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Cellular/Molecular

Compensation for Variable Intrinsic Neuronal Excitability
by Circuit-Synaptic Interactions

Rachel Grashow, Ted Brookings, and Eve Marder
Volen Center and Biology Department, Brandeis University, Waltham, Massachusetts 02454-9110

Recent theoretical and experimental work indicates that neurons tune themselves to maintain target levels of excitation by modulating
ion channel expression and synaptic strengths. As a result, functionally equivalent circuits can produce similar activity despite disparate
underlying network and cellular properties. To experimentally test the extent to which synaptic and intrinsic conductances can produce
target activity in the presence of variability in neuronal intrinsic properties, we used the dynamic clamp to create hybrid two-cell circuits
built from four types of stomatogastric neurons coupled to the same model Morris-Lecar neuron by reciprocal inhibition. We measured
six intrinsic properties (input resistance, minimum membrane potential, firing rate in response to +1 nA of injected current, slope of the
frequency- current curve, spike height, and spike voltage threshold) of dorsal gastric, gastric mill, lateral pyloric, and pyloric dilator
neurons from male crabs of the species Cancer borealis. The intrinsic properties varied twofold to sevenfold in each cell type. We coupled
each biological neuron to the Morris-Lecar model with seven different values of inhibitory synaptic conductance and also used the
dynamic clamp to add seven different values of an artificial h-conductance, thus creating 49 different circuits for each biological neuron.
Despite the variability in intrinsic excitability, networks formed from each neuron produced similar circuit performance at some values
of synaptic and h-conductances. This work experimentally confirms results from previous modeling studies; tuning synaptic and intrin-

sic conductances can yield similar circuit outputs from neurons with variable intrinsic excitability.

Introduction

Recent work has shown that similar circuit performance can be
produced with highly variable sets of synaptic and intrinsic con-
ductances (Prinz et al., 2004; Goaillard et al., 2009). Similar
behavior of single neurons can also result from substantially dif-
ferent values of the maximal conductances of their voltage-
dependent currents (Goldman et al., 2001; Golowasch et al.,
2002; Swensen and Bean, 2005; Achard and De Schutter, 2006;
Schulz et al., 2006, 2007; Tobin and Calabrese, 2006; Sobie, 2009;
Taylor et al., 2009).

Variability in the value of a given conductance across neurons
of the same population is consistent with two entirely different
causes. In the first instance, variability could indicate that the
current in question plays only a relatively minor role in the func-
tion of the neuron, and therefore variation in its value has no
appreciable influence on the neuron’s firing properties. Alterna-
tively, variability in one or more conductances might be accom-
panied by significant variation in other conductances that
compensates for the variability to maintain constant function.
For example, overexpression of the transient outward current
(I,) in lobster stomatogastric ganglion (STG) neurons produced
little change in neuronal firing because it triggered compensatory
changes in the hyperpolarization-activated inward current (I})
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(MacLean et al., 2003; MacLean et al., 2005). Consistent with
these data are results that show strong correlations between the
expression of the mRNA encoding I;, and I, in crab STG neurons
(Schulz et al., 2006; Schulz et al., 2007; Goaillard et al., 2009).

Compensation is often invoked to explain the relative lack
of phenotype in genetic deletions of many important ion
channels and receptors (Swensen and Bean, 2005; Hodges et
al., 2009). Compensation may be rapid (Dickman and Davis, 2009;
Frank et al., 2009) or presumably may occur over longer develop-
mental time frames (Hodges et al., 2009). In most cases where evi-
dence for compensation exists, it is unclear how many properties are
changing to control function. Even if a compensatory change is
found, it is often not clear whether this change by itselfis sufficient to
account for the compensation of function.

In this study we first measured the variability in six intrinsic prop-
erties, each of which measures some aspect of electrical excitability in
identified neurons of the same class. We then used the dynamic clamp
(Sharp et al., 1993, 1996) to create hybrid two-cell networks in which
every biological neuron was coupled to the same Morris—Lecar
model neuron (Morris and Lecar, 1981), with artificial reciprocal
inhibitory synapses and a hyperpolarization-activated inward cur-
rent (I,,) added by a dynamic clamp. Using this hybrid circuit, we
simulated different network configurations and saw similar outputs
from disparate neurons and circuit structures. Because we varied the
synaptic and I, conductances experimentally, we were able to deter-
mine the values that allow network interactions to compensate for
the variability in intrinsic properties and result in similar network
outputs. This constitutes a “proof of principle” that considerable
variability across a population of biological neurons is nonetheless
consistent with reliable network performance.
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Materials and Methods A Input resistance B Spike threshold voltage
Male crabs (Cancer borealis) were purchased

from Yankee Lobster and maintained in artifi- 50 mvV—

cial sea water at 11°C until used. Crabs were 7 50 mV—

placed on ice for 30 min, after which the sto- / ‘
matogastric nervous system (STNS) was dis-
sected from the stomach of the crab. The STNS
was pinned to a Sylgard (Dow Corning)-coated E I
dish and maintained in 10—12°C saline. Saline l ‘
consisted of the following (in mwm): 440 NaCl, C
11 KCl, 13 CaCl,, 26 MgCl,, 11.2 Trizma base,
and 5 maleic acid, pH 7.45.

