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Parallel Input Channels to Mouse Primary Visual Cortex
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It is generally accepted that in mammals visual information is sent to the brain along functionally specialized parallel pathways, but
whether the mouse visual system uses similar processing strategies is not known. It is important to resolve this issue because the mouse
brain provides a tractable system for developing a cellular and molecular understanding of disorders affecting spatiotemporal visual
processing. We have used single-unit recordings in mouse primary visual cortex to study whether individual neurons are more sensitive
to one set of sensory cues than another. Our quantitative analyses show that neurons with short response latencies have low spatial acuity
and high sensitivity to contrast, temporal frequency, and speed, whereas neurons with long latencies have high spatial acuity, low
sensitivities to contrast, temporal frequency, and speed. These correlations suggest that neurons in mouse V1 receive inputs from a
weighted combination of parallel afferent pathways with distinct spatiotemporal sensitivities.

Introduction
In the visual cortex, neurons with selectivities for similar stimulus
features often aggregate in specific layers, processing modules,
and areas (Nassi and Callaway, 2009). It is well established that
this functional architecture is created by selective routing and
mixing of inputs from parallel channels (Nassi and Callaway,
2009), but the processing machinery by which these inputs gen-
erate selective visual receptive field properties is incompletely
understood. Recent advances in labeling, recording and manip-
ulating the activity of distinct types of neurons suggest that the
mouse visual system provides a suitable model for unraveling the
underlying network (Huberman et al., 2008, 2009; Kim et al.,
2008; Sohal et al., 2009; Yonehara et al., 2009).

After pioneering work on the mouse visual system 30 years
ago (Dräger, 1975; Mangini and Pearlman, 1980), interest has
faded because little merit was seen in studying the visual system of
animals that have 100 times lower spatial acuity, 10 times lower
contrast sensitivity, and 5 times lower temporal resolution than
humans (Kelly, 1972; De Valois et al., 1974; Prusky et al., 2000;
Umino et al., 2008). Recently, attention has shifted and research-
ers began to emphasize shared properties between mice and pri-
mates, such as luminance-invariant contrast sensitivity and
contrast-dependent temporal and spatial frequency sensitivity
(Prusky et al., 2000; Umino et al., 2008). These functions are
eliminated by lesioning primary visual cortex (V1) (Prusky and
Douglas, 2003, 2004), and recordings suggest that V1 networks

play a direct role in contrast-invariant orientation tuning (Niell
and Stryker, 2008). In primates, contrast and spatial frequency
information is carried by parallel pathways that are specialized
for low contrast/low temporal/high spatial frequency sensitivity
(P-channel) and high contrast/high temporal/low spatial fre-
quency sensitivity (M-channel) (Merigan and Maunsell, 1993).
Similar channels were proposed to exist in rat optic nerve and
lateral geniculate nucleus (LGN) (Fukuda, 1973; Hale et al., 1979;
Lennie and Perry, 1981; Gabriel et al., 1985). Although recordings
in the mouse LGN revealed sustained and transient responses, the
lack of differential correlations with latency, contrast, and spatial
and temporal frequency tuning left the question of processing
channels in mice unanswered (Grubb and Thompson, 2003).

In primates M- and P-pathways terminate in distinct layers of
V1 (Sincich and Horton, 2005). Outside the input layers, both
pathways intermix across different compartments and individual
neurons (Nealey and Maunsell, 1994; Leventhal et al., 1995). In-
termixing of M and P inputs was also observed in squirrel V1,
whose neurons showed sustained short-latency responses with
high temporal frequency cutoffs (Heimel et al., 2005). Studies in
monkey V1, however, showed that intermixing is incomplete and
that neurons in layer 4B, may receive either M input or a mix of M
and P inputs (Yabuta and Callaway, 1998; Yabuta et al., 2001).
Thus, the relative amounts of M and P inputs differ across V1
neurons. To examine whether similar differential mixing of spe-
cialized channels exists in the mouse visual system, we recorded
single units in V1 and characterized their spatiotemporal re-
sponse properties. Our results support the notion that mouse V1
neurons receive inputs from parallel pathways.

Materials and Methods
Experiments were performed on 10- to 14-week-old C57BL/6J mice. All
experimental procedures were approved by the Institutional Animal
Care and Use Committee at Washington University and conformed to
National Institutes of Health guidelines.

Identification of V1. To identify V1 for recording, we used transcranial
imaging of callosal connections (Wang et al., 2007). Callosal connections
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were labeled by axonal transport with Fluororuby (FR, Invitrogen; 5% in
H2O). After anesthesia (ketamine 86 mg � kg �1/xylazine 13 mg � kg �1,
i.p.) was achieved, mice were put in a headholder (Stoelting, catalog
#51625M). The body temperature was maintained at 37°C with a
feedback-controlled heating pad. The eyes were protected with a thin
layer of ophthalmic ointment (Puralube Vet; Pharmaderm). A craniot-
omy was made to expose the right occipital cortex. Pressure injections of
FR were made with glass pipettes (20 �m tip diameter), using a Pico-
spritzer (Parker-Hannafin). Multiple injections (50 nl each) were made
350 �m below the pial surface distributed in a 0.5 � 0.5 mm grid across
the occipital lobe. The bone flap was replaced and the scalp was sutured
closed with wound clips.

At the day of recording (2–3 d after tracer injections), mice were re-
anesthetized with urethane (20% in PBS, 0.2 ml/20 g body weight, i.p.)
and injected with atropine (1.7 mg/kg, s.c.) to suppress buildup of tra-
cheal secretions. Animals were put in a customized headholder mounted
on a vibration isolation table. The scalp was retracted and the left occip-
ital cortex was imaged through the bone, using a fluorescence stereomi-
croscope (Leica MZ16F) equipped with a 1� plan apochromatic lens and
variable zoom. Illumination at 560 nm (Leica TRX filter cube, barrier
filter 610 nm) revealed a characteristic pattern of FR labeled callosally
projecting cell bodies and axons (Wang et al., 2007). V1 was identified as
a largely acallosal region (�1.5 mm wide, 2 mm long) on the medial side
of a callosally connected rostrocaudal band (Wang et al., 2007). Images
were captured with a cooled CCD camera (CoolSnap EZ; Roper Scien-
tific). The labeled band was marked on the skull and used as reference for
drilling a small hole to gain access to V1. The exposed dura was protected
with a thin layer of Vaseline. Hydration throughout the �8 h recording
session was maintained by subcutaneous injections of 5% dextrose in
lactated Ringer’s solution.

Visual stimulation. Visual stimulation for examining orientation, size,
contrast, spatial frequency, and temporal frequency tuning was per-
formed with drifting sinusoidal gratings. Drifting patterns of white ran-
dom dots on a dark background were used to examine direction, speed,
and motion coherence selectivity. For measuring direction and speed
tuning, random-dot stimuli were fully coherent and dots wrapped
around after reaching the edge of the aperture. For measuring sensitivity
to motion coherence, a variable fraction of the dots moved coherently
(percentage coherence), while the remaining dots were randomly replot-
ted within the aperture. Dots had dwell times of 50 ms (three video
frames), subtended 3 deg, and were displayed at a density of 0.5 dots �
deg �2 � s �1. The peak luminance of the dots and light stripes of the
gratings was 75 cd/m 2. The minimum luminance of the dark stripes of
the gratings and the background illumination for random dots was 2
cd/m 2. Between trials with grating and dot stimuli, the screen was uni-
formly gray at 35 cd/m 2 to keep the average luminance across trials

constant. All stimuli were generated by a Quadro FX1400 accelerator
board supported by OpenGL 2.1 and displayed on a flat screen 20“ CRT
color monitor (Philips 202P73) with a refresh rate of 60 Hz. The display
was placed at a fixed 30 cm viewing distance (subtending 67 � 53 deg)
and was mounted on an adjustable stand that allowed visual stimulation
across large parts of the contralateral visual field. The stimuli were viewed
from a position in which the incisor bar of the headholder was 2.5 mm
below the interaural line and the roof of the mouth was horizontal. To
minimally interfere with visual acuity and contrast sensitivity, we
avoided dilating the pupil and therefore did not determine the position of
the optic disk. In the absence of this landmark, the horizontal meridian
was defined as the intersection of the horizontal plane with the center of
the eye. Because the pupil size in mice is extremely small and the resulting
depth of focus is large (Remtulla and Hallett, 1985) the eyes were not
refracted. The eyes were left unrestrained, because previous studies have
shown that in anesthetized mice, eye movements are small and negligible
considering the large size of V1 receptive fields (Dräger, 1975; Wagor et
al., 1980; Gordon and Stryker, 1996; Wang and Burkhalter, 2007).

