneurosci.org) describes preliminary analysis of ex-
periments with, arguably, more naturalistic stimulus movies
(Smyth et al., 2002): single scenes presented for 5.6 s and panned
in irregular steps as if the animal was moving its gaze around one



2368 - J. Neurosci., February 25, 2009 - 29(8):2355-2370

scene. The basic results are the same in the two kinds of experi-
ment. Are the forms of response to either kind of stimulus com-
patible with theories of sparse encoding, argued to be advanta-
geous on various grounds (Field, 1994; Attwell and Laughlin,
2001)?

We initially made simple spike counts as blunt measures of
response, and we measured response variability by presenting the
same stimuli several times. Variability for flashed natural scenes
was less than for moving sinusoidal gratings, perhaps because
flashed stimuli have well defined sudden temporal discontinui-
ties (cf. Gur et al., 1997; Kara et al., 2000) and not because of
special adaptations for coding natural images. The firing rates
averaged across all stimulus presentations ranged widely (0.28—
45.94 i.p.s.; median, 4.10 i.p.s.). Such low average firing rates are
similar to other natural-image studies in anesthetized and, im-
portantly, in awake animals (Legéndy and Salcman, 1985; Bad-
deley et al., 1997; Gallant et al., 1998; Ringach et al., 2002; Guo et
al., 2005; Maldonado and Babul, 2007; Yen et al., 2007), and with
firing rates measured in other sensory areas in alert, behaving
animals (e.g., Griffith and Horn, 1966; Burns and Webb, 1976;
Fanselow and Nicolelis, 1999; Schoenbaum et al., 1999; DiCarlo
and Maunsell, 2000). Our range is slightly higher than estimated
rates (0.25-1.5 i.p.s.) that would be compatible with the overall
energy consumption of cerebral cortex (Attwell and Laughlin,
2001; Lennie, 2003). Arguably, this might reflect undersampling,
with extracellular recordings, of neurons with very low sponta-
neous activity (cf. Margrie et al., 2002). However, the spontane-
ous firing rate in our study (median, 0.64 i.p.s) is close to that
found in a two-photon comparison of spontaneous activity in
awake versus anesthetized rat visual cortex (Greenberg et al.,
2008)

Sparse responses

We characterized the lifetime sparseness of each neuron (Will-
more and Tolhurst, 2001). In a sparse code, each neuron should
fail to respond to most stimulus images but should respond dis-
tinctly and reliably to just a few. Indeed, 12 of 89 of our neurons
responded to <5% of flashed images (Fig. 6 D); one-half re-
sponded to <25% of flashed images, but this seems a higher
proportion of nonzero responses than is implied by theories of
sparse coding.

We used the measure of response sparseness of Treves and
Rolls (1991), as well as other measures. Sparseness varied consid-
erably between neurons, but the averages (mean TR sparseness,
0.783; SD, 0.19) were similar to other studies (Vinje and Gallant,
2000; Yen et al., 2007). Some 20% of the neurons in our sample
had appreciable spontaneous activity (above ~3 i.p.s.) so that
spikes were generated during the presentation of most stimuli,
and our sparseness measures implied that their responses were
not sparse. Superficially, the decrease in spontaneous activity
seen in anesthetized animals (Greenberg et al., 2008) should in-
crease sparseness, but this may be offset by decreases in burst
firing (Greenberg et al., 2008).

In a sparse code, a neuron should respond to few stimulus
images, but we expect those few responses to be reliably different
from the baseline response of zero (hard sparseness) (Rehn and
Sommer, 2007). However, the responses of all but one of our
ferret V1 neurons were compatible only with soft sparseness:
although the most common response of the neuron to images
might indeed be zero spikes, the second most common was one
spike, the next most common was two spikes, and so on. Re-
sponse distributions tailed away like the exponential distribu-
tions of Baddeley et al. (1997).
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When the same images were presented repeatedly, the re-
sponses of a neuron were not identical, exaggerating the measures
of response sparseness: images that (on average) evoke a small
response often evoke zero spikes, whereas the rare images which
evoke big responses will sometimes evoke extra large ones. Be-
cause response variability is multiplicative, larger responses will
be most distorted; however, this may not be a consideration if the
sparse code is one in which response magnitude is irrelevant,
provided that it is distinctly nonzero. Response variability lessens
the impact of the proposal that a few nonzero responses of a
neuron convey significant information about a few images. How-
ever, this might be overcome by averaging the responses of mul-
tiple neurons signaling in parallel. The sparseness of the overall
population would be less than measured for any one neuron, but
having multiple neurons with replicated firing patterns rather
contradicts metabolic arguments for sparse codes.