Electrophysiology. The STG was desheathed
and superfused with 10—12°C saline. Extracel- ‘
lular signals were recorded by placing steel pin
electrodes into petroleum jelly wells surround- 50 mV— ‘ 50mV—
ing select motor nerves and amplified and fil- | — —
tered using a differential AC amplifier (A-M I \‘I . [
Systems). Intracellular signals were recorded 0nA—~ e A
using 15-25 M} glass microelectrodes filled
with 20 mm KCl and 0.6 M K,SO, and ampli- ~ Figure1.  Fourconventional measures of intrinsic neuronal excitability. In all panels the membrane potential is shown in the top
fied using an Axoclamp 2B amplifier (Molec-  tracesand the injected current in the bottom traces. 4, Inputresistance s the slope of the current-voltage (/-V/) curve measured
ular Devices). All recordings were done in  at the end of hyperpolarizing current steps (dotted line). B, Spike threshold voltage is the voltage at the point of maximum
discontinuous current-clamp mode with  curvatureofthefirstspike (dotted line). €, The frequency at different steps of positive current was used to calculate the slope of the
sampling rates between 1.8 and 2.1 kHz and Fl curve. Only three of eight voltage and current traces are shown for visualization purposes. D, Spike frequency measured at +1
were acquired using a Digidata 1200 data ac-  NA. Vertical scale bar on voltage traces, 20 mV; vertical scale bar on current traces, 0.5 nA; horizontal scale bars, 0.5's.

Fl slope D +1 nA spike frequency

quisition board (Molecular Devices) using

Clampex 10.2. Resistance Spike frequency at +1 nA
Dorsal gastric (DG), gastric mill (GM), lateral 80, ° i ° 8
pyloric (LP) and pyloric dilator (PD) neurons 7Y 12 ‘ e
were identified using intracellular and extracellu- %} O N 10 e
lar traces (Hooper et al., 1986; Weimann et al., S ° u ! 8 ®
1991). To block action potential-mediated, de- g 40 [ e oy g ) ]
scending neuromodulatory input, a petroleum o] ; 8 S 6 ’ - e ]
jelly well on the desheathed stn nerve was filled -2 %01 ' 8 ‘ = 4 e ° ;
with 10 ™% M tetrototoxin (Sigma). Picotoxin & 20| § ) 8 ° :Lj '
(PTX) at 10 > M (Sigma) was superfused to 104 ® 2
block glutamatergic inhibitory synapses (Marder 0 0
and Eisen, 1984). DG GM LP PD DG GM LP PD
Forty minutes after the application of PTX,
six intrinsic properties were measured (Fig. 1). Spike threshold Fl slope
(1) The input resistance of the neuron was -35 ~ 254
measured by injecting 4 s of negative current < z °
from —1 to 0 nA in steps of 0.2 nA (Fig. 1 A). EY 8 ! ! ° < 1 o @
The slope of the linear region of the I-V curve o) 0 o e ° ®
o -45 O 15/ ®
(sampled at the steady-state voltage close to the < ' ° ' 8 Q
. . @ > @
end of the current pulse) (Fig. 1 A, dashed line) o . ) g o
was considered the input resistance. (2) We kS 3 0 ®
calculated the spike threshold voltage by inject- 2 ° T s 8
ing a ramp of current from —1 to +1 nA over & ra '
4 s (Fig. 1 B). The spike threshold was the volt- -60 . ¢ . . , 0 i . . .
age at the point of maximum curvature before DG GM LP PD DG GM LP PD
the first spike (curvature calculation voltage
was measured in millivolts and time in milli- Minimum voltage Spike height
seconds). (3) We calculated the spike height -40 60
using the ramp test for the spike threshold volt- ]
age. Spike height was considered to be the volt- . 2 - 22 P '
age difference between the point of maximum > 50, ©® 8 E 40 b 3
curvature of the first spike and the peak voltage & ; : 8 o ° )
of that spike. (4) A frequency—current (FI) % 58 8 2 20 . i
curve was measured by injecting positive cur- = 60 ' 8 ] l S 2 ) ' '
rent, starting from 0.0 nA and increasing in 0.2 > s ' = ! °®
nA steps to at least +1 nA (Fig. 1C). Each cur- 65 @ 8 10
rent step was held for 5 s and used to calculate 70 0 , i ] i
the slope of this curve. (5) The spike frequency DG GM LP PD DG GM LP PD

elicited with the injection of +1 nA of current

was also measured. In one cell, the spike fre-  Figure2. Variability of six conventional measures of intrinsic excitability. Measures of input resistance, spike threshold voltage,
quency at +1 nA was calculated by extrapolat-  spike height, slope of the frequency— current curve, spike frequency at 41 nA, and minimum voltage for the DG (n = 12), GM
ing from the frequency—current curve because  (n = 14),LP (n = 12),and PD (n = 9) neurons.
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Table 1. Intrinsic property means, standard deviations, and significant mean differences between pairs of cell types

Minimum resting ~ Spike height
Celltype  Inputresistance (MC))  Spike threshold (mV) FI slope (Hz/nA) Spike frequency at +1nA (Hz) voltage (mV) (mV)
DG 39.0 = 19.1(*PD) —44.6 = 4.0 (*LP) 11.8 = 4.7 (***GM) (*PD) 9.6 = 2.4 (***GM) (*PD) —573*+ 46 254 +75
GM 275 %52 —40.6 = 2.6 (**LP) 4.3 + 0.8 (***DG) (**LP) 3.0 = 1.14 (***DG) (***LP) (**PD) —593+43 248 = 8.1
LP 293 +£96 —43.3 & 3.4 (*DG) (**GM) 9.8 = 4.6 (**GM) 9.2 = 3.2 (***GM) (*PD) —552*+ 64 17.2 = 11.0 (**PD)
PD 243 * 5.6 (*DG) —46.0 = 4.1 6.5 + 4.0 (*DG) 6.4 £ 1.5 (*LP) (**GM) (*DG) —587 =21 321 £ 13.6 (**LP)

Eachrow shows a cell type that demonstrated a significantly different mean as measured by a one-way ANOVA; asterisks represent p values (*p << 0.05; **p << 0.01; ***p << 0.001). Forinput resistance, PD and GM were significantly different
(p=10.028).DGandLP( p = 0.038)and GMand LP ( p = 0.001) showed significantly different spike threshold values. For FI slope, DGand GM ( p << 0.001), GMand LP ( p = 0.004), and DGand PD ( p = 0.014) were statistically different
from one another. For spike frequency at +1nA, DGand GM ( p << 0.001), GMand LP ( p << 0.001), LPand PD ( p = 0.031),DGand PD ( p = 0.011),and GMand PD ( p = 0.005) showed statistically significant mean values. No significant
differences between means were found in minimum voltage measurements. PD and LP showed statistically significant differences in mean spike height ( p = 0.008).

the maximum current injection was below +1 nA. (6) The minimum
voltage was taken from the FI curve at 0 nA of injected current (data not
shown). For silent neurons, this was the resting potential. For active
neurons, this was the most hyperpolarized membrane potential reached
over the 5 s step.