Recording procedures and data acquisition. Lacquer-coated tungsten
microelectrodes with a tip diameter of 6 – 8 �m and 1–2 M� resistance
were manufactured from 125-�m-diameter tungsten wire (Midwest
Tungsten Service). Microelectrodes were inserted into V1 through a
small hole (200 �m in diameter) in the skull. After penetrating dura, the
depth of the electrode was zeroed at the pial surface. The recording depth
was monitored with a Sutter MP-225 micromanipulator (Sutter Instru-
ments). Single-unit responses were acquired by a commercially available
software package (TEMPO, Reflective Computing). Raw neural signals
were amplified and bandpass filtered from 300 to 5000 Hz using the
Axoprobe-2A amplifier (Molecular Devices). Times of occurrence of
spikes, along with event timing markers, were stored to disk with 1 ms
resolution. At the end of a penetration, the microelectrode was with-
drawn and the recording site was marked by reinserting the electrode,
painted with fluoroemerald (Invitrogen; 5% in H2O). Mice were over-
dosed with anesthetic and perfused through the heart with 0.1 M phos-
phate buffer, pH 7.4, followed by 4% paraformaldehyde. The brain was
equilibrated in 30% sucrose and sectioned at 50 �m in the coronal plane.
The sections were mounted on glass slides and coverslipped in 0.1 M

phosphate buffer. The callosal labeling and the markings of recording
sites were imaged under a fluorescence microscope, using appropriate
excitation and barrier filters.

Experimental protocol. Single units were isolated using a digital neural
spike discriminator (FHC). To search for visual responses and explore
qualitatively the tuning properties of a neuron, we used a mapping pro-
gram which enabled us to move a slit or a grating on the screen with a
computer mouse and to plot visually evoked spike rates, which served to
outline receptive fields. The size of the receptive field was then mapped

Table 1. Equations for curve fits

Fitting equation Free parameters

Direction tuning z � B � A � e�0.5 � � � x�C�

S � 2 B � baseline response; A � amplitude; C � center;
S � size parameter; e, Euler’s constant

Contrast
z � B �

Rmax � xn

�n � xn

B � baseline firing rate; Rmax � maximum firing rate; n � exponent;
� � SEM saturation constant

Orientation z � B � A1 � ek1�cos� x � �1� � 1	 � A2 � ek2�cos� x � �2� � 1	 B � baseline firing rate; A1 , A2 � amplitudes of peaks; �1 , �2 � centers
of peaks; k1 , k2 � width constants; e, Euler’s constant

Spatial frequency
z � B � A � e

�1

2s2 � log � x 
 0

p 
 0� 2 B � baseline firing rate; A � amplitude; s � SD; o � log
offset; p � peak; e, Euler’s constant

Speed tuning
R�s� � R0 � A �

���s � 	��n � e����s � 	��

nn � e�n

R0 � baseline response; A � amplitude; � � scaling factor;
	 � offset; n � exponent

Size tuning R�w� � R0 � Ae � erf�w/�� or R�w� �
R0 � Ae � erf�w/�� � Ai � erf�w/�� � 
��
(erf denotes the error function)

R0 � baseline response; Ae � excitation amplitude; � � excitation size;
Ai � inhibition amplitude; � 
 
 � inhibition size

Temporal frequency
z � B � A � e

� 1

2s2 � log�x � 0

p � 0�2 B � baseline firing rate; A � amplitude; s � SD; o � log offset;
p � peak; e, Euler’s constant

Coherence R�c� � mc � R0 m � slope; R0 � baseline
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quantitatively by presenting for 2 s a circular
patch (5 deg in diameter) of a drifting grating at
various locations on the monitor screen. Next,
each neuron was tested for tuning to orienta-
tion, spatial frequency, temporal frequency,
contrast, size, direction, speed, and motion co-
herence. Each different tuning function was
obtained in a separate block of randomly inter-
leaved trials, with each unique stimulus pre-
sented 10 times. In all cases, a circular aperture
of a drifting sinusoidal grating or drifting ran-
dom dots was centered on the receptive field
and matched to its size. When a neuron
showed strong surround suppression, stimulus
size was chosen to elicit a near-maximal re-
sponse. Orientation tuning was measured by
presenting gratings of maximal contrast and
fixed 0.03 c/deg spatial frequency at 12 differ-
ent orientations, 30° apart. Spatial frequency
tuning was determined with optimally ori-
ented maximum-contrast gratings that ranged
from 0.01 to 0.8 c/deg. Temporal frequency
tuning was measured with optimally oriented
sinusoidal gratings (fixed maximum contrast,
0.03 c/deg spatial frequency) drifting at 0.5–16
Hz. Contrast tuning was measured with opti-
mally oriented gratings (fixed at 0.03 c/deg
spatial frequency) whose Michelson contrast
varied between 0.01 and 1. Size tuning (i.e.,
area summation) was measured by presenting
patches of drifting gratings at fixed maximum
contrast and 0.03 c/deg spatial frequency with
different diameters ranging from 1° to 64°. Di-
rection, speed, and coherence tuning were ex-
amined with drifting random-dot stimuli.
Direction tuning was measured by presenting
eight directions of motion, in increments of 45
deg, at a fixed speed of 10 deg/s. Speed tuning
was measured by varying speed from 1 to 64
deg/s while direction of motion was optimal.
Speed was manipulated by changing the mag-
nitude of the spatial offset of the dots from one
video frame to the next. Motion coherence
(i.e., strength of the motion signal) was varied
by changing the proportion of dots moving in
the same direction, as described above (Britten
et al., 1992).

Data analyses. The response of a neuron for
each trial was computed as the mean firing rate
over the 2 s stimulus duration. Receptive field
size was determined from spatial response
plots in which points representing similar
mean response strengths were connected by
contour lines. The contour corresponding to 2
SDs of the fitted Gaussian was used to deter-
mine the dimensions of the receptive field. Re-
sponse latency was determined by pooling the
responses from different runs to drifting sinu-
soidal gratings at the optimal orientation, spa-
tial frequency, temporal frequency, contrast
and size, and sliding a 20 ms window in 2 ms
steps across the spike discharge. The latency
was defined as the point at which the response
in three consecutive time steps significantly
(Wilcoxon test, p � 0.05) exceeded the pre-
stimulus activity. To compare neurons with
linear and nonlinear spatial summation prop-
erties, we determined the response modulation
at the drift frequency of the grating, relative to

