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Transient Overexpression of a-Ca®" /Calmodulin-Dependent
Protein Kinase II in the Nucleus Accumbens Shell Enhances
Behavioral Responding to Amphetamine
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Ca”*/calmodulin-dependent protein kinase IT (CaMKII) is known to contribute to the expression of psychostimulant sensitization by
regulating dopamine (DA) overflow from DA neuron terminals in the nucleus accumbens (NAcc). The present experiments explored the
contribution of CaMKII in NAcc neurons postsynaptic to these terminals where it is known to participate in a number of signaling
pathways that regulate responding to psychostimulant drugs. Exposure to amphetamine transiently increased «CaMKII levels in the
shell but not the core of the NAcc. Thus, HSV (herpes simplex viral) vectors were used to transiently overexpress aCaMKII in NAcc
neurons in drug-naive rats, and behavioral responding to amphetamine was assessed. Transiently overexpressing «CaMKII in the NAcc
shell led to long-lasting enhancement of amphetamine-induced locomotion and self-administration manifested when cCaMKII levels
were elevated and persisting long after they had returned to baseline. Enhanced locomotion was not observed after infection in the NAcc
core or sites adjacent to the NAcc. Transient elevation of NAcc shell ®CaMKII levels also enhanced locomotor responding to NAcc AMPA
and increased phosphorylation levels of GluR1 (Ser831), a CaMKII site, both soon and long after infection. Similar increases in pGluR1
(Ser831) were observed both soon and long after exposure to amphetamine. These results indicate that the transient increase in «CaMKII
observed in neurons of the NAcc shell after viral-mediated gene transfer and likely exposure to amphetamine leads to neuroadaptations
in AMPA receptor signaling in this site that may contribute to the long-lasting maintenance of behavioral and incentive sensitization by

psychostimulant drugs like amphetamine.

Introduction

Exposing animals to amphetamine enhances the ability of this
drug to produce locomotor activation, increase nucleus accum-
bens (NAcc) dopamine (DA) overflow, and support drug taking
(Kalivas and Stewart, 1991; Paulson and Robinson, 1995; Vezina
etal., 2002). These phenomena, manifestations of drug sensitiza-
tion, may model the transition from casual drug use to craving
and abuse (Robinson and Berridge, 1993; Vezina, 2004). Ca*"/
calmodulin-dependent protein kinase II (CaMKII), a serine/
threonine kinase that phosphorylates a wide array of downstream
targets and is highly expressed in forebrain sites like the NAcc
(Goto et al., 1994; Sola et al., 1999), contributes to both the in-
duction and expression of sensitization by psychostimulants.
Thus, CaMKII inhibitors prevent initiation of the neuroadapta-
tions in midbrain leading to sensitized responding (Licata and
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Pierce, 2003) and, when applied to DA terminal regions in NAcc
and striatum, prevent the expression of established sensitization,
including enhanced locomotion (Pierce et al., 1998), DA release
(Pierce and Kalivas, 1997; Kantor et al., 1999), and drug taking
(Loweth et al., 2008).

Although the evidence that CaMKII mediates the expression
of psychostimulant sensitization suggests that it interacts with
substrates in DA neuron terminals in forebrain to regulate en-
hanced DA release, additional evidence indicates that CaMKII
can also act postsynaptically to regulate a number of signaling
pathways known to mediate enhanced responding to psycho-
stimulants. CaMKII can inhibit the activity of cAMP-response-
element-binding protein (CREB) (Wu and McMurray, 2001), a
transcription factor activated by stimulants in striatal neurons
(Cole et al., 1995; Turgeon et al., 1997), by phosphorylating it at
serine residue 142. Overexpressing a dominant-negative form of
this protein in NAcc neurons enhances the rewarding properties
of cocaine (Carlezon et al., 1998; Pliakas et al., 2001), suggesting
that NAcc CaMKII could enhance drug responding possibly by
inhibiting CREB activity. CaMKII also directly phosphorylates
the AMPA receptor subunit GluR1 at serine residue 831 to en-
hance channel conductance (Song and Huganir, 2002) and is
required for GluR1 insertion into the synapse (Hayashi et al.,
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2000). A number of molecular as well as AMPA receptor blockade
and activation studies indicate that glutamatergic transmission plays
an important role in the expression of sensitization (Vanderschuren
and Kalivas, 2000; Vezina and Suto, 2003) and that CaMKII can
regulate AMPA receptor signaling in NAcc neurons (Anderson etal.,
2008; Sun et al., 2008).

Exposure to cocaine transiently increases CaMKII levels in
NAcc (Boudreau et al., 2009). Because sensitization is long-
lasting, such transient increases cannot account for long-lasting
enhancements in responding even though expression of sensiti-
zation continues to require CaMKII activation. However, given
the role played by aCaMKII in synaptic plasticity (Lisman et al.,
2002), it is likely that even a transient increase in «CaMKII can
initiate long-lasting neuroadaptations and that some of these are
responsible for the maintenance of sensitization. Here, we dem-
onstrate that exposure to amphetamine also transiently increases
aCaMKII levels in the NAcc and use viral-mediated gene transfer
to show that transient overexpression of this protein in NAcc
neurons produces long-lasting enhancements in behavioral re-
sponding to amphetamine.