Dynamic clamp. Real-time Linux dynamic clamp (Dorval et al,,
2001), version 2.6, was run on an 800 MHz Dell Precision desktop
computer. All dynamic-clamp recordings were done in discontinuous
current-clamp mode with sampling rates between 1.8 and 2.1 kHz. A
Morris—Lecar (Morris and Lecar, 1981) model neuron was simulated
using the dynamic clamp. This model contained a noninactivating
Ca’" conductance and a noninactivating K * conductance, in addi-
tion to a leak conductance. The membrane voltage of the Morris—
Lecar neuron was determined based on the following equations:

av
CE = - gleak(v - Eleak) - gCaM(V - ECa) - gKN(V - EK) (1)
dN
dt - TN(Noc - N) (2)
aMm M. — M
3 = ™ML — M) (3)
M. = : (4)
e 1+ ex ( B (V_ Vl/z,Ca)>
P Vslope,Ca
N.. = : (5)
c 1+ ex ( B (V_ Vl/Z,K))
P Vslope,K

V- Vl/z,K)

™ = TOKsech<
2 Vs]ope,K

(6)

The membrane capacitance of the Morris—Lecar model neuron, C,
was 10 nF. g, (200 nS), gx (200 nS), and g, (50 nS) are the maximal
conductances for the Ca?™, K ¥, and leak conductances, respectively.
Vi.ca (—20 mV) is the half-activation voltage of the Ca>" conduc-
tance, and V., c, (15 mV) is the slope of the activation curve for
gCa?*. E-, (100 mV) is the reversal potential for the Ca?" current,
and 7, (1 us) is the time constant for the activation variable M of the
Ca*" conductance. V|, « (—20 mV) is the half-activation of the K *
current, Vg, . ¢ (15 mV) is the slope of the activation curve for the
K™ conductance, and Ex (—80 mV) is the reversal potential of K. 7,
(500 ms) is the scale factor for the time constant for the activation variable N
of the K current. E,.,; (—60 mV) is the reversal potential for the leak
current.

An artificial hyperpolarization-activated conductance, I, (Buchholtz
et al., 1992; Sharp et al., 1996), was added to the STG neuron using the
dynamic clamp and is described by the following equations:

I, = &R(E, - V) (7)
dR B
o R =R ®)

where

1

Roc(V) = 1+ CXP[(V_ Vl/z)/sR]

)

kp(V) = {1 + exp[(V = Vig)/sie]h (10)
where g (varied from 10 to 100 nS) is the maximal g, R is the instanta-
neous activation, R, is the steady-state activation, E, (—10 mV) is the g,
reversal potential, V;,, (—50 mV) is the half-maximum activation, s, (7
mV) is the step width, ¢y (0.33/s) is the rate constant, V,; (—110 mV) is
the half-maximum potential for the rate, and s, (—13 mV) is the step
width for the rate.

The dynamic clamp was used to simulate an inhibitory synapse from
the model neuron to the biological neuron ( g,y ; varied from 10 to 100
nS) as well as a synapse from the biological cell to the model neuron
( Eoynbios varied from 20 to 200 nS). Before experimentation, both model
and synaptic parameters were chosen to configure a circuit that dynam-
ically interacted with each type of biological neuron. All model and cir-
cuit parameters were identical in each experiment. The maximal
conductance of g, .., was twice as large as that of g, .\ for all map
points. These artificial inhibitory graded transmission synapses were
based on Sharp etal. (1996) and are described by the following equations:

Isyn = gsy“ -S- (Esy“ — Vposl) (11)
S
(1 - Sx)TsynE = (Soc - S) (12)
where
S (V ) _ tanh [(Vpre - VI/Z)/‘/Slope] lf Vpre > ‘/1/2
o 0 otherwise >
(13)

where g, is the maximal synaptic conductance, S is the instanta-
neous synaptic activation, S,, is the steady-state synaptic activation,
and E,, (=70 mV for Morris-Lecar and —80 mV for biological neu-
ron) is the reversal potential of the synaptic current. V,,,.and V. are
the presynaptic and postsynaptic potentials, respectively; 7, (100
ms) is the time constant for synaptic decay, V,,, (—45 mV) is the
synaptic half-activation voltage, and Vg, . (5 mV) is the synaptic
slope voltage.

Parameter maps. First, the output of the model neuron and the STG
neuron was recorded in an uncoupled state (g,,mr> Esynbio = 05 & = 0)-
Then, the maximal artificial h-conductance in the STG neuron (g,) and
the maximal model to biological synaptic conductance (g,,,n1) Were
varied from 10 to 100 nS in 15 nS steps, with the biological to model
synapse (gy,npio) always being twice the value of g .\ The parameter
sets were sampled in a random order. A sample of the circuit output was
recorded at every g, and g, parameter combination. We classified net-
work activity into four categories: (1) networks that were silent, (2) those
dominated by the model, (3) those dominated by the STG neuron, or (4)
those that formed half-center oscillators in which the biological and
model neurons were active in antiphase (see below for network classifi-

lope
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cation algorithm description). All non-half-center networks were re-
corded for 30 s. When the network was half-center or when the network
fluctuated between different network categories, samples from 90 to
180 s were recorded.