Figure 1. Distinct combinations of spatiotemporal response properties in two neurons recorded in layer 2/3 of mouse V1. A–H,
Tuning curves of the spike discharge of the gray (60601c2) and the black (60302c2) neuron elicited by visually stimulating the
receptive field. In each panel the mean response (�SE) is plotted as a function of the relevant stimulus variable. Each data point is
the mean of 10 stimulus repetitions. The solid lines indicate the best fitting functions. The dashed lines indicate the average
spontaneous activity when no stimulus was presented within the receptive field. SI denotes surround inhibition index. C50 indicates
the contrast at which the response magnitude is 50% of the peak. HWHM was measured on the left or the right side of the peak.
Orientation (A), size (B), spatial frequency (C), contrast (D), and temporal frequency (F ) tuning curves were obtained by stimulat-
ing with drifting sinusoidal gratings. Direction (E), speed (G), and coherence (H ) tuning curves were obtained with moving
random-dot stimuli. Notice that the gray neuron is optimally tuned to high spatial frequency, shows low contrast sensitivity, and
prefers low temporal frequencies and slow speeds. In contrast, the black neuron is optimally tuned to low spatial frequency, is
highly selective/sensitive to contrast, and prefers high temporal frequencies and fast speeds.
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the mean firing rate. This was done by performing a Fourier analysis
of the peristimulus time histograms and computing the F1/F0 ratio at 2
Hz. Tuning curves for size, orientation, direction, contrast, spatial fre-
quency, temporal frequency, speed, and coherence were constructed by
plotting the mean response (across repetitions) to each stimulus along
with the SE of the mean. ANOVA was used to assess significant ( p �
0.05) tuning. Each tuning curve was fit with a function that was chosen
because it describes the data well with a relatively small number of pa-
rameters (Table 1). The best fit of each function was achieved by mini-
mizing the sum-squared error between the responses of the neuron and
the values of the function. From these fits we extracted the peak, tuning
widths [i.e., left half width at half-maximal response (L-HWHM) and
right HWHM], and cutoff response (10% of maximal response). Similar
to analyses in monkey area MT (DeAngelis and Uka, 2003), size tuning
curves were fit with two functions: a single error function (erf, Gaussian
integral) and a difference of error (DoE) function. To compare the good-
ness of fit of each function for each neuron, we used a sequential F test
(Draper and Smith, 1966). Neurons with significant surround inhibition
were significantly ( p � 0.05) better fit with DoE than with erf. Optimal
size for neurons with significant surround effects was taken as the peak of
the fitted DoE function. By contrast, neurons that lacked surround inhi-
bition were better fit with a single error function. For these neurons, the
optimal size was defined as 1.163� (Table 1), which represents the size at
which responses reach 90% of the maximum. The parameters obtained
by these fits were also used to compute the percentage of surround inhi-
bition as follows: % Surround inhibition � 100 � (Ropt � Rlargest/Ropt �
S), where Ropt is the response at the optimal size, Rlargest is the response to
the largest size, and S denotes the spontaneous activity level. Orientation
tuning curves were fit with the sum of two modified von Mises functions,
which were shown previously to provide the best fit to orientation-tuned
responses (Swindale, 1998; Heimel et al., 2005). From these fits, we com-
puted peak response and tuning width as the half width at half-maximal
response. Spatial frequency and temporal frequency tuning curves were
fit with a log Gaussian function. These fits were used to determine peak
response and half width at half-maximum height. Contrast tuning curves
were fit with a hyperbolic ratio function (Albrecht and Hamilton, 1982)
(Table 1). Direction tuning curves were fit with a Gaussian, whereas
speed tuning was fit with a gamma function, as used previously by Nover
et al. (2005) (Table 1). Speed tuning width was computed as half width at
half-maximal response. Coherence tuning curves were fit with a linear
function (Table 1), which for all neurons provided a good fit that was not
significantly improved by polynomials.

For each orientation, size, spatial frequency, contrast, direction, tem-
poral frequency, speed, and coherence tuning curve, we extracted a dis-
crimination index (DI) which measures the tuning strength. The DI
characterizes the ability of a neuron to discriminate changes in the stim-
ulus relative to its intrinsic level of variability (DeAngelis and Uka, 2003)
as follows: DI � Rmax � Rmin/((Rmax � Rmin) 
 2 SSE/(N � M )),
where Rmax is the mean response to the most effective and Rmin the
response to the least effective stimulus, SSE denotes the sum squared
error around the mean responses, N is the number of observations (tri-
als), and M is the number of stimulus values tested.

In general, data were not normally distributed. To compare scalar
properties between groups of neurons, we used a nonparametric Mann–
Whitney U test. Normally distributed data were compared using a t test.
Linear regression analyses were used to assess whether two variables were
significantly correlated. The variability of mean responses is indicated by
SEM.

Results
We recorded visual responses of 220 isolated single units in layers
2/3– 6 of mouse primary visual cortex. Two thirds (67%) of re-
ceptive fields were located in the nasal visual field (�30° azimuth,
�10° to 
30° elevation), representing the binocular segment
(Dräger and Olsen, 1980). The remaining 33% of receptive fields
were found in the temporal, monocular visual field in a 30 deg
wide sector of the upper visual quadrant. For a large number of
neurons (N � 196) we obtained a complete set of recordings

consisting of tuning curves for orientation, size, spatial fre-
quency, contrast, direction, temporal frequency, speed, and
motion coherence. Our quantitative determinations of tuning
curves and correlations of responses to different visual features
revealed that high spatial frequency selectivity often coincided
with low temporal frequency selectivity, whereas low spatial fre-

Figure 2. Response latencies and receptive field shape of V1 neurons. A, Distribution of
response latency across all layers of V1. B, Cumulative histogram of major and minor axes of
receptive fields in V1. Insets show heat maps of spike rate outlining a representative receptive
field. Raw data (top), after smoothing with Gaussian function (bottom). C, Dependence of
receptive field size (major axis) on eccentricity. Shading indicates SD.
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quency and high temporal frequency pref-
erences tended to occur together. Two
example neurons that express these com-
binations of attributes are shown in Fig-
ure 1. The tuning curves shown in gray
derive from a layer 2/3 complex neuron
(F1/F0 � 0.2) that was sharply tuned for
orientation with a DI of 0.68 (Fig. 1A),
was selective for patch size with modest
surround inhibition (Fig. 1B), had a
broad spatial frequency bandwidth of 2.8
octaves (corresponding to a linear range
of 0.17 c/deg) with a high peak spatial fre-
quency of 0.1 c/deg (Fig. 1C), had moder-
ate contrast sensitivity with a C50

(contrast at which response magnitude is
50% of peak) of 37% (Fig. 1D), showed
no significant selectivity for the direction
of moving random-dot patterns (DI �
0.29) (Fig. 1E), had low-pass temporal
frequency tuning with a preference for
frequencies of �1 Hz and a bandwidth at
half-maximal amplitude of 3.1 Hz (Fig.
1F), was bandpass tuned for the speed of
moving random-dot patterns with a pref-
erence for �5 deg/s and a full bandwidth
at half-maximal amplitude of 27 deg/s
(Fig. 1G), and was sensitive to the
strength of the motion signal measured
by the degree of coherence of randomly
moving dots (Fig. 1 H).

The tuning curves shown in black (Fig.
1) derive from a layer 2/3 neuron with a
different set of response properties. Simi-
lar to the “gray neuron” the “black neu-
ron” had a complex receptive field (F1/F0

� 0.23), but unlike in the gray cell the
black cells’ orientation tuning was nearly
flat (DI � 0.39) (Fig. 1A), the size tuning
showed robust surround inhibition (SI � 0.35) (Fig. 1B), the
peak spatial frequency was low (0.025 c/deg) and the tuning
bandwidth was narrow (2 octaves, corresponding to a linear
range of 0.044 c/deg) (Fig. 1C), the contrast sensitivity was high
(C50 � 18%) (Fig. 1D), the direction selectivity was strong (DI �
0.59) (Fig. 1E), the temporal frequency tuning was bandpass
(half-maximal bandwidth � 2.6 Hz) with a peak at 5.6 Hz (Fig. 1F),
the speed tuning was broad (full bandwidth �55 deg/s) with a high
peak velocity (37 deg/s) (Fig. 1G), and finally the neuron was
relatively insensitive to motion coherence (Fig. 1H).