Neurons differ markedly in sparseness
Multivariate analysis revealed that response sparseness for
flashed natural images was strongly correlated with the response
pattern of the neurons for moving sinusoidal gratings. Sparseness
varied inversely with orientation and spatial-frequency tuning
bandwidth, and with the peak firing rate to gratings; the fewer
gratings that activated a neuron and the lower the firing rates, the
fewer the responses to natural images too. Sparseness was in-
versely related to the amount of spontaneous activity, but was
positively correlated with the degree of modulation (F1/F0) in the
responses to sinusoids. These five factors are themselves partly
correlated, of course: high spontaneous activity was more com-
monly found in complex cells with low F1/F0 and, unfortunately,
such activity also lowers the calculated value of F1/F0 in other
neurons. Neurons with low responsivity (high threshold, per-
haps) would tend to have higher F1/FO (Mechler and Ringach,
2002). Overall, the multivariate correlations imply that response
sparseness for flashed natural images does not depend on any
special mechanisms above those for grating responses. Is a com-
parison between responses to drifting gratings and flashed natu-
ral scenes appropriate? The supplemental material (available at
www.jneurosci.org) shows responses to moving natural stimuli
and, crucially, the correlation of sparseness for movies with F1/F0
closely resembles that for flashed stimuli (supplemental Fig. 3,
available at www.jneurosci.org as supplemental material).
Sparseness was greater for neurons with higher F1/F0, imply-
ing that simple cells (Hubel and Wiesel, 1959, 1962) give sparser
responses than complex cells. However, we expect complex cells
to respond to twice as many images as simple cells, because re-
sponses of “classical” simple cells are effectively half-wave recti-
fied, whereas complex cells give full-wave rectified responses
(Movshon et al., 1978a,b). Each simple cell only codes for one-
half the natural scenes; complete coding requires a pair of simple
cells, whose receptive fields are complementary, making the pop-
ulation code less sparse.

Temporal response structure

Summarizing neuronal responses as total spike counts neglects
any stimulus-dependent differences in the temporal structure of
responses. Changes in latency or response form are expected of
spatiotemporal inseparable simple cells (Maffei and Fiorentini,
1973; Movshon et al., 1978a; Dean and Tolhurst, 1986; McLean
and Palmer, 1989; Reid et al., 1991; DeAngelis etal. 1993). Thorpe
et al. (2001) propose that the latency of the first spike gives
enough information for rapid behavioral decisions about scene
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content and, indeed, some of our neurons showed different re-
sponse latencies for different natural stimuli.

“Integrate-and-fire” models imply that latency is shortest for
strong stimuli, becoming systematically longer as stimuli become
less favored. However, we found no systematic changes in overall
PSTH shape, even as total spike count fell. Because the PSTH
represents the probability of spike occurrence against time, and
because PSTH shape remained constant despite falling overall
response probability, this necessarily means that the first-spike
latency became much more variable for weak stimuli (often no
spikes would be generated on some trials). The average first-spike
latency did increase as stimuli became weak, but the variance of
the latency also increased so dramatically that it is difficult to
envisage latency as a useful code.

For some neurons, we could compare the intrastimulus la-
tency variance with the interstimulus latency variance. Although,
on average, some stimuli evoked shorter latency responses than
others, the inherent trial-by-trial response variability to identical
stimuli mostly outweighed any subtle differences between stim-
uli. Thus, first-spike latency was not reliable trial-by-trial, unlike
in the auditory cortex (DeWeese et al., 2003, 2005). It is difficult
to see how first-spike latency could be a reliable encoder, unless
many neurons of like spatiotemporal character signal in parallel.
Furthermore, when considering how our whole disparate popu-
lation of neurons might encode natural scenes, the response la-
tency of different neurons varied widely (by 30 ms or more), as
found for other visual stimuli (Troy and Lennie, 1987; Maunsell
etal., 1999; Saul and Feidler, 2002; Weng et al., 2005). Differences
between neurons were far greater than any subtle intrastimulus
differences within the responses of a single neuron. It would be
curious if coding relied on small differences in response latency of
the quickest neurons, whereas many neurons were unable to con-
tribute because they always responded too late!

In conclusion, the responses of ferret V1 neurons are difficult
to reconcile with our expectations of the needs of sparse coding.
The soft sparseness and the unreliability of spike counts and of
spike timing suggest that reliable coding must rely on the simul-
taneous activity of many neurons conveying redundant informa-
tion in the noise.
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