Materials and Methods

Subjects. Male Sprague Dawley (locomotion experiments) and Long—
Evans rats (self-administration experiments) weighing 250-275 g on ar-
rival were purchased from Harlan and housed individually in a reverse
cycle room (12 hlight/dark) with food and water available ad libitum. All
rats were afforded 4 -5 d acclimation before the start of any experimental
procedures. In some experiments, rats were anesthetized with a mix of
ketamine (100 mg/kg, i.p.) and xylazine (6 mg/kg, i.p.), placed in a ste-
reotaxic instrument with the incisor bar positioned 5.0 mm above the
interaural line (Pellegrino et al., 1979), and chronically implanted with
bilateral guide cannulae (22 gauge; Plastics One) aimed either at the
NAcc shell [anteroposterior (A/P), +3.4; lateral (L), £0.8; dorsoventral
(DV), —7.5], NAcc core (A/P, +3.4; L, =1.5; DV, —7.5), or the ventral
tegmental area (VTA) (A/P, —5.6; L, £0.6; DV, —8.9). Coordinates are
in millimeters from bregma and skull. Guide cannulae were angled at 10°
(NAcc) or 16° (VTA) to the vertical and positioned 4 mm above the final
injection site. After surgery, 28 gauge obturators were placed into the
guide cannulae flush to the guide tips and rats were returned to their
home cage for a 7-10 d recovery period. In other experiments, rats were
also implanted with intravenous catheters 7-10 d after cannula implan-
tation into the NAcc shell. These were made of SILASTIC tubing (Dow
Corning), inserted into the right internal jugular vein, and positioned to
exit slightly caudal to the midscapular region. Self-administration testing
began 5-7 d later. Catheters were flushed daily with a sterile 0.9% saline
solution containing 30 IU/ml heparin and 250 mg/ml ampicillin to pro-
mote patency (Pierre and Vezina, 1997). All surgical procedures were
conducted using aseptic techniques according to an approved Institu-
tional Animal Care and Use Committee protocol.

Design and procedure. Rats in different groups were infused intracra-
nially with herpes simplex virus (HSV) vectors to transiently overex-
press «CaMKII or exposed to a sensitizing regimen of amphetamine
injections. Starting 4 d later, HSV-infected rats were tested for their
locomotor response to systemic amphetamine or NAcc AMPA. Other
rats were tested for their self-administration of amphetamine before
and after HSV infection. Rats in additional groups were killed soon (4
or 8 d) or long (2-3 weeks) after HSV infection or exposure to am-
phetamine, and brain sections harvested for assessment of protein
levels using Western immunoblotting or visualization of infection
patterns using immunohistochemistry.

Exposure to amphetamine. Rats were administered five injections of
amphetamine (1.5 mg/kg, i.p.) or saline (1.0 ml/kg, i.p.), one injection
every third day. In all cases, rats were transported in their housing cages
to a distinctive experimental room, administered their respective injec-
tions, placed back in their housing cages, and returned to the colony
room 2 h later. This regimen of amphetamine injections is well estab-
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lished to sensitize drug-induced locomotion, NAcc DA overflow, and
drug self-administration (Vezina, 2004).

Viral-mediated gene transfer. Replication-deficient viral vectors were
constructed and packaged as described by Neve et al. (1997). Briefly,
cDNA was inserted into the HSV amplicon HSV-PrpUC, packaged with
the replication-deficient IE2 deletion mutant 54/1.2 helper virus derived
from the KOS strain, and resuspended in 10% sucrose. The average titer
of the resulting viral stocks was 4.0 X 107 infectious units/ml. Transgene
expression was regulated by HSV IE 4/5 (see Fig. 2A). These HSV
vectors were used because they produce a transient increase in trans-
gene expression that is maximal at 3—4 d and dissipates 7-8 d after
infection (Carlezon et al., 1997; Neve et al., 1997).

Of the four different identified CaMKII subunits, the & and 3 subunits
are the principal isoforms found in brain, in which they form dodecam-
eric holoenzymes (Bennett et al., 1983; Miller and Kennedy, 1986). Be-
cause « is the predominant isoform in rat forebrain (the o/ ratio is
~3:1) (Bennett et al., 1983; Kennedy et al., 1983), the a«CaMKII subunit
was studied in the present experiments. The following constructs were
used: aCaMKII (wild type), T286D aCaMKII (a constitutively active
form created by replacing the threonine residue with aspartate),
aCaMKII-GFP (either fusion or separate DNA), green fluorescent pro-
tein (GFP), and LacZ. The separate DNA aCaMKII-GFP construct and
aCaMKII were used interchangeably in the behavioral and protein ex-
periments as they produced similar effects. Likewise, LacZ and GFP were
used interchangeably as controls with the 10% sucrose vehicle in the
behavioral and protein experiments as they were found to be without
detectable effects.

After recovery from surgery, rats were transferred to a biosafety level 2
facility in which they were administered bilateral intracranial microin-
jections of sucrose vehicle or their respective viral vectors. Microinjec-
tions were made in freely moving rats in a volume of 2.0 ul/side at a rate
of 0.1 ul/30 s through 28 gauge cannulae extending 4 mm beyond the
guide cannulae tips. Microinjectors were connected via polyethylene
tubing (PE20) to Hamilton syringes and left in place for 5 min after the
injection to allow for diffusion. Rats were returned to the colony room
24 h later. All procedures were conducted according to an approved
Institutional Biosafety Committee protocol.

Transient a«CaMKII overexpression and locomotor responding to am-
phetamine. Four experiments were conducted to assess the effect of
aCaMKII overexpression in different brain regions on locomotor re-
sponding to amphetamine. In all cases, rats were randomly assigned to
one of two groups (infection with an «CaMKII construct or control) and
tested for their locomotor response to a threshold dose of amphetamine
(0.5 mg/kg, i.p.) 4, 8, 12, 16, 20, 27, and 34 d after infection. This permit-
ted the establishment of a detailed time course of locomotor responding
relative to the transient viral overexpression pattern.