It is evident from these comparisons that the high spatial res-
olution neuron shown in gray (Fig. 1) responded to a four times
broader range of spatial frequencies than the low spatial resolu-
tion neuron depicted in black (Fig. 1). In contrast, the low-
spatial-frequency neuron shown in black was twice as sensitive to
contrast, responded to a much broader range of speeds and
peaked at an eightfold higher temporal frequency. Similar asso-
ciations were found throughout the population of V1 neurons,
whose response properties tended to follow one of two patterns:
(1) high peak/broad bandwidth spatial frequency, low contrast
selectivity (i.e., DI), low peak/narrow bandwidth temporal fre-
quency, and low peak/narrow bandwidth speed tuning, or (2)
low peak/narrow bandwidth spatial frequency, high contrast
selectivity, high peak/broad bandwidth temporal frequency, and

high peak/broad bandwidth speed tuning. Before discussing the
conjunctive properties, we will first describe the responses to each
stimulus parameter separately.

Spontaneous activity
The majority (75%) of neurons showed low spontaneous firing
rates of �5 spikes/s (median: 2.7). Optimal stimulation of the
receptive fields evoked maximal response rates of �40 spikes/s
(median � 14.6). Neurons with high spontaneous firing rates
generated significantly (ANOVA, p � 0.05) stronger responses.
Unlike previous recordings in V1 of mouse and gray squirrel
(Heimel et al., 2005; Niell and Stryker, 2008), we found no sig-
nificant (R 2 � 0.025, p � 0.81) difference in spontaneous firing
rates across cortical layers.

Latency
Latencies were extracted by pooling the responses to 10 repeti-
tions of the optimal stimulus across five different tuning runs
(i.e., orientation, spatial frequency, temporal frequency, contrast,
size). Pooling a total of 50 responses across stimulus conditions
and trials reduced the variance of the response and improved the
accuracy with which we were able to determine the time point at
which the firing rate increased significantly and consistently
above background. Measured in this way, we found that the me-

Figure 3. Spatial summation of V1 receptive fields. A, Raster plot showing the modulation of firing due to stimulation with a
drifting sinusoidal grating (0.25 c/deg) at 2 Hz. B, Normalized spike frequency plot of the neuron shown in A. The cell shows linear
summation properties with an F1/F0 ratio of 1.39. C, Distribution of F1/F0 across the population of V1 neurons. In the majority of
neurons the F1/F0 ratio is �1, indicating nonlinear summation properties, a characteristic of complex cells. The median F1/F0 is
indicated by an arrowhead. The gray arrow corresponds to the gray neuron shown in Figure 1. The black arrow refers to the black
neuron shown in Figure 1.
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dian onset latency of V1 responses was 110 ms (mean � 113 � 2
ms) with 90% of neurons showing latencies in the range from 70
to 150 ms (Fig. 2 A). The mean latency was �20 ms longer than
those recorded in mouse LGN (Grubb and Thompson, 2003).
Our latencies correspond well to latencies determined by VEP
recordings in V1 (Porchiatti et al., 1999), and fall within the range
found by current source density analyses in mouse V1 (Niell and
Stryker, 2008). The mean latencies in layers 4, 5, and 6 were
slightly shorter (108 � 4 ms) than in layer 2/3 (116 � 4 ms), but
the difference narrowly escaped significance ( p � 0.07). The
similarities in onset latencies across different layers may not be
surprising, given that all layers receive thalamocortical input
(Antonini et al., 1999) and measurements in rat somatosensory
cortex indicate that onset-latencies correlate more strongly
with cell type than with laminar position (de Kock et al., 2007).

Receptive field size
Receptive fields were mapped with small patches (5 deg) of drift-
ing gratings flashed at different locations. The response fields
were fit with a two-dimensional Gaussian and the contour corre-
sponding to �2 SD of the fitted Gaussian was taken as the recep-
tive field. The receptive field size was determined by measuring
the major and minor axes, computing the area of an ellipse, treat-
ing this area as circular and computing the diameter. These com-
putations yielded a median receptive field size of 11.8 deg (mean
13.2 � 0.3 deg) (see Fig. 4D), which closely corresponds to pre-
vious measurements (Métin et al., 1988; Niell and Stryker, 2008).

Consistently, we found that the shapes of
receptive fields were elliptical with signif-
icantly longer major (median � 14.7 deg)
than minor axes (median � 10.8 deg)
(Fig. 2B). In 90% of neurons the major
axis of the receptive field was approxi-
mately aligned (� 20°) with the horizon-
tal meridian. The length of the major axis
significantly correlated (R 2 � 0.15, p �
0.03) with eccentricity, such that the mean
length in the peripheral monocular seg-
ment (�30 deg eccentricity) was signifi-
cantly ( p � 0.007) greater (14.2 � 0.5
deg) than in the central binocular segment
(12.5 � 0.3 deg) (Fig. 2C). The mean as-
pect ratio (1.4 � 0.04), however, re-
mained constant across different
locations of the visuotopic map. The re-
ceptive fields in layers 5 and 6 were
slightly larger (�14 deg) than in layers
2/3 and 4 (�12 deg), but the difference
was not significant ( p � 0.09).

Spatial summation
The responses of a small number of neu-
rons were strongly modulated at the drift
frequency of the grating stimulus (Fig.
3A), suggesting that receptive fields were
composed of distinct subfields, which are
characteristic features of simple cells
(Hubel and Wiesel, 1962). Simple cells in
cat V1 were shown to combine visual in-
puts across space and time in linear fash-
ion (DeAngelis et al., 1993). To
quantitatively determine the amount of
relative modulation, we computed the ra-

tio of the amplitude of the first harmonic of the response (F1) and
the mean spike rate (F0). Previous studies in V1 of monkey, cat,
gray squirrel and mouse have shown a bimodal distribution of
F1/F0, in which ratios of �1 represent simple cells with linear
spatial summation and values of �1 represent complex cells with
nonlinear properties (Schiller et al., 1976; Skottun et al., 1991;
Heimel et al., 2005; Niell and Stryker, 2008). However, because
the F1/F0 ratio is a nonlinear metric, Mechler and Ringach (2002)
have argued that it is inadequate for distinguishing simple and
complex cells. Despite this complexity, we have used the F1/F0

ratio to compare our results with previous studies. Our analysis
generally revealed that clear response modulation was lacking in
cells with F1/F0 ratios of �1, but was present in spike raster plots
and in normalized spike rate diagrams of responses with F1/F0

ratios of �1 (Fig. 3A,B). The distribution of the F1/F0 ratio was
highly skewed with a median of 0.3 across the population, sug-
gesting that the majority of V1 neurons had nonlinear summa-
tion properties, characteristic of complex receptive fields.
Neurons with linear summation properties of simple cells were
rare (6%, 14/211) and all of these cells were encountered in layers
2/3 and 4. This result is consistent with the previously reported pau-
city of neurons with linear response properties in deep layers of
mouse V1 (Niell and Stryker, 2008).