Spike detection. Data were imported to Matlab and then analyzed using
custom scripts. Spikes were automatically identified from an analysis of
the “phase plot,” dV/dt ( y-axis) versus V (x-axis). To decrease the impact
of variability in the slow wave, V was high-pass filtered with a time
constant of 30 ms, but dV/dt was left unchanged. Data with spikes yield
distinct clockwise loops with few data points in the interior of the loops,
whereas data without spikes yield points scattered throughout a roughly
circular region. To detect spikes, we defined a point in the interior of the
plot as a “central” point. The y-coordinate of this point, (dV/dt) ...ia
was half the maximum value obtained by dV/dt. The x-coordinate of the
central point, V_.,...» was the voltage at the time of maximum dV/dt.
Putative spikes were identified as trajectories that began and ended with
V=V nerap and looped clockwise around the interior point (specifically,
they had dV/dt > (dV/dt) ., before V>V ). The spike time was
recorded as the time of peak voltage. To distinguish true spikes from the
random fluctuations of a silent cell, a count was made of the number of
time samples with high voltage (V > V_., ..a) but low dV/dt[dV/dt <
(dVIdt) cepeear]- If this number was >20% of the number of putative
spikes, the data were classified as nonspiking, and all putative spikes were
ignored. In practice, we found this to be nearly perfect at identifying
spikes and distinguishing spiking from nonspiking traces.

Slow-wave detection. Here, we use “slow wave” to refer to any low-
frequency membrane oscillations. We identified slow-wave oscillations
by removing spikes via interpolation and low-pass filtering the resulting
waveform. We then found the highest-frequency peak in the autocorre-
logram below the spike frequency. We looked for local (over a time
period proportional to slow-wave frequency) maximums and mini-
mums in the resulting waveform, these being putative peaks and troughs
of the slow wave. Peaks/troughs were deemed to be spurious if they were
excessively hyperpolarized/depolarized compared with the others, using
a three o cutoff. Such extrema were removed, along with one of their
neighbors (e.g., a spurious peak would be removed along with the most
depolarized adjacent trough). The level of ongoing high-frequency noise
was determined by high-pass filtering the waveform. If the median slow-
wave amplitude was less than the amplitude of the smallest 95% of noise,
then the cell was deemed to have no slow wave. Finally, slow waves were
removed if they were plausibly fluctuations in the aftermath of a spike.
Specifically, if an individual slow wave had an amplitude less than the
difference between the prespike voltage and postspike voltage of the most
recent spike, it was deemed spurious.

Burst detection. Putative bursts were identified as depolarizing de-
flections of the biological cell’s membrane potential, which occurred
during a slow-wave peak. If the majority of putative bursts did not
have spikes, the system was deemed to have no bursts. Otherwise the
bursts were expanded as necessary to ensure that all in-burst spikes were
fully included in the burst period. Finally, if the gap between two bursts was
less than a typical interspike interval, the two bursts were merged into one
large burst.

The burst waveforms from the four different cell types were suffi-
ciently variable so that occasionally the automated analysis misidentified
bursts. Therefore, we visually checked identified bursts and manually
modified the results of erroneous automatic calculations.

Network classification and measurement. Networks were classified as
“silent,” “model dominated,” “bio dominated,” or “half-center.” If
the biological cell’s activity lacked spikes and a slow wave, it was
categorized as “silent.” If the biological cell showed spikes but no slow
wave, the network was labeled “bio dominated.” If a slow wave but no
spikes were present in the biological cell, the network was labeled
“model dominated”. To determine whether the system was half-
center, we examined the synaptic current between the Morris—Lecar
model and the biological cell. We counted the fraction of times the
inhibitory synaptic current was predominantly from the bursting cell
(the biological and the model cell in turn) to the nonbursting cell. If
this number was >90%, the network was “half-center”; otherwise, it
was “bio dominated.”
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Figure3.  Normalized values for intrinsic properties grouped by cell type. Each unique sym-
bol represents one neuron; lines connect the intrinsic property measurements for individual
neurons. R.,,, Input resistance; freq., frequency; min. volt., minimum voltage.

The network frequency was measured for every half-center network in
addition to the burst duration, duty cycle, spike frequency within each
burst, and the number of spikes per burst in the biological neuron. To
determine the regularity of each half-center network we calculated the
autocorrelation for the neuron’s membrane potential (an autocorrela-



Grashow et al. @ Compensation for Variable Intrinsic Properties

A artificial C —

J. Neurosci., July 7, 2010 - 30(27):9145-9156 * 9149

neuron and approximately four GM neu-

synapse

/ (9syn) =

artificial
h-conductance

<« (9n)

STG

B UNCOUPLED

© WM
@ —

F
05w
A~ ] e
N 0.4+
=
N
> 034"
(&)
% ......
5 024
o- ,,,,,
D o4
L
0\,,, vvvvvvvvvvvvvvvvvv .
@ Haltcenter 100
. Ip 0
@ Model dom. ; (
")
Figure 4.

on the z-axis for only the half-center networks.

tion of 0 corresponds to completely irregular; 1 corresponds to perfect
regularity).

Results

The crab STG contains approximately 26 neurons (Kilman and
Marder, 1996), which can be unambiguously identified by their
anatomical projections and synaptic connections. The STG gen-
erates two different motor patterns, the fast pyloric rhythm and
the slower gastric mill rhythm. Each neuronal type displays char-
acteristic electrophysiological discharge patterns when these
rhythms are active (Marder and Bucher, 2007). There are two PD
neurons and one LP neuron in each STG, and these neurons are
rhythmically active in the ongoing pyloric rhythm. There is one DG

Network output of the hybrid circuit depends on g, and g, parameter values. A, Circuit schematic for a two-cell
network built with a model Morris—Lecar neuron coupled to a biological STG neuron (either DG, GM, LP, or PD). The dynamic clamp
was used to simulate artificial asymmetrical inhibitory synapses and an artificial h-conductance that was added to the STG neuron.
B, Voltage traces from an uncoupled ( g, = 0nS, g, = 0 nS) endogenously active Morris—Lecar model neuron (top) and LP
neuron (bottom trace). (-, Voltage traces from different g, ,.-g,, parameter value combinations. Colors delineate network cate-
gory: red traces indicate half-center networks, blue represents networks dominated by the model neuron, and green traces
indicate networks dominated by the LP neuron. €, g, = 8515, g, = 70nS. D, g, = 70nS, g, = 10nS.E, g, = 40nS, g, =
40 nS. F, Map of network types within the g, -g,, parameter space for the LP to model hybrid circuit. Network frequency is shown

rons in each STG. These neurons are part of
the episodic gastric mill rhythm (Selverston
et al., 1976; Clemens et al., 1998; Nusbaum
and Beenhakker, 2002).