In one experiment, «CaMKII was overexpressed bilaterally in the
NAcc shell. In another, T286D aCaMKII, a constitutively active form of
aCaMKII, was overexpressed in the NAcc shell. This experiment tested
whether the aCaMKII overexpressed must be in the autophosphorylated
state to produce an effect. To confirm the subregion specificity of the
effects to the NAcc shell, an additional experiment tested the effect of
aCaMKII overexpression in the NAcc core as well as sites adjacent to the
NAcc. A fourth experiment tested the effect of «CaMKII overexpression
in the VTA to directly assess the impact of DA neuron infection.

Locomotor activity was measured by using a bank of 12 activity boxes.
Each box (22 X 43 X 33 cm) was constructed of opaque plastic (rear and
two side walls), a Plexiglas front-hinged door, and a tubular stainless-
steel ceiling and floor. Two photocells, positioned 2.5 cm above the floor
and spaced evenly along the longitudinal axis of each box, were used to
quantify locomotion. Separate interruptions of photocell beams were
detected and recorded via an electrical interface by a computer situated in
an adjacent room using locally developed software. On each test day,
locomotor activity was measured 1 h before and 2 h after the amphet-
amine challenge injection.

Transient aCaMKII overexpression and locomotor responding to NAcc
shell AMPA. Rats were randomly assigned to one of two groups (infection
with an aCaMKII construct or control) and tested for their locomotor
response to NAcc shell AMPA (0.4 nmol/0.5 ul per side) either soon (4 d)
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or long (2-3 weeks) after infection. Microinjections were made in freely
moving rats at a rate of 0.5 ul/30 s using the same guide cannulae used to
deliver the viral vectors to the NAcc shell. Microinjectors were left in
place for 1 min after the injection to allow for diffusion. Locomotor
activity was measured 1 h before and 2 h after the challenge injection.

Transient «CaMKII overexpression in NAcc shell and amphetamine self-
administration. After recovery from surgery (3-5 d for intravenous
catheters; ~2 weeks for intracranial cannulae), rats were trained to self-
administer amphetamine on fixed-ratio (FR) schedules of reinforcement
and then tested under a progressive ratio (PR) schedule for 4 d. The
following day, rats were transferred to a biosafety level 2 facility in which
they were randomly assigned to one of two groups (NAcc shell infection
with a«CaMKII or control). On return of the rats to the colony room the
following day, PR self-administration testing resumed and continued for
up to 2 weeks after infection.

Sixteen test chambers (Coulbourn Instruments) (31 X 25 X 30 ¢cm)
were used. Each was equipped with a retractable lever (6 cm above the
floor), a stimulus light (13 cm above the lever), a counterbalanced arm, a
steel-spring tether, and an infusion pump (model PHM-100; MED As-
sociates) that allowed free movement of the animal in the chamber and
drug delivery on depression of the lever. Lever presses and drug infusions
were recorded and controlled via an electrical interface by a computer
using MED Associates software. Amphetamine self-administration ses-
sions were of a maximum 3 h duration and conducted daily as described
by Vezina et al. (2002). Briefly, reinforced lever presses delivered an
infusion of amphetamine (200 pg/kg/infusion) through the intravenous
catheter. During training under the FR schedules, an experimenter-
delivered amphetamine priming infusion was given at the beginning of
each session, and rats were required to then self-administer 10 infusions
of amphetamine in 3 h first on an FR1 and then on an FR2 schedule of
reinforcement. Animals that did not satisfy each of the FR1 and FR2
criteria within 5 d were excluded from the study. A total of 15 rats were
thus excluded. Days to satisfaction of the training criteria under each FR
schedule were recorded. Successful rats were subsequently tested under a
PR schedule in which the number of responses required to obtain each
successive infusion of amphetamine was determined by ROUND [5 X
EXP(0.25 X infusion number) — 5] to produce the following sequence of
required lever presses: 1,3,6,9, 12,17, 24, 32,42, 56, 73,95, 124, 161, 208,
etc. (Richardson and Roberts, 1996). The daily PR test sessions were
terminated after 3 h or after 1 h elapsed without a drug infusion. Priming
amphetamine infusions were not given on these sessions. The number of
infusions obtained in each PR session was recorded. Catheter viability
was assessed throughout testing. A total of 15 rats were excluded because
of catheters that lost patency or developed leaks.

Amphetamine exposure and NAcc signaling. To determine the effect of
amphetamine exposure on aCaMKII and paCaMKII protein levels as
well as AMPA receptor signaling in the NAcc, rats were killed soon (4 d)
or long (2-3 weeks) after the last exposure injection of amphetamine or
saline, and their brains were rapidly removed for immunoblotting.
aCaMKII, paCaMKII (Thr286), GluR1, pGluR1 (Ser831), pGluR1
(Ser845), and GluR2 levels were assessed in both the NAcc core and shell.

Transient «CaMKII overexpression and signaling in NAcc shell. To de-
termine the effect of transient «CaMKII overexpression on signaling in
NAcc shell, rats were killed soon (4 or 8 d) or long (2-3 weeks) after NAcc
shell infection, and their brains were rapidly removed for immunoblot-
ting. «CaMKII and paCaMKII (Thr286) levels were determined to verify
the amount and time course of viral-mediated overexpression. GluR1,
pGluR1 (Ser831), pGluR1 (Ser845), and GluR2 levels were assessed to
identify aCaMKII-mediated alterations in AMPA receptor signaling
both when aCaMKII protein levels were elevated and long after they had
returned to baseline. As «CaMKII influences CREB activity, CREB activ-
ity indirectly influences cdk5 levels, and both CREB and cdk5 signaling
regulate behavioral responding to drugs (Bibb et al., 2001; Benavides and
Bibb, 2004; Carlezon et al., 2005), pCREB (Ser142; CaMKII site), pPCREB
(Ser133; stimulatory site), total CREB, and cdk5 levels were also assessed.