Size tuning
We found that all neurons were significantly (ANOVA, p � 0.05)
modulated by the size of a patch of drifting grating. To assess the

Figure 4. Size tuning of V1 neurons. A, Distribution of size DI across all V1 neurons (open bars), neurons with monoton-
ically increasing or saturating tuning curves (gray bars), and surround-inhibited neurons (SI) are represented by black bars.
Arrowheads with matching colors indicate median DI of the different groups of neurons. Solid arrow indicates DI of gray
neuron shown in Figure 1 B. Black arrow refers to neuron shown in Figure 1 B. B, Distribution of optimal size. Inset shows
representative examples of different size tuning curves: plateau (coarse dashes), monotonic (black), and surround inhib-
ited (gray). The dashed line indicates the average spontaneous activity. C, Distribution of surround inhibition. D, Distribu-
tion of receptive field size. All conventions as in A.
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size selectivity we computed a DI, which measures the ability of a
neuron to distinguish changes in the stimulus relative to the in-
trinsic level of spiking variability. A DI of �0.425 typically corre-
sponds to approximately a 2:1 or larger difference in maximal
versus minimal firing rate and was reached by all neurons whose
responses were significantly (ANOVA, p � 0.05) modulated by
size. The median DI across the population was 0.67 (Fig. 4A). Size
tuning curves showed 3 typical shapes over the range of stimulus
sizes that we tested, which are illustrated by representative exam-
ples in the inset of Figure 4B. Cells for which responses reached a
plateau (Fig. 4B, inset, cell 1) were most abundant (60.3%, 126/
209) and had a median optimal size (defined as the size at which
response reached 90% of maximum, corresponding to 1.163 � of
the best-fit error function) of 33.3 deg (Fig. 4B). A smaller per-
centage (22.5%, 47/209) of cells showed responses that increased
monotonically as a function of patch size (Fig. 4B, inset, cell 2),
such that the largest size tested (64 deg) elicited the strongest
response (Fig. 4B). The third group of cells showed nonmono-
tonic responses (Fig. 4B, inset, cell 3) that peaked at a median size
of 27 deg and were significantly ( p � 0.01) reduced by further
increases in patch size. These surround inhibited neurons ac-
counted for 17.2% (36/209) of size-tuned neurons. The median
surround suppression for this group was 36%, which was signif-
icantly greater ( p � 0.01) than that seen for plateau and mono-
tonic neurons in which surround suppression was minimal or
undetectable (Fig. 4C). Interestingly, the median size of the clas-
sical receptive field (as defined by the receptive field mapping
approach described above) of plateau (13 deg), monotonic (11.5
deg) and surround inhibited neurons (10.9 deg) was significantly
( p � 0.01) smaller than the patch size that elicited the optimal
response (Fig. 4, D vs B). This suggests that plateau and mono-
tonic neurons may have facilitatory surrounds or that substantial
portions of their receptive fields produce subthreshold re-
sponses when probed with small stimuli as in our receptive
field mapping test. By contrast, in surround inhibited neurons
responses evoked from within the classical receptive field were
suppressed by patches larger than 33 deg. No significant dif-
ferences were found in the laminar (R 2 � 0.02, p � 0.57) and
topographic (R 2 � 0.03, p � 0.68) distributions of the differ-
ent types of size-tuned neurons.

Orientation tuning
The responses of approximately half (48.5%, 96/198) of neurons
were significantly (ANOVA, p � 0.05) modulated by the orien-
tation of drifting gratings. The degree of tuning varied from
highly orientation selective (Fig. 1A, gray neuron) to nonselective
(Fig. 1A, black neuron). This is expressed by a wide range of
orientation DIs across the population (Fig. 5A). Most (92.7%,
89/96) orientation-selective neurons showed nonlinear spatial
summation properties, whereas only 7.3% (7/96) were classified
as linear based on the F1/F0 ratio. The median tuning width,
measured as half width at half-maximal response, across the pop-
ulation of selectively tuned neurons was 43 degrees (Fig. 5B).
Orientation-selective cells were found across layers 2/3– 6 with no
preferential laminar distribution of strength (R 2 � 0.05, p � 0.5)
or width (R 2 � 0.07, p � 0.4) of tuning. There was no indication
that specific orientations were preferentially distributed across
the visual field (R 2 � �0.08, p � 0.28).

Spatial frequency tuning
All of the 207 neurons studied showed significant (ANOVA, p �
0.05) spatial frequency tuning to optimally oriented drifting grat-
ings and had DIs of �0.425 (median � 0.63) (Fig. 6A). Repre-

sentative examples shown in Fig. 1C demonstrate that different
neurons had different peak sensitivities and tuning bandwidths.
The optimal spatial frequency across the population ranged from
0.02 to 0.09 c/deg with a median of 0.03 c/deg (Fig. 6B). In 53%
(110/207) of spatial-frequency-tuned neurons, the responses to
the lowest frequency tested (0.015 c/deg) dropped significantly
( p � 0.05) below half of the peak response, indicating that these
neurons had bandpass properties and resembled the examples
shown in Figure 1C. The remainder of tuning curves lacked a
significant low-frequency rolloff and were therefore considered
low pass. The median half bandwidth at half-maximal amplitude
(on the high frequency side of the peak) was 0.044 c/deg (Fig. 6C).
In 90% of neurons, responses decayed to 10% of maximum at or
�0.43 c/deg, a point we defined as spatial frequency cutoff or
neuronal spatial acuity. The median bandwidth for bandpass
neurons was 2.23 octaves. Similar to monkey V1, in which re-
sponses to high spatial frequencies are more broadly tuned (on a
linear scale) than responses to low spatial frequencies (De Valois
et al., 1982), we found a significant positive correlation (R 2 �
0.39, p � 0.0001) between peak spatial frequency and spatial
frequency cutoff (Fig. 6D). The tuning bandwidths of neurons in
deep layers 5 and 6 were significantly ( p � 0.05) broader than in
more superficial layers, which is consistent with the findings of
Niell and Stryker (2008). In contrast, we found no significant (R2 �
�0.08, p � 0.21) correlation between tuning bandwidth and visual
field eccentricity.

Contrast–response functions
Contrast selectivity and sensitivity was examined with drifting
sinusoidal gratings at the cells’ optimal orientation, spatial fre-

Figure 5. Orientation tuning of V1 neurons. A, Distribution of orientation DI. Median DI is
indicated by arrowhead. Gray and black arrows indicate DIs of neurons shown in Figure 1 A. B,
Tuning bandwidth indicates the HWHM. Gray arrow refers to gray neuron in Figure 1 A.
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quency, temporal frequency, and direction. The results show that
the responses of all 198 neurons tested were significantly
(ANOVA, p � 0.05) modulated by grating contrast and that the
median DI across the population was 0.63 (Fig. 7A). Every con-
trast–response function resembled a hyperbolic curve that satu-
rated at 100% contrast and was well fit with a Naka–Rushton
(Naka and Rushton, 1966) function (Fig. 1 D). To quantify con-
trast sensitivity we plotted the C50, which is the contrast at which
the response reached 50% of the peak. Figure 7B shows that the
median C50 across the population was 38.4%. The examples illus-
trated in Figure 1D show that the slope of the best-fitting func-
tion varied substantially in steepness (slope of gray neuron �
0.16; slope of black neuron � 0.42), suggesting that cells with
high contrast sensitivity have a higher gain than cells with low
contrast sensitivity, which are superior in detecting small
increments in stimulus contrast. The distribution of C50 across layers
and eccentricities was not significantly (R2 � �0.03, p � 0.64; R2 �
0.03, p � 0.68; respectively) different from uniform.