Intrinsic property measurements of
identified cell types

Over the years a number of studies have
characterized the biophysical properties
of specific membrane conductances in
crab STG neurons, most notably in the
LP and DG neurons (Golowasch et al.,
1992, 1999b; Kiehn and Harris-Warrick,
1992a,b; Zhang and Harris-Warrick,
1995; Zhang et al., 1995; Schulz et al.,
2006). Nonetheless, there have been no di-
rect comparisons of the intrinsic properties
of different classes of STG neurons using
many of the direct measures most often
found in the literature. Consequently, we
first pharmacologically isolated DG, GM,
LP, and PD neurons and then measured the
input resistance, action potential voltage
threshold, spike height, slope of the FI curve,
the spike frequency with +1 nA injected
current, and minimum voltage (Fig. 1). As
an aggregate, these intrinsic properties are
measures of the attributes that contribute to
neuronal excitability.

Figure 2 shows that while each cell type
shows a considerable spread in the values
of each measure, almost all of these mea-
surements overlapped across the cell types,
although the values for the GM neurons
showed somewhat less dispersal than did the
other neuron types. Table 1 shows the
means and standard deviations of these
intrinsic properties for each cell type.
Despite the extensive overlap, all of the
intrinsic properties except for the mini-
mum membrane potential showed some
statistically different values across cell
types (Table 1).

Figure 3 shows normalized intrinsic
property values organized by cell type, with
lines connecting the intrinsic properties of
each individual cell. The many line crossings
illustrate the lack of relationships between
the different intrinsic properties. Despite
the overlap in intrinsic property measurements and the inconsis-
tency of the rank-ordered measurements, we wanted to know
whether any of the intrinsic property measurements within each cell
type showed any correlation.

GM showed a significant correlation between the spike threshold
voltage and +1 nA spike frequency measurements (R* = 0.85,
p < 0.001, all p values adjusted by Bonferroni correction), the
spike threshold voltage and the minimum voltage (R> = 0.95,
p < 0.001), and the minimum voltage and the +1 nA spike fre-
quency (R* = 0.85, p < 0.001). No significant pairwise correla-
tions were found for the other cell types. We asked whether a
linear combination of any five properties predict the sixth, and
found no additional relationships (data not shown).
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Using hybrid model/biological
networks to assess the functional
consequence of cell variability

To determine whether we could get similar
outputs from cells with variable intrinsic
properties, we used the dynamic clamp
(Sharp et al.,, 1993) to create hybrid model/
biological neuron circuits (Sorensen et al.,
2004; Olypher et al., 2006). Specifically, we
connected biological PD, LP, GM, and DG
neurons to a model Morris—Lecar neuron

Grashow et al. @ Compensation for Variable Intrinsic Properties
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(Morris and Lecar, 1981) via reciprocally 0
inhibitory synapses ( g,,,) (Fig. 44, sche-
matic). We also added an artificial excita-
tory h-conductance ( g,) (Buchholtz et al.,
1992; Sharp et al., 1996) to the biological cell
to determine whether changes in the
strengths of synaptic and intrinsic mem-
brane currents could compensate for di-
verse intrinsic excitability to produce
equivalent outputs.

Figure 4B shows an LP neuron and
the model neuron when uncoupled. The
Morris—Lecar model endogenously oscil-
lated at 0.67 Hz, while the LP neuron fired
tonically. Figure 4C shows voltage traces
recorded after the LP neuron was coupled
to the Morris—Lecar neuron at different
Zoyn-8n Parameter value combinations. The
activity of the hybrid circuit was categorized
into four classes: (1) circuits in which the
model inhibited the LP neuron (“model
dominated”; blue), (2) circuits with the
biological neuron inhibiting the model
(“LP dominated”; green), (3) circuits
where both neurons were silent (data
not shown), and (4) circuits that
showed alternating half-center activity (red). A map of how
the activity of the circuit depended on the g, and g;, values is
shown in Figure 4F, with the burst frequency of the half-
centers shown on the z-axis. All of the g, map axes in the
figures represent only the model to biological synapse, but the
biological to model synapse was varied proportionately (see
Materials and Methods).

We performed 12 LP neuron experiments, each with 49
unique networks (7 values were used for both g, and g, and all
possible combinations were sampled). In every experiment there
were a number of g, and g, values that commonly produced
half-center oscillators. Figure 5A shows the distribution of all LP
to model half-center circuits from these 12 experiments, with the
percentage of half-center networks at each location represented
as a color-intensity-coded value between 0 and 100%. Note that
there were no half-center oscillators formed from LP neurons at
the higher values of g,, and all the preparations produced half-
center activity at g, = 20 nS, and most at g, = 40 nS.

20 40

Figure 5.