Immunoblotting. Brains were removed rapidly and flash-frozen on dry
ice. For amphetamine-exposed rats, sections (1 mm thick) were obtained
with a brain matrix and a skewed donut punch approach used to produce
punches of the NAcc core (1-mm-diameter punch) and the medial and
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ventral NAcc shell (2 mm crescent punch). For rats infected in the NAcc
shell, sections (1 mm thick) were obtained with a brain matrix, and
2-mm-diameter punches were taken bilaterally around the injection can-
nula tips. Tissue punches were frozen on dry ice and processed as de-
scribed by Carlezon and Neve (2003) and Jiao et al. (2007). Briefly, tissue
was homogenized in RIPA buffer containing protease and phosphatase
inhibitor cocktails (1 and 2; Sigma-Aldrich), and protein levels were
measured by the Bradford method. A total of 20 ug of protein was loaded
per lane and separated by 10% SDS-PAGE. After transfer, membranes
were incubated in blocking solution (5% milk in Tris-buffered saline
containing 0.1% Tween) (TBS-T) sequentially containing no antibody,
primary antibodies for «CaMKII (1:1000; Millipore), paCaMKII
(Thr286; 1:1000; Millipore), GluR1 (1:1000; Millipore), pGluR1 (Ser831;
1:500; Millipore), pGluR1 (Ser845; 1:500; Millipore), GluR2 (1:1000;
Millipore), CREB (1:1000; Cell Signaling Technologies), pCREB (Ser142;
1:500; generously provided by Dr. Michael Greenberg, Harvard Univer-
sity, Boston, MA) (Kornhauser et al.,, 2002), pCREB (Ser133; 1:1000;
Millipore), or cdk5 (1:1000; Santa Cruz), and a HRP-conjugated anti-
mouse or rabbit IgG (Jackson ImmunoResearch Laboratories). Bands
were visualized using the ECL detection system (ECL Advanced; GE
Healthcare). Membranes were then stripped and probed with a mouse-
derived antibody for B-actin as a loading control (1:2000; Sigma-
Aldrich), incubated in a HRP-conjugated anti-mouse IgG (Jackson
ImmunoResearch Laboratories), and developed as above.

Immunofluorescence. Separate rats were used in immunohistochemis-
try studies to visualize the pattern of infection and determine the extent
of transport of the virus, if any. Four days after infection in the NAcc shell
with the fusion «CaMKII-GFP construct to allow direct assessment of
aCaMKII localization, brains were harvested, flash-frozen in chilled
isopentane, and stored at —80°C. To detect GFP fluorescence, 20 wm
sections were prepared, mounted in ProGold antifade mountant (In-
vitrogen), and analyzed using a confocal fluorescence microscope with
an argon—krypton laser and appropriate performance filters. The distri-
bution pattern of GFP-positive cells around the injection cannula tips
was assessed. Entire brains (from midbrain to prefrontal cortex) were
also examined for GFP-positive cells to determine the extent of antero-
grade and retrograde transport of the virus from the NAcc shell micro-
injection site. The nonfluorescent control vector HSV-LacZ that encodes
B-galactosidase was also used to visualize infection patterns around in-
jection cannula tips. Brains were harvested, and tissue was processed as
described by Carlezon and Neve (2003). To detect B-galactosidase, a 0.2
mg/ml 5-bromo-4-chloro-3-indolyl -p-galactopyranoside solution was
used (Thermo Fisher Scientific).

Drugs. S(+)-Amphetamine sulfate and AMPA were obtained from
Sigma-Aldrich. Drugs were dissolved in sterile saline and dH,O for in-
traperitoneal and intracranial routes of administration, respectively.
Doses refer to the weight of the salt.

Histology. After the completion of the behavioral experiments, rats
were deeply anesthetized and perfused transcardially with 0.9% saline
and 10% formalin. Brains were removed and stored in the formalin
solution for at least 24 h. The 40 wm sections were then prepared,
mounted on gelatin-coated slides, and stained with cresyl violet to iden-
tify rats with injection cannula tips located bilaterally in the NAcc shell,
NAcc core, sites medial, lateral or rostral to the NAcc, or in the VTA. Only
rats with both cannula tips in the targeted region were retained for sta-
tistical analyses and their number subsequently indicated as n/group.
The number of rats that failed to meet this criterion after NAcc shell
infection was as follows: amphetamine-induced locomotion: «CaMKII,
0; control, 2; T286D aCaMKII, 2; control, 3; NAcc AMPA-induced lo-
comotion: «CaMKII, 7; control, 2; amphetamine self-administration:
«aCaMKI], 3; control, 2. Four «CaMKII and six control rats failed to meet
this criterion after VTA infection.

Data analyses. Locomotor test data were analyzed with between-
within ANOVA with group (aCaMKII or control) as the between factor
and days (7) or time (6 and 12) as the within factor. Post hoc comparisons
after ANOVA were made using the Scheffé test. In the self-administration
experiment, five rats experienced failed catheters at different points over
the course of PR self-administration testing, precluding analysis by
repeated-measures ANOVA of the entire 14 d after infection. Thus,
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independent-samples ¢ tests were conducted
on the number of infusions obtained by

4 Days Post-Amphetamine
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orsaline (SAL) and killed 4 d or 23 weeks later. Protein levels obtained in the NAcc shell or core are shown as group mean (+ SEM)
percentage change from controls with representative immunoblots. In the NAcc shell, amphetamine exposure produced a tran-
sientincrease in aeCaMKIl (A, B) and pGluR1 (Ser845) (E, F). Long-lasting increases in pGIuRT (Ser831) were observed in this site
(C, D). No significant effects were detected in the NAcc core. *p << 0.05, **p << 0.01, AMPH-exposed (black bars) versus SAL-

exposed (cross-hatched bars). n = 4—8/group.