Direction tuning
Direction tuning was examined with moving random-dot pat-
terns. We found that these stimuli effectively activated V1 neu-
rons and revealed a small number of cells that were highly
selective to the direction of stimulus motion (Fig. 1E, black neu-
ron). Most cells, however, showed no significant tuning (Fig. 1E,
gray neuron). In fact, across the population, significant
(ANOVA, p � 0.05) direction tuning was rare and observed in
only 7% (14/198) of neurons, just slightly more common than
expected by chance. The scarcity of direction-selective neurons in
V1 was reflected by a low median DI of 0.3 (Fig. 8A). Because the
peak activation rate with moving dots was often relatively low

we additionally assessed direction selec-
tivity with drifting gratings. “Grating-
direction-selective” neurons showed
responses to movements opposite to the
optimal direction that were significantly (t
test, p � 0.05) lower and indistinguishable
from background. Even under these stim-
ulation conditions, only a small number
(6%, 12/198) of neurons showed signifi-
cant direction tuning. Two of these neu-
rons were tuned for both the direction of
moving gratings and random dots. The
rest of the grating-direction-selective neu-
rons were indifferent to the direction of
moving dots. One of these neurons is
shown in Figure 8B. Together both popu-
lations accounted for a total of 12%
direction-selective neurons. Similar to the
results of Niell and Stryker (2008), most
(77%, 17/22) direction-selective neurons
were found in layer 2/3 and had a me-
dian tuning full width at half-maximal
amplitude of 80.6 deg. The distribution
of direction-selective neurons across
different eccentricities of the visual field
was approximately flat.

Temporal frequency tuning
More than 90% (192/212) of V1 neurons
were significantly tuned to the temporal
frequency of optimally oriented drifting
gratings (Fig. 1F) and showed a high me-

dian DI of 0.6 (Fig. 9A). Approximately 44% (84/192) of neurons
showed low-pass properties, in which the responses to the lowest
frequencies did not drop significantly ( p � 0.05) below half of
the peak response. In this population, the median optimal re-
sponse (1.2 Hz) coincided with the lowest temporal frequency
tested or peaked near the minimum (Fig. 9B). The remaining
56% (108/192) of neurons had bandpass properties (i.e., the re-
sponse to the lowest frequency was significantly ( p � 0.05) less
than half of the peak) similar to the black cell shown in Figure 1F.
The median peak temporal frequency of these neurons was 1.9
Hz, which was significantly ( p � 0.001) higher than the 1.2 Hz
found in low-pass neurons. In addition, we found that bandpass
neurons tended to be tuned to a broader range of temporal fre-
quencies (median half-width at half-maximal amplitude � 3.6
Hz) than low-pass neurons (median half-width � 2.9 Hz), al-
though the difference was not significant ( p � 0.12) (Fig. 9C).
Cells with low temporal frequency peaks had significantly (R 2

� 0.37, p � 0.0001) narrower bandwidths than cells that pre-
ferred higher temporal frequencies (Fig. 9D). Deep-layer neu-
rons (layers 5, 6) had significantly ( p � 0.003) broader
temporal frequency bandwidths (median � 3.5 Hz) than cells
in layers 2/3 and 4 (median � 2.7 Hz. The tuning bandwidth
was significantly (R 2 � 0.15, p � 0.035) higher at more eccen-
tric locations within the visual field.

Speed tuning
Almost half of V1 neurons (45.3%, 92/203) were significantly
(ANOVA, p � 0.05) tuned to the speed of moving random-dot
patterns. The median DI (0.4), however, was relatively low (Fig.
10A). The speed tuning curves showed low-pass (i.e., response to
lowest speed �50% of peak response), bandpass (Fig. 1G, gray

Figure 6. Spatial frequency tuning of V1 neurons. A, Distribution of spatial frequency DI across V1 neurons. Arrowhead indicates
median DI. Gray and black arrows indicate DIs of neurons shown in Figure 1C. B, Distribution of peak spatial frequency. Conventions
as in A. C, Distribution of spatial frequency bandwidth indicated by HWHM. Conventions as in A. D, Positive significant (R 2 � 0.39,
p � 0.0001) correlation between tuning bandwidth and spatial frequency cutoff.
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neuron), and high-pass (Fig. 1G, black neuron) (i.e., response to
highest speed �50% of peak) properties. Additional examples of
these 3 types of tuning are illustrated in the inset of Fig. 10B.
Low-pass neurons (Fig. 10B, cell 1) were rare (5.4%, 5/92) and
most cells showed either bandpass (Fig. 10B, cell 2) (45.6%, 42/
92) or high-pass (Fig. 10B, cell 3) (49%, 45/92) properties over
the range of speeds we tested. The median optimal speed across
the population of tuned neurons was 10.6 deg/s (Fig. 10B). Low-
pass neurons peaked at a median speed of 0.5 deg/s, bandpass
cells had significantly ( p � 0.001) higher median peak speeds of
6.6 deg/s, whereas high-pass neurons registered an optimal me-
dian speed of 33.8 deg/s. To compare the speed tuning bandwidth
of bandpass and high-pass neurons, we determined the half-
maximal bandwidth on the left side of the peak (L-HWHM). We
found that the median L-HWHM across the population of band-
pass neurons was 5 deg/s. By contrast, high-pass neurons showed
a significantly ( p � 0.0001) broader median L-HWHM of 24.6
deg/s (Fig. 10C). Peak speed and tuning bandwidth tended to be
higher in deep than superficial layers, but the differences were not
significant. Similarly, we found no significant differences in speed
tuning across different eccentricities of the visuotopic map.

Motion coherence tuning
To determine the strength of motion tuning, we used translating
moving random-dot displays in which motion strength was var-
ied independently of positional and form cues (Britten et al.,
1992). This was achieved by varying the percentage of dots that
are repositioned with a fixed spatial offset at a fixed rate, thereby
changing the degree by which dots move coherently in a particu-

lar direction. We found that a substantial number of V1 neurons
responded monotonically as a function of motion energy, by fir-
ing more strongly when the dots moved with 100% coherence
than when they moved at random (Fig. 1H, black neuron).
Across the population, 35.7% (70/196) of V1 neurons were sig-
nificantly (ANOVA, p � 0.05) modulated by coherence and
27.5% (54/196) of neurons reached DIs of �0.425 (Fig. 11A).
The median slope of tuning was shallow (median � 0.04) and in
the vast majority of cases was positively inclined (Fig. 11B). Only
two coherence-selective neurons showed negative slopes (Fig.
11B), indicating that responses were attenuated by higher de-
grees of coherence. Negatively sloped coherence tuning curves
were previously observed in monkey, when direction-selective
MT neurons were stimulated with random-dot displays moving
in the nonpreferred direction (Britten et al., 1993). In mouse V1,
however, both of the negatively sloped neurons were not signifi-
cantly direction selective. In fact, direction selectivity was rare in
coherence-tuned neurons (6/70, 8.5%). Of the few neurons that
were both direction and coherence selective, the responses in
the nonpreferred direction were smaller but constant across
all coherences. Thus, the majority of coherence-tuned neurons
appeared to be selective for the strength of motion but was indif-
ferent to the direction of movement. Coherence-tuned neurons
were found across all layers, but the sample is too small to com-
ment on the laminar distribution.

Figure 7. Contrast tuning of V1 neurons. A, Distribution of contrast DI. Arrowhead indicates
median DI. Gray and black arrows points to DI of neurons shown in Figure 1 D. B, Distribution of
percentage contrast that elicits half-maximal response (C50). Conventions as in A.

Figure 8. Direction tuning of V1 neurons. A, Distribution of direction tuning DI. Arrowhead
indicates median DI. Gray and black arrows point to DIs of neurons shown in Figure 1 E. B,
Representative example of direction tuning to moving random-dot pattern (black dots). The
same neuron shows a flat direction tuning curve to moving sinusoidal grating (white dots).
Stippled line indicates spontaneous firing rate.
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Tuning to combinations of features
Niell and Stryker (2008) have shown that mouse V1 neurons are
highly selective along multiple stimulus dimensions. If the visual
inputs that give rise to these receptive field properties reach V1
through parallel channels with distinct spatiotemporal properties,
one might expect to find that neurons with short latencies are highly
sensitive to contrast, have large receptive fields, and prefer fast-
changing, low-spatial-frequency stimuli (Kaplan, 2008). Thus, we
were interested in whether single neurons are optimally tuned to
specific combinations of features. To study such relationships, we
performed regression analyses with latency, receptive field size, and
sensitivities to contrast, temporal frequency, speed, and spatial fre-
quency as variables.