Compensating for neuronal variability to produce consistent
target network performance

The fact that all preparations produced half-center oscillations at
similar areas in the parameter maps raised the question of whether
each neuron could, at some set of map parameters, be part of a
two-cell network with a defined output. To ask this question, for
each neuron type we looked for a specific “target” network perfor-
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—
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LP neurons can form similar half-center oscillators with a Morris—Lecar model neuron at different g, ,-gj, values. 4,
Pooled distribution of LP-model half-center circuits for 12 LP neurons. Red scale indicates fraction of half-centers at each g, ,-gy
parameter combination. B, g.,,-g, parameter values for each LP neuron that produced similar LP-model half-center networks. €,
Six LP-model half-center networks with similar behavior (see Results). Symbols correspond to Figures 3 and 5B.

mance and then determined whether this target performance was
achievable in every individual neuron of that cell type. For each cell
the target was chosen after looking for the prevalent circuit dynamics
that were present in the data from all of the individual cells of that
type. Using this as a starting point, we formulated strict criteria and
found all examples of networks that met those criteria.

For the LP neuron, the target activity was a frequency range of
0.15-0.30 Hz, a duty cycle >0.65, and an autocorrelation score of
>0.27. There were 48 networks found in the 12 experiments that
fell within this general range of behaviors. From these, we selected
by eye a representative network from each experiment with a
similar target waveform. Figure 5C shows voltage traces for 4 of
the 12 LP experiments. Symbols above each trace correspond to
cell identifiers in Figures 3 and 5B. Figure 5B shows the g, and g,
values that produced these similar outputs from LP neurons despite
their variable intrinsic properties. Note that there is a sevenfold vari-
ability in the g, values and a more than twofold variability in the g, ,,
values that produced the representative network performance, a
magnitude that is equivalent to the variability measured in biological
networks (Prinz et al., 2004; Schulz et al., 2006, 2007; Goaillard et al.,
2009).

Maps from different cell types

Despite the large spread of the intrinsic properties measure-
ments, Table 1 showed that on average there were significant
differences between some of these measurements across cell
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Figure 6. Distribution of half-center networks for all PD, GM, and DG model networks. Red
scale corresponds to percentage of half-centers at each g, ,-g,, parameter combination.

types. This suggests that when neurons of these different cell types
are coupled to the same Morris—Lecar model neurons, the maps
formed would also be different. Visual comparisons of the maps
in Figures 5A and 6 show that the distribution of half-center
networks appears to be cell type specific. For example, the PD
neuron pooled map is much larger than those of the other cell
types, and the GM map pooled map is much smaller (Fig. 6). A
one-way ANOVA revealed that the percentages of the map with
half-center networks were significantly different (p < 0.001),
and post hoc Tukey tests revealed that all pairs of the cells were
also significantly different. Nonetheless, it is important to stress
that these pooled maps also show that all four cell types produced
half-center oscillators at some common parameter regions (e.g.,
Zsyn = 70 1S, g, = 40 nS).
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Compensation can produce a variety of target behaviors

For the purposes of the following analysis, we are using the term
“compensation” to denote those conductance parameters that
allow each cell to participate in a network with a defined target
behavior, regardless of its intrinsic properties. This meaning of
compensation does not imply any underlying changes in the neu-
ron’s own excitability induced by the formation of the network.

For each cell type we chose a specific target circuit behavior
that was represented in most if not all of the experiments with
that neuron. Figure 7 shows these for the PD, GM, and DG neu-
rons. Figure 7A shows recordings from each of the neuron classes
in the uncoupled state. Figure 7B shows three examples of the
target activity for each cell type. The target activity behavior for
the PD neurons was alternating bursts between 0.35 and 0.5 Hz,
with an autocorrelation of >0.75 and a slow-wave amplitude of
>5 mV. Figure 7C shows the parameter values from nine differ-
ent PD neurons that gave this target activity pattern. Note that
these compensating values varied twofold to threefold.

The target network activity for the GM neurons was bursts
between 0.2 and 0.35 Hz with an average of one spike per burst, as
is shown for three different preparations in Figure 7B. This be-
havior was found in 14 GM neurons taken from 9 preparations.
The parameters that gave rise to these similar target network
behaviors are shown in Figure 7C.

The DG neuron is part of the gastric mill rhythm, often fires long
slow bursts during gastric mill activity, and is therefore likely to have
membrane currents consistent with slower bursting dynamics.
When coupled to the Morris—Lecar model neuron, the DG neuron
often formed an activity pattern in which multiple model neuron
bursts alternated with a longer DG neuron burst (Fig. 7C). There-
fore, we treated this as the target activity pattern for the DG neuron,
and Figure 7C shows the g ,,-g, map locations for 12/12 DG neurons
that produced the same target activity pattern.

Figures 5 and 7 show that it was possible to get the same target
output out of every LP cell (or DG, GM, or PD) at some value of
gsyn and g;,. In contrast, if we chose one fixed g,,,-g, parameter
set, we saw diverse outputs from cells of the same type. Figure 8
shows the g ,-g;, parameter sets and accompanying voltage re-
cordings of some of the neurons from Figures 5 and 7. LP #1 and
LP #3 were bursting, although with different frequencies, duty
cycles, spikes per burst, and spike frequencies. LP #2 was tonically
spiking. The same diversity of output from the PD, GM, and DG
neurons seen in Figure 7 is also exhibited by the other cell types.
Thus, these diverse neurons can produce equivalent outputs if one
tunes g, and gj, to compensate for differences in neuronal intrinsic
excitability. If instead we arbitrarily select one g,,, value and one g,
value, not surprisingly the underlying excitability differences will
produce a variety of outputs at identical map locations.

Relationships between intrinsic properties and

network behavior

We wanted to determine whether there were any relationships
between the intrinsic membrane properties measured in the iso-
lated neurons and the activity of those neurons in the network
formed with the model Morris—Lecar neuron. For all instances of
half-center activity in an experiment, we averaged the following
properties for all half-center networks: the number of spikes per
burst, spike frequency within each burst, duty cycle (the ratio of
the burst duration to the period of the oscillation), slow-wave
amplitude, autocorrelation score, and g,. Additionally, for each
map we calculated the fraction of the map showing half-center
activity and the standard deviation of g,
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Table 2 shows the correlationsbetween A
each of the intrinsic properties and eight
different measures of network perfor-
mance using pooled data for all of the cell
types. Only 9 of the possible 48 correla-
tions were statistically significant after
correction for multiple comparisons. The
two strongest correlations are shown in
detail in Figure 9. The relationship be- B
tween spike threshold and the mean g, of
the half-center networks is shown in Fig-
ure 9A. The top plot shows all four cell
types fit with a single regression line. This
shows that more depolarized values of
spike threshold are associated with half-
centers found at lower values of g,. The
four bottom plots of Figure 9A show each
of the cell types individually. The GM and
LP neurons showed significant correla-
tions between spike threshold and mean
gn» while the PD and DG neurons did not.