Exposure to amphetamine increases

pGluR1 in NAcc shell

Because aCaMKII regulates AMPA receptor signaling and the latter
contributes to the expression of sensitization (Vanderschuren and
Kalivas, 2000; Vezina and Suto, 2003), the NAcc was examined
for alterations in AMPA receptor protein levels soon and long
after exposure to amphetamine. Both the GluR1 aCaMKII
(Ser831) and protein kinase A (PKA) (Ser845) sites were exam-
ined as increased phosphorylation at either site enhances AMPA
receptor transmission (Song and Huganir, 2002). Under the
present conditions, no changes were detected in either region at
either withdrawal time in total protein levels of either GluR1 or
GluR2 AMPA receptor subunit. However, consistent with the
increase in «CaMKII 4 d after exposure to amphetamine, pGluR1
(Ser831) was significantly increased in the NAcc shell at this time
relative to saline-exposed controls (f4, = 2.51; p < 0.05) (Fig.
1C). Significant increases in pGluR1 (Ser845) levels were also
observed at this time in the NAcc shell (¢, = 3.15; p < 0.01) (Fig.
1E). Both effects are consistent with a role for AMPA receptor-
mediated glutamatergic transmission in the expression of sensi-
tization by cocaine at early withdrawal times (Pierce et al.,

1996b). Levels of pGluR1 (Ser831), but not pGluR1 (Ser845),
remained significantly elevated in the NAcc shell 2-3 weeks after
amphetamine exposure (f;, = 2.28; p < 0.05) (Fig. 1D, F), again
consistent with a continued role for glutamatergic transmission
in the expression of sensitization at long withdrawal periods
(Kim et al., 2005). No significant group differences were detected
at either time point in the NAcc core.

Viral-mediated gene transfer leads to transient localized
overexpression of the transgene

Consistent with previous findings obtained with the HSV vector
system (Carlezon et al., 1997; Neve et al., 1997), microinjections
of HSV-aCaMKII into the NAcc shell led to a transient and lo-
calized increase in transgene expression. Protein immunoblot
analyses revealed a significant increase in «CaMKII protein levels
in the NAcc shell at day 4 (¢, = 2.66; p < 0.05) but no longer at
day 8 (t4) = 0.05; ns) or 2-3 weeks (¢4, = 1.47; ns) after infection
(Fig. 2A). A small but significant increase in paCaMKII was ob-
served at day 4 after infection (t5 = 2.05; p < 0.05), a potential
consequence of the substantial «CaMKII overexpression at this
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Viral-mediated transient overexpression of c«CaMKIl in the NAcc shell. A, Western blots of aCaMKIl obtained 4 d, 8 d, and 23 weeks postinfection (P1). «CaMKIl was maximally and

only elevated 4 d PI. Protein levels are expressed as group mean (+ SEM) percentage change from controls (n = 3—6/group). *p << 0.05, ceCaMKII (black bars) versus control (cross-hatched bars).
The schema illustrates the components of the HSV amplicon used to overexpress c«CaMKII. B, Photomicrographs of the NAcc obtained 4 d after infection with HSV-aCaMKII-GFP (top) or HSV-LacZ
(bottom) illustrating GFP- or 3-galactosidase-positive neurons in close proximity to the injection cannula tips (arrows).

time. No significant increase was observed 2—3 weeks after infec-
tion (data not shown).

Immunohistological examination of brain sections 4 d after
infection with the fusion aCaMKII-GFP construct revealed
transgene expressing cells in close proximity to the site of injec-
tion in the NAcc, a pattern also observed with the localized over-
expression of B-galactosidase after microinjection of the control
virus HSV-LacZ (Fig. 2 B). CaMKII-GFP-expressing cells exhib-
ited large dendritic processes consistent with the morphology of
medium spiny neurons in the NAcc and the neuron-preferring
characteristics of HSV (Carlezon et al., 2000). Whole-brain im-
munohistochemical analyses performed in seven rats revealed
that infection was limited to these neurons in the NAcc and that
neurons in nuclei projecting to this site were mostly spared. Only
one GFP-positive cell outside the NAcc was located in the VTA,
indicating little to no retrograde transport of the virus. As previ-
ously observed with this HSV vector (Neve et al., 1997), no sig-
nificant toxicity was observed.

Transient «CaMKII overexpression in the NAcc shell
enhances amphetamine-induced locomotion

The transient protein overexpression afforded by the HSV vector
system was used to mimic in intrinsic NAcc cells the transient
increase in «CaMKII observed in the NAcc shell after exposure to
amphetamine. On day 4 after infection, when aCaMKII protein
levels were elevated, HSV-aCaMKII-infected rats showed an en-
hanced locomotor response to amphetamine compared with
control rats. Remarkably, HSV-aCaMKII-infected rats contin-
ued to show enhanced responding up to 34 d after infection, long
after «CaMKII protein levels had returned to baseline (Fig. 3).
The ANOVA conducted on the group mean 2 h total locomotor
counts obtained after amphetamine on the 7 test days revealed an

overall group effect (F(, 5, = 25.78; p < 0.001). Significant group
differences were confirmed on each test day by post hoc Schefté
comparisons ( p < 0.05-0.001). No significant effect of days or
group by days interaction were detected. As shown in the control
rats, the threshold dose of amphetamine used (0.5 mg/kg, i.p.)
does not lead to sensitization with repeated injection. These find-
ings indicate that «CaMKII acts in intrinsic NAcc shell neurons
to enhance amphetamine-induced locomotor activity in at least
two ways: directly when aCaMKII levels are elevated and via
postphosphorylation cascades that lead to long-term neuroadap-
tations in this site. Transient overexpression of a«CaMKII at no
time increased locomotor responding significantly in the absence
of amphetamine. The ANOVA conducted on the group mean 1 h
total locomotor counts obtained before the amphetamine chal-
lenge injection on the 7 test days revealed no significant group
effect (F(; ;5 = 0.94; ns) and no significant group by days inter-
action (F4 99y = 1.18; ns).