Short-latency neurons encode transient stimuli
Our correlation analyses showed that neurons with short onset la-
tency had significantly (R2 � 0.31, p � 0.0001) higher contrast sen-
sitivities (i.e., lower C50) than neurons with longer latencies (Fig.
12A). In addition, we found that neurons with short latencies had
significantly (R2 � �0.28, p � 0.005) higher temporal frequency
cutoffs (Fig. 12B) and responded to significantly (R2 � �0.31, p �
0.005) higher peak speeds (Fig. 12C). Interestingly, short-latency
neurons preferred significantly (R2 � 0.34, p � 0.0001) lower spatial
frequencies (Fig 12D), indicating that neurons with low spatial acu-
ity have faster response times.

Studies in monkey, cat, and gray squirrel LGN have found that
short-latency neurons have larger receptive fields (Shapley and
Perry, 1986; Usrey and Reid, 2000; Van Hooser et al., 2003; Weng et
al., 2005). In agreement with previous studies in rat LGN (Hale et al.,
1979; Gabriel et al., 1996), we found no evidence for such a relation-

ship (R2 � �0.08, p � 0.3) in mouse V1
(supplemental Fig. 1A, available at www.
jneurosci.org as supplemental material).

Transient stimuli are encoded by neurons
with high contrast sensitivity
Our correlation analyses have shown that
neurons with high contrast sensitivity
(i.e., low C50) have significantly (R 2 �
�0.19, p � 0.015) higher temporal fre-
quency cutoffs than neurons with low
contrast sensitivity (Fig. 13A). A similar
significant (R 2 � �0.32, p � 0.001) neg-
ative correlation was found between C50

and peak speed (Fig. 13B), suggesting that
highly contrast-sensitive neurons are op-
timally tuned to high speeds of visual
motion.

Recordings in cat and monkey LGN
have found that highly contrast-sensitive
neurons have larger receptive fields
(Shapley and Perry, 1986; Usrey and Reid,
2000; Weng et al., 2005). We have found
no evidence for such a relationship (R 2 �
�0.01, p � 0.88) in mouse V1 (supple-
mental Fig. 1B, available at www.
jneurosci.org as supplemental material).

High spatial frequencies are encoded by
neurons with low contrast sensitivity and a
preference for sustained stimuli
Previous recordings in cat visual cortex
have reported two classes of neurons: one
that prefers high spatial frequencies and
low temporal frequencies and another

that is optimally tuned to low spatial frequencies and high tem-
poral frequencies (Movshon et al., 1978). Recordings in cat area
18 have further shown that neurons with high spatial acuity pre-
fer slower speeds (Bisti et al., 1985). Our correlation analyses in
mouse V1 have shown that the spatial frequency cutoff was sig-
nificantly (R 2 � 0.17, p � 0.03) positively correlated with C50

(Fig. 14A), suggesting that low spatial acuity neurons have higher
contrast sensitivity than neurons with high spatial acuity. In ad-
dition, we found that the spatial frequency cutoff was signifi-
cantly negatively correlated with the temporal frequency cutoff
(R 2 � �0.27, p � 0.0002) (Fig. 14B) and peak speed (R 2 �
�0.25, p � 0.02) (Fig. 14C), suggesting that neurons with low
spatial acuity prefer higher temporal frequencies and faster
speeds whereas high-spatial-frequency neurons prefer slowly
moving stimuli. Peak speed was positively correlated (R 2 �
�0.49, p � 0.0001) with peak temporal frequency (Fig. 14D),
which is consistent with the notion that speed preference is in-
versely proportional to spatial frequency (Priebe et al., 2006).

Because orientation and spatial acuity are important determi-
nants of texture and contour discrimination (Burr and Wijesundra,
1991), we were interested whether the orientation selectivity index
was correlated with the spatial frequency cutoff. Although we found
some neurons in which both parameters were associated (Fig. 1A,C,
gray cell), the correlation across the population of neurons was not
significant (data not shown).

Discussion
In primates, visual input to the brain is carried in parallel chan-
nels specialized for processing spatial and temporal information

Figure 9. Temporal frequency tuning of V1 neurons. A, Distribution of temporal frequency DI. Arrowhead indicates median DI.
Gray and black arrows indicate DIs of neurons shown in Figure 1 F. B, Peak temporal frequency of low-pass (black bars, black
arrowhead indicates median) and bandpass (gray bars, gray arrowhead indicates median) neurons. Conventions as in A. C,
Distribution of temporal frequency bandwidth indicated by the HWHM. Low-pass neurons and median HWHM are shown in black.
Bandpass neurons are represented in gray. Conventions as in A. D, Positive significant (R 2 � 0.37, p � 0.0001) correlation of
temporal frequency HWHM and peak temporal frequency.
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(DeYoe and Van Essen, 1988; Nassi and Callaway, 2009). We
found that in mouse V1, neurons with short response latencies
have low spatial acuity and high sensitivity to contrast, temporal
frequency, and speed, whereas neurons with long latencies have
high spatial acuity, low sensitivities to contrast, temporal fre-
quency, and speed. These correlations demonstrate that V1
neurons receive inputs from a weighted combination of par-
allel afferent pathways and suggest that the visual processing
strategy of primates is conserved in the mouse visual system.

Elongated receptive fields with modulatory surrounds
We found that receptive fields are horizontally elongated and
approximately match the shape and topography of geniculocor-
tical axons (Antonini et al., 1999). This geometry is constant
across the visuotopic map while receptive field size increases with
eccentricity, supporting the notion of a parallel reduction in cor-
tical magnification (Kalatsky and Stryker, 2003).

Many neurons show increasing responses with the size of grat-
ing patches well beyond the dimensions of the classical receptive
field, as mapped with small stimuli. Similar observations were
made in monkey V1 (Angelucci et al., 2002), suggesting that re-
ceptive fields are larger than geniculocortical axon arbors (Angelucci
and Sainsbury, 2006) and involve additional inputs from intracorti-
cal networks (Angelucci and Bressloff, 2006). In neurons, with sat-
urating and monotonically increasing size tuning curves, these
converging inputs may arise from lateral connections within V1
that span 60 deg of the visuotopic map. Such connections are
known to exist in many species including rat and squirrel
(Burkhalter and Charles, 1990; Rumberger et al., 2001; Van
Hooser et al., 2006) and may also be present in mouse V1.

Almost 20% of responses are suppressed by stimuli larger than
the classical receptive field. The incidence of surround suppres-
sion is similar to that in squirrel V1 (Van Hooser et al., 2006), but
is lower than in rat, cat, and macaque (DeAngelis et al., 1992;
Girman et al., 1999; Sceniak et al., 2001). These center/surround
interactions suggest that rodent V1 contains the machinery for
identifying orientation contrasts and/or contour integration,
which is necessary for object recognition (Zoccolan et al., 2009).

Figure 10. Speed tuning of V1 neurons. A, Distribution of speed DI. Arrowhead indicates
median DI. Gray and black arrows indicate DIs of neurons shown in Fig. 1G. B, Peak speed of all
(black bars), low-pass (hatched bars), bandpass (gray bars), and high-pass (white bars) neu-
rons. Arrowhead with matching patterns indicates median across the respective population.
Conventions as in A. C, Distribution of speed bandwidth indicated by the L-HWHM. Bandpass
neurons (black bars) and high-pass neurons (gray bars) are shown. Conventions as in A.