Figure 9B shows the relationship be-
tween the spike rate at +1 nA and the
mean number of spikes per burst. When
all of the cell types are pooled there is a
strong positive correlation seen, and this
correlation is preserved in the DG and
LP neurons, but not in the GM and PD
neurons.

Discussion

Appropriate animal behavior demands

that the neural circuits responsible bead-  C
equately tuned for the performance of
those behaviors. It is therefore often as- -
sumed that appropriate circuit behavior _
requires that every cellular and synaptic 2 °
property that underlies those behaviors &

be tightly regulated. In this article we A
provide a simple set of experiments
demonstrating that the parameters nec- 0
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conductances to produce tightly con-
strained circuit performance are as vari-
able as the measures of intrinsic
properties of the neurons.

Figure7.
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Similar behavior can be elicited from intrinsically variable PD, GM, or DG neurons using two artificial conductances. 4,
Voltage traces for uncoupled networks built from a Morris—Lecar neuron and a PD, GM, or DG neuron. B, Voltage traces from three
PD neurons (first column), three GM neurons (middle column), or three DG neurons (third column) showing similar outputs with

different values of g, and gy, as shown in C (symbols correspond to those in Fig. 3). €, g,,,-g, parameter combinations that

Biological compensation

Compensation is now understood to be
an important part of the ongoing processes that maintain stable
circuit function under many conditions, both normal and patho-
logical. Compensation during development undoubtedly ac-
counts for the numerous instances of knock-outs of important
channel and receptor genes with little or no adult phenotype
(Hodges et al., 2009), and can result in little obvious effect of
overexpression of channel genes (MacLean et al., 2003, 2005),
even in instances when acute pharmacological manipulations of
the same channels produce substantial physiological effects
(Swensen and Bean, 2005). However, in most cases where com-
pensation is invoked to explain the lack of a phenotype, it is
usually not known what changes in channels or receptors account
for the compensation. Even in those cases in which a change in
expression of one gene is correlated with the expression in

produced similar outputs shown in B.

another (MacLean et al., 2003, 2005), it may not be clear
whether the reported change is one of many compensating
changes or whether it alone is sufficient to account for the
phenotype.

Unlike the compensatory changes that are seen during devel-
opment or after overexpression experiments in which the neu-
rons themselves change the values of one or more of their
conductances to respond to the perturbation, we are making an
acute measurement of the parameters that can achieve a short-
term compensation for the variability in intrinsic properties of
the neurons. In a sense, these acute measurements are a read-out
of which changes could, in principle, achieve longer-term biolog-
ical compensation. In the context of this article, there were no
changes in the neurons’ own excitability during the experiments
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as assayed by repeat measures of the same map locations over the
course of the experiment.

Because the compensating changes were produced using the
dynamic clamp in our study, it is unambiguous that these com-
pensations are sufficient to produce the target circuit perfor-
mance. Our work shows that similar outputs can be elicited from
variable neurons using only two conductances. Nonetheless, in
actual biological circuits we imagine that a variety of compensa-
tory changes at multiple loci within a circuit might account for
apparently unchanged behavioral function. Biological neurons in
dynamic circuits have many more conductances, producing in-
numerable parameter combinations to maintain appropriately
nuanced electrical phenotypes.

The utility of intrinsic properties to classify neuronal cell type
Intrinsic properties, such as those measured here, are commonly
used to describe and classify neurons in a wide variety of prepa-

W LP#3

@ PD#3

V DG #3
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~UUMAUUAR

Diverse outputs result from intrinsically variable neurons at single g.,-g, parameter value combinations. 4, Voltage
traces from three LP neurons at a single g, -9, map location. B—D, Same as A, except for PD, GM, and DG, respectively.
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rations (Prescott and De Koninck, 2002;
Cudmore and Turrigiano, 2004; Alaburda
et al., 2005; Dougherty et al., 2005; Idoux
et al., 2006; Sautois et al., 2007; Helms-
taedter etal., 2009), with the implicit hope
that these electrophysiological measures
are directly predictive of a cell’s activity
within a circuit (Gittis and du Lac, 2007;
Otte et al., 2010). Our data come from
neurons that are uniquely identifiable on
the basis of their anatomical projections
(Maynard and Dando, 1974). Although
the mean values of some of the intrinsic
properties are statistically different across
cell types (Table 1), the overlap of the in-
dividual cells’ measurements would pre-
clude these values on their own as being
reliable indications of neuronal identity.
A number of studies have argued for ad-
ditional classification schemes based on
measures such as gene expression profiles
(Kamme et al., 2003; Nelson et al., 2006;
Sugino et al., 2006), morphology (Krieg-
stein and Dichter, 1983; Nimchinsky et
al., 1999; Prescott and De Koninck, 2002;
Yasaka et al.,, 2007), neurotransmitter
complement (Lints and Emmons, 1999;
Maccaferri and Lacaille, 2003), or combi-
nations of the above (Markram et al.,,
2004; Butt et al., 2005; Dougherty et al.,
_ﬁR/ 2005; Sautois et al., 2007). Work contin-
3s ues to determine which measures of neu-
ronal identity are most reliable for
neurons in large and complex circuits.
The initial premise of this study was to
determine whether a functional assay,
such as that used here, might provide a
superior measure of neuronal excitability
compared with traditional measures of in-
trinsic properties, because it would mea-
sure voltage responses in a more dynamic
and relevant way than traditional mea-
sures of intrinsic excitability. Visual in-
spection of the pooled maps of the
different cell types (Figs. 5A, 6) shows
clear evidence of cell-specific structures.
Nonetheless, there is enough overlap in these maps so that the
individual maps from neurons of different cell types will not
necessarily be diagnostic of that neuron’s identity, using this
particular Morris—Lecar model neuron and these parameter
ranges. These results suggest that it might be possible to create
a better functional assay using different model neurons or by
adding an additional voltage-dependent current, because even
two-cell, half-center oscillators show qualitatively different
behavior depending on their intrinsic currents (Daun et al.,
2009). Thus, a fuller exploration of different model neurons
might find ones that would more reliably separate neurons by
cell type by exploring the full set of dynamics in each neuronal