Similar findings were obtained when the constitutively active
construct T286D aCaMKII was overexpressed in the NAcc shell
of separate rats (Table 1), indicating that the autophosphoryla-
tion state of the overexpressed «CaMKII is not a determining
factor for enhancing amphetamine-induced locomotion. The ef-
fects of aCaMKII overexpression were also specific to the NAcc
shell and attributable to infection of intrinsic neurons in this site
as overexpressing «CaMKII in the NAcc core, regions adjacent to
the NAcc (Table 2), or in the VTA (Table 3) did not increase
amphetamine-induced locomotion.

Transient «CaMKII overexpression enhances locomotor
responding to NAcc shell AMPA

To begin investigating the neuroadaptations underlying the
enhanced amphetamine-induced locomotion observed both
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soon and long after infection with HSV- A
aCaMKII, locomotor responding to NAcc
shell AMPA (0.4 nmol/0.5 ul per side) was
assessed 4 d and 2-3 weeks after tran-
siently overexpressing aCaMKII in this
site. Compared with controls, NAcc
shell AMPA increased locomotion to a
significantly greater extent both 4 d and
2-3 weeks after infection (Fig. 4). The
ANOVA conducted on these data re-
vealed an overall effect of group (F(, ;) =
4.82; p < 0.05) at day 4 and an overall
group effect (F, 1 = 7.88; p < 0.05), a
significant effect of time (F(,, ;95) = 9.94;
p < 0.001), and a significant group by
time interaction (F(;, 05y = 2.58; p <
0.01) at 2—3 weeks. These results indicate B
that transiently overexpressing aCaMKII
in the NAcc leads to functional upregu-
lation of AMPA receptors both when
protein levels are increased and long af-
ter protein levels have returned to base-
line. Again, transient overexpression of
aCaMKII did not significantly increase
locomotor responding in the period be-
fore the AMPA challenge either 4 d or
2-3 weeks after infection. The ANOVA
conducted on these data revealed only
significant effects of time.
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days (t,4y = 0.12; ns). However, by day 4 ‘2 4
after infection, when aCaMKII protein
levels were significantly elevated, HSV-
aCaMKIl-infected rats began working
more and thus obtained significantly
more amphetamine infusions compared
with controls (¢, = 2.57; p < 0.05). As
observed with amphetamine-induced lo-
comotion, enhanced self-administration
was maintained for an additional 10 d of
testing, although aCaMKII rats exhibited
some variability during this period. Analysis of the number of
infusions obtained averaged over the days completed from day 4
after infection showed that aCaMKII rats nonetheless self-
administered significantly more amphetamine relative to control
rats (t,4) = 2.03; p < 0.05). These results indicate that transient
overexpression of «CaMKII in the NAcc shell leads to a long-
lasting enhancement in amphetamine self-administration that
begins 4 d after infection, when protein levels are maximally ele-
vated, and is maintained long after «CaMXKII levels have returned
to baseline.

Figure 3.

60 20 40 60 80 100 120

Time (min)

Transient a«CaMKII overexpression in the NAcc shell enhances locomotor responding to amphetamine. A, Data are
shown as group mean (+SEM) 2 h total locomotor counts observed after the amphetamine injections on the different test days
postinfection (n/group = 7-10). *p << 0.05; **p << 0.01; ***p < 0.001, significantly different from controls at specified day.
B, Time course of the enhanced locomotor response to amphetamine observed 4 and 34 d after infection. Data are shown as group
mean locomotor counts (==SEM) before and after the amphetamine injection (arrows at abscissas). €, Location of the injection
cannula tips for rats included in the data analyses. The symbols refer to group affiliation (O, controls; @, aCaMKI). The line
drawings are from the work by Paxinos and Watson (1997). The numbers to the right indicate millimeters from bregma.

Transient «CaMKII overexpression increases pGluR1 in
NAcc shell

Compared with controls, «CaMKII overexpression in the NAcc
shell significantly increased pGluR1 (Ser831) levels 4 d after in-
fection (.5, = 2.65; p < 0.05), when aCaMKII protein levels were
elevated, as well as 2—3 weeks after infection (¢,,) = 2.61;p <
0.05), long after «CaMKII protein levels had returned to baseline
(Fig. 6A). Thus, as with amphetamine exposure, transient
aCaMKII overexpression in the NAcc shell produced a long-
lasting increase in pGluR1 (Ser831) in this site that could enhance
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Table 1. Transient overexpression of T286D a:CaMKIl in the NAcc shell enhances amphetamine-induced locomotion

Group Day4PI Day 8 PI Day 12 PI Day 16 PI Day 20 PI Day 27 PI Day 34 PI
NAcc shell T286D (n = 8) 1640 (+97) 1760 (=116) 1673 (+137) 1656 (+86) 1605 (97) 1608 (*155) 1505 (+101)
NAcc shell control (n = 8) 1321 (%96) 1343 (=99) 1186 (+=116) 1371 (%78) 1277 (=120 1237 (+122) 1100 (%=101)

Data are shown as group mean (== SEM) 2 h total locomotor counts observed after amphetamine (0.5 mg/kg, i.p.) on the different test days postinfection (PI) in HSV-T286D c:CaMKIl-infected rats and controls. The ANOVA revealed an overall

group effect (F; 15 = 11.57; p < 0.005).
*p < 0.05,*"p < 0.01, significant group difference revealed by post hoc Scheffé comparisons.