Figure 11. Motion coherence tuning in V1. A, Distribution of coherence DI. Arrowhead
indicates median DI. Gray and black arrows indicate DIs of the neurons shown in Figure 1 H. B,
Distribution of slope of coherence tuning derived from linear fits of the tuning curves. Black bars
represent all neurons. Gray bars represent coherence-tuned neurons. Black and gray arrow-
heads indicate median DI for the corresponding populations, all other conventions as in A.
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Orientation
We found that 48% of V1 neurons are orientation selective.
The percentage is higher than the 32– 41% observed earlier
qualitative studies (Dräger, 1975; Mangini et al., 1980; Métin
et al., 1988), but is lower than the 74% found in the quantitative
analysis by Niell and Stryker (2008). Unlike all other studies, Niell
and Stryker (2008) used multisite recordings and distinguished
pyramidal from nonpyramidal cells, which enabled sampling of a
broader spectrum of neurons with greater selectivity than tradi-
tional approaches. The advantages are evident in significant lam-
inar differences of several properties including orientation
selectivity (Niell and Stryker, 2008), which were less apparent in our
study. Thus, recordings with tungsten electrodes may have biased
against thin layers and small neurons, and favored complex cells,
whose responses are more vigorous than those of simple cells (Martin
and Whitteridge, 1984; Skottun et al., 1988; Hirsch et al., 2003).
Indeed, our sample contained only 6% linear neurons (simple
cells), which is much less than the 48% recorded by Niell and
Stryker (2008). A similar bias for complex cells was observed in
squirrel V1 (Heimel et al., 2005). Interestingly, Niell and Stryker
(2008) found that only 31% of nonlinear neurons are orientation
selective. This is less than the 45% orientation selectivity we have
found among nonlinear neurons, suggesting that our lower per-
centage is not a detection issue, but is due preferential sampling of
complex cells. Biased sampling of nonlinear responses with tung-
sten microelectrodes was observed previously in cat LGN (So and
Shapley, 1979).

Direction
Previous recordings in mouse, rat, rabbit and macaque found
that 24 –38% of V1 neurons were direction selective for moving
bars and gratings (Chow et al., 1971; Dräger, 1975; Schiller et al.,

1976; Métin et al., 1988; Girman et al.,
1999; Niell and Stryker, 2008). Using
drifting grating and random-dot stimuli
together, we found that only 12% of
mouse V1 neurons are direction tuned,
which is more than reported by Mangini
and Pearlman (1980) but less than the
38% observed by Niell and Stryker (2008).
A likely reason for the difference is that
most of our recordings are from complex
cells, which in squirrel V1 tend to be non-
directional (Heimel et al., 2005). This may
be the result of preferential channeling of
direction-selective signals from the retina
(Huberman et al., 2008, 2009; Kim et al.,
2008) to simple cells in V1 (Hoffman and
Stone, 1971; Singer et al., 1975; Ferster
and Lindström, 1983).

Motion coherence
Previous recordings in cat have shown
that V1 neurons are modulated by the co-
herence of moving dots (Shumikhina et
al., 2004). We found that 27.5% of mouse
V1 neurons have similar properties. Un-
like in monkey MT in which most coher-
ence modulated neurons are direction
selective (Britten et al., 1993), such neu-
rons account for �3% in mouse V1. This
suggests that mice that are able to discrim-
inate the direction of moving random dots

(Douglas et al., 2006), either rely on very few V1 neurons, or that
coherence modulated direction-selective neurons are more
abundant outside of V1.

Spatial frequency
Similar to Niell and Stryker (2008), we found that the median
spatial frequency response peaks at 0.03 c/deg. Our data further
show that in 90% of neurons the cutoff spatial frequency is �0.43
c/deg and approximately matches the behaviorally determined
visual acuity (0.48 – 0.55 c/deg; Prusky and Douglas, 2004;
Umino et al., 2008), supporting the role of V1 in high acuity
vision (Prusky and Douglas, 2004).

Temporal frequency
Ninety percent of V1 responses are temporal frequency tuned
and peak at 1–2 Hz, as shown previously by Niell and Stryker
(2008). Similar to findings in monkey (Hawken et al., 1996), the
peak temporal frequency in V1 is lower than in the LGN (4 Hz;
Grubb and Thompson, 2003). In addition, mouse LGN neurons
were shown to be bandpass for temporal frequency (Grubb and
Thompson, 2003). In contrast, we found both low-pass and
bandpass neurons in V1. These results suggest that in a subset of
neurons bandpass temporal frequency tuning is transformed into
low-pass tuning and as a result V1 neurons acquire properties
that match the sensitivity of mouse photopic vision (Umino et al.,
2008).

Speed
Similar to previous studies in cat and monkey V1 (Cao and
Schiller, 2003; Price et al., 2006), we found that the optimal speed
sensitivity in mouse V1 is �10 deg/s. However, due to technical
limitations we have not examined speeds of �64 deg/s, suggest-

Figure 12. Correlations of contrast, temporal frequency, speed, and spatial frequency tuning with onset latency in V1. A,
Short-latency neurons have significantly (R 2 � 0.31, p � 0.001) higher contrast sensitivity (i.e., low C50). B, Short-latency
neurons have significantly (R 2 � �0.28, p � 0.005) higher temporal frequency cutoff. C, Short-latency neurons are optimally
tuned to significantly (R 2 � �0.31, p � 0.005) higher speeds. D, Short-latency neurons have significantly (R 2 � 0.34, p �
0.0001) lower spatial frequency cutoff.
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ing that the average peak speed may be higher and may exceed the
50 deg/s recorded in rat V1 (Girman et al., 1999).

The speed of stimulus motion corresponds to the ratio of
temporal and spatial frequency. In mice, speed discrimination
was found to be independent of spatial frequency (Umino et al.,
2008), suggesting that the mouse visual system contains truly
speed-selective neurons. Because we have not measured re-
sponses of single neurons as a function of both temporal and
spatial frequency, it remains unresolved whether such neurons
exist in V1.

Parallel channels
We found that neurons with short response times and high con-
trast sensitivity are more sensitive to fast-changing, rapidly mov-
ing stimuli than long-latency neurons, which have low contrast
sensitivity and high spatial resolution. Although these correla-
tions are highly significant, they account for maximally 39% of
the variance across the population, indicating that a substantial
number of neurons have only weak preferences for particular
combinations of spatiotemporal visual features. The extremes,
however, suggest that high spatial and temporal sensitivity signals
are carried to V1 in parallel channels similar to those of high-
acuity visual systems (Stone et al., 1979; Van Hooser and Nelson,
2006; Nassi and Callaway, 2009). In contrast, recordings in
mouse LGN showed little evidence for parallel processing, but
revealed a trend in which short-latency ON-center neurons had
higher contrast sensitivity and peak temporal frequencies (Grubb

and Thompson, 2003). Although Grubb and Thompson (2003)
identified separate groups of mouse LGN neurons with sustained
and transient responses, the tuning was similar in all other re-
spects. Comparisons of single response parameters further re-
vealed distinct groups of rat LGN neurons, with inputs from
optic tract fibers with different conduction velocities and differ-
ent spatial summation properties (Hale et al., 1979; Lennie and
Perry, 1981). The most complete evidence for physiologically
distinct X (homologous to P), Y (homologous to M), and W
channels in the rodent geniculocortical system, however, derives
from recordings in squirrel LGN, in which short-latency neurons
with transient responses have lower spatial resolution and greater
contrast sensitivity than neurons with sustained responses and
long latencies (Van Hooser et al., 2003). Our results are consis-
tent with this organization and suggest that sensory cues carried
by parallel channels are integrated in various balances and encode
diverse temporal, contrast and spatial sensitivities in neurons
across V1. Thus, the basic plan of the mouse visual system is
remarkably similar to that of primates.
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