type.

From intrinsic properties to circuit performance and back
Circuit dynamics result from complex and nonlinear relation-
ships between synaptic strength and the intrinsic properties of the
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Table 2. Correlations between intrinsic membrane properties and network properties

Grashow et al. @ Compensation for Variable Intrinsic Properties

Minimum resting

Network property Input resistance Spike threshold Fl slope Spike frequency at +1nA voltage Spike height
Mean spikes per burst NS p < 0.001R%=0.40 NS p <0.001R?=0.65 p<0.01R*=10.26 NS
Mean burst spike frequency NS NS NS NS NS NS
Mean duty cycle NS NS NS NS NS NS
Mean slow wave amplitude p<0.01R*=10.26 NS NS NS NS NS
Mean autocorrelation NS p<0.01R%*=1030 NS NS p<0.001R? =036 NS
Mean g,, NS p<0.001R?=0.45 NS p<0.001R*=1036 p <0.001R? =041 NS
Fraction of half-centers NS NS NS NS NS NS
Standard deviation of g,, NS NS NS NS NS NS

Pairwise correlations were measured for each network property and each intrinsic property; p values were determined using the Pearson correlation test. All cell types have been pooled. For all correlations with a significant p value
((p < 0.05), pvalue and R? are shown. Correlations that were not significant have been labeled NS. The p values have been adjusted using the Holm—Bonferroni correction for multiple comparisons.
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Correlations between intrinsic property measurements and features of the hybrid circuit half-center activity. A, The relationship between spike threshold and mean g, Top plot shows

data from all neurons (n = 47) plotted together and the bottom four plots show each of the neuron classes separately plotted. Color code shows cell types. B, The relationship between the spike rate
at +1nA and the mean number of spikes per burst. Top plot shows all neurons pooled and bottom four plots are neurons separated by cell type.

neurons in the network. One of the challenges in understanding
circuit behavior is to determine the extent to which each conduc-
tance contributes to circuit performance. When intrinsic proper-
ties are measured, the assumption is often made that measures
such as input resistance, FI curve, or spike threshold will be ac-
curate predictors of how that neuron will perform in a network.
In some cases it is relatively easy to relate a change in the strength

of a synapse or the maximal conductance of one membrane cur-
rent to circuit behavior (Sharp et al., 1996). Table 2 shows that in
this study there are fewer significant correlations between the
measurements of intrinsic properties and network performance
than might have been expected. Nonetheless, there are two fea-
tures of this study that make it easy to understand why simple
intuition might fail for many of these relationships. First, the
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networks we created here are asymmetric, so that the two neurons,
model and biological, have quite different properties. Second, and
perhaps most importantly, the Morris—Lecar model neuron is a
strong oscillator, and its nonlinearities can make it very difficult to
predict simply the behavior of a closed loop circuit in which one side
is a strong oscillator and the other is a different kind of neuron with
very different intrinsic properties (Kopell et al., 1998).

Compensation and homeostasis

There is an ever-growing body of literature that suggests that the
activity levels of individual neurons and networks are homeo-
statically regulated to maintain a physiologically appropriate and
stable network performance in the face of growth, channel turn-
over, and perturbations by modification of either synaptic or
intrinsic parameters or both (LeMasson et al., 1993; Turrigiano et
al., 1994; Liu et al., 1998; Golowasch et al., 1999a; Turrigiano and
Nelson, 2000, 2004; Paradis et al., 2001; Soto-Trevino et al., 2001;
Luther et al., 2003; Davis, 2006; Haedo and Golowasch, 2006;
Pratt and Aizenman, 2007; Rich and Wenner, 2007; Turrigiano,
2007, 2008; Zhang and Golowasch, 2007; Wilhelm and Wenner,
2008; Dickman and Davis, 2009; Frank et al., 2009; Wilhelm et al.,
2009; Zhang et al., 2009; Gunay and Prinz, 2010; O’Leary et al.,
2010; Olypher and Prinz, 2010).

Implicit in the concept of homeostasis is that there is a target
or desired phenotype or activity pattern and some kind of sen-
sor(s) that detect deviations from that target level. These “error
signals” are then used to trigger alterations of one or more pro-
cesses to bring the system back to its target activity pattern. While
the compensation we measure here is not a result of biological
homeostatic tuning, it is interesting that the range of values that
were necessary to apply to variable neurons to recover a target
network activity is similar to the range of many biological param-
eters that were measured across individuals (Golowasch et al.,
1999b; Schulz et al., 2006, 2007; Goaillard et al., 2009). That said,
it is important to remember that some ion channel mutants have
striking phenotypes, as even homeostatically regulating systems can-
not compensate for the loss of some functions (Liu et al., 1998) or the
gain of others. Consequently, one of the challenges for the future will
be to uncover potential molecular mechanisms that favor compen-
sation (MacLean et al., 2003; MacLean et al., 2005) and/or coregula-
tion of ion channels (Gittis and du Lac, 2007; Schulz et al., 2007;
Tobin et al., 2009).
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