Table 2. Transient overexpression of a:CaMKII in the NAcc core or regions adjacent to the NAcc does not enhance amphetamine-induced locomotion

Group Day 4Pl Day 8 PI Day 12PI Day 16 PI Day 20 PI Day 27 Pl Day 34 PI
NAcc core ceCaMKIl (n = 6) 1396 (*98) 1136 (£47) 1149 (£63) 1268 (*104) 1220 (£97) 1401 (£80) 1516 (=141)
NAcc core control (n = 5) 1319 (%£181) 1130 (£132) 1048 (£77) 1356 (=154) 1281 (£124) 1359 (£148) 1380 (£121)
Adjacent NAcc a:CaMKIl (n = 5) 1077 (£72) 1284 (£77) 1105 (£124) 1117 (£47) 1180 (£113) 1136 (=89) 121 (*=94)

Data are shown as described in Table 1. The ANOVA revealed only a significant effect of time. Rats in the Adjacent NAcc acCaMKII group received infusions of HSV-ceCaMKIl in sites medial, lateral, or rostral to the NAcc. P1, Postinfection.

Table 3. Transient overexpression of T286D a:CaMKll in the VTA does not enhance amphetamine-induced locomotion

Group Day 4Pl Day 8 PI Day 12PI Day 16 PI Day 20 PI Day 27 PI Day 34 PI
VTAT286D (n = 7) 1548 (£282) 1557 (£239) 1514 (£163) 1419 (£186) 1557 (£208) 1506 (==246) 1396 (£259)
VTA control (n = 5) 1549 (+314) 1756 (£256) 1698 (£145) 1531(227) 1653 (£162) 1599 (£177) 1531 (189)

Data are shown as described in Table 1. The ANOVA revealed no significant effects. Similar findings were obtained with a smaller group of rats infected with HSV-a:CaMKII. P1, Postinfection.

behavioral output by increasing AMPA receptor conductance
(Song and Huganir, 2002). No significant changes were observed
in phosphorylation at the GluR1 (Ser845) PKA site or in total
GluR1 or GluR2 levels either soon or long after infection.

Transient «CaMKII overexpression increases pCREB
(Ser142) in NAcc shell

Levels of pCREB (Ser142; an aCaMKII inhibition site) (Wu and
McMurray, 2001) were increased 4 d after infection when
aCaMKII levels were elevated (£, ;, = 3.26; p < 0.01) but not 2-3
weeks later (f,,, = 1.55; ns). No significant changes were ob-
served at either time point in pCREB (Ser133) or in total CREB
and cdk5 levels (data not shown). Thus, the transient increase in
aCaMKII appears to have led to a corresponding transient inhi-
bition of CREB that could have enhanced behavioral responding
to amphetamine soon after infection as suggested by previous
reports (Carlezon et al., 1998; Pliakas et al., 2001). However, no
long-lasting changes in these signaling pathways were detected
after transient «CaMKII overexpression.

Discussion

Exposing rats to a sensitizing regimen of amphetamine injec-
tions transiently increased aCaMKII levels in the NAcc shell.
Using a transient protein overexpression HSV vector system,
we show that this increase in «CaMKII produces long-lasting
enhancements in amphetamine-induced locomotion and self-
administration manifested when aCaMKII levels are elevated
and persisting long after they have returned to baseline. These
findings demonstrate that «CaMKII in the NAcc shell can en-
hance behavioral responding to amphetamine in at least two dif-
ferent ways: directly when kinase levels are elevated and via
postphosphorylation cascades that lead to long-lasting neuroad-
aptations in the NAcc. These findings provide insight into the
different ways NAcc aCaMKII can contribute to the expression
of psychostimulant sensitization. Research on the role of CaMKII
has focused on its regulation of DA release from presynaptic DA
terminals in the NAcc and striatum (Iwata et al., 1997; Pierce and
Kalivas, 1997; Pierce et al., 1998; Kantor et al., 1999). The present
experiments used HSV vectors to focus on the role played by
aCaMKII in intrinsic NAcc shell neurons. Notably, transgene-

expressing cells exhibiting the morphology of medium spiny
neurons were restricted to the site of injection in the NAcc
shell. Rats infected in the NAcc core, forebrain sites outside
the NAcc, or the VTA did not show enhanced locomotor re-
sponding to amphetamine. These findings indicate that the
enhanced amphetamine-induced locomotion and self-admini-
stration observed in infected rats was produced by transiently
overexpressing «CaMKII in intrinsic NAcc shell neurons. The
resulting long-lasting neuroadaptations in these neurons could
contribute to the long-lasting maintenance of psychostimulant
sensitization. The localization of the observed effects to the NAcc
shell is consistent with the processing by neurons in this site of the
psychomotor activating and incentive motivational properties of
psychostimulant drugs (Everitt and Robbins, 2005). Indeed, the
enhanced work output aimed at self-administering amphetamine
observed in HSV-aCaMKII-infected rats supports a critical role
for these neurons in mediating incentive sensitization, whether it
is expressed as enhanced locomotion or enhanced drug intake
(Robinson and Berridge, 1993).

Increased paCaMKII levels were not observed after amphet-
amine exposure, and similar effects were produced by a«CaMKII
and T286D aCaMKII overexpression, suggesting that the auto-
phosphorylation state of «CaMKII is not a determining factor for
enhanced behavioral responding to amphetamine. Alternatively,
aCaMKII phosphorylates a wide array of downstream targets and
could modulate behavioral responding to amphetamine by alter-
ing a number of postreceptor pathways in NAcc neurons. For
example, CaMKII can modulate D; DA receptors to diminish
their ability to inhibit cocaine-induced locomotion (Liu et al.,
2009). CaMKII also can inhibit CREB activity (Wu and McMurray,
2001), an effect known to increase cocaine reward (Carlezon et
al., 1998; Pliakas et al., 2001). Overexpressing CaMKII could thus
increase behavioral responding to amphetamine soon after infec-
tion by inhibiting CREB activity, a possibility supported by the
increased pCREB (Ser142) levels observed in aCaMKII-infected
rats in the present experiments. This effect required increased
aCaMKII levels as it was not observed long after infection. In-
deed, no change in pCREB (Ser133), total CREB, or cdk5 levels
was observed either soon or long after infection, making it un-
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likely that long-term changes in CREB
production or phosphorylation could ac-
count for the long-lasting increases in be-
havioral responding to amphetamine
observed.

CaMKII also regulates AMPA receptor

function in a number of ways (Lisman et 3004
al., 2002), and AMPA receptor-mediated 250 |
glutamate transmission plays an impor- @

tant role in the expression of sensitization % 200 |
(Wolf, 1998; Vanderschuren and Kalivas, %_)
2000; Vezina and Suto, 2003). AMPA re- % 150 1
ceptor antagonists block the expression of € 100 |
sensitization by amphetamine (Karler et §

al,, 1991; Tzschentke and Schmidt, 1997; = 4 |
Mead and Stephens, 1998; cf. Li et al.,
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1997) and cocaine (Pierce et al., 1996a;
Jackson et al., 1998; Bell et al., 2000; cf.
Karler et al., 1994). In addition, NAcc
AMPA produces enhanced locomotion
and reinstatement of drug seeking in
psychostimulant-sensitized rats (Pierce et
al,, 1996a; Suto et al., 2004). Interestingly,
in the last two studies, AMPA was effective
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with the present findings that different 250 |
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sion is not observed in amphetamine-
sensitized rats (Nelson et al., 2009), other
changes in AMPA receptor function can
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mediate the known contribution of glu-
tamate transmission to the expression of
sensitization by amphetamine (Karler et al.,

/ O  Control
mm /@ HSV-aCaMKIl

1991; Tzschentke and Schmidt, 1997; Kim
et al,, 2005). In the present experiments,
overexpressing aCaMKII in the NAcc
shell enhanced locomotor responding to
NAcc AMPA and increased pGluR1
(Ser831) levels at both early and late time
points after infection. A similar increase in pGluR1 (Ser831) lev-
els was observed soon and long after exposure to amphetamine.
Phosphorylation of GluR1 (Ser831) increases channel conduc-
tance in GluR2-lacking AMPA receptors (Oh and Derkach,
2005). These receptors are expressed at relatively low levels in the
NAcc (Boudreau et al., 2007), although their contribution to syn-
aptic transmission in drug-naive animals remains unclear.
Experiments assessing AMPA receptor current—voltage relation-
ships and the effect of selectively blocking these receptors have
revealed a small contribution to synaptic transmission in the
NAcc shell of adult (Campioni et al., 2009) but not young mice
(Kourrich et al., 2007; Mameli et al., 2009) and none in the NAcc
core of adult rats (Conrad et al., 2008). However, after exposure
to cocaine, levels of GluR2-lacking AMPA receptors are increased
in the NAcc (Conrad et al., 2008) as is their contribution to syn-
aptic transmission in the NAcc shell (Mameli et al., 2009; cf.
Kourrich et al., 2007) and core (Conrad et al., 2008). Thus, the

Figure 4.

Transient cuCaMKIl overexpression in the NAcc shell enhances locomotor responding to NAcc AMPA. Data are shown
as group mean locomotor counts (==SEM) before and after NAcc AMPA 4 d (A) or 2-3 weeks after infection (B). *p < 0.05,
HSV-a:CaMKIl versus control. n/group = 7—13. The insets show group mean (+SEM) 2 h total locomotor counts obtained after
AMPA for each day. €, Location of the injection cannula tips for rats included in the data analyses illustrated as in Figure 3.

enhanced locomotor responding to NAcc AMPA and amphet-
amine observed here may have resulted from increased conduc-
tance in GluR2-lacking AMPA receptors caused by increased
phosphorylation of the Ser831 residue by aCaMKII. Together,
these findings indicate that exposure to amphetamine and viral-
mediated overexpression of aCaMKII produce similar neuroad-
aptations in the NAcc shell that may contribute to enhanced
behavioral responding to the drug. A small but significant in-
crease in GluR1 protein was reported selectively in the NAcc shell
after exposure to high concentrations of amphetamine in the rat
(Nelson et al., 2009). As this increase was not accompanied by a
change in GluR2 protein, such a regimen may also lead to an
increase in GluR2-lacking AMPA receptors in this site. Other
evidence indicates that altering specific AMPA receptor subunit
levels in the NAcc may differentially affect behavioral responding
to psychostimulants: elevated GluR1 levels are associated with
aversion, and, conversely, elevated GluR2 levels with enhanced
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Figure 6. Transient cuCaMKIl overexpression increases pGluRT in the NAcc shell. Protein

levels and representative immunoblots obtained 4 d or 23 weeks after infection are shown as
in Figure 1. Long-lasting increases in pGluR1 (Ser831) (A) were observed. Levels of pGluR1
(Ser845) were not significantly increased either soon or long after infection (B). *p << 0.05,
HSV-aCaMKIl (black bars) versus control (cross-hatched bars). n/group = 5-9.
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Transient aCaMKIl overexpression in the NAcc shell enhances amphetamine self-administration. 4, Data are shown
as group mean (+ SEM) number of amphetamine infusions obtained averaged over the first 4 d before infection, on the fourth day
after infection (when protein levels were maximal), and averaged over days 414 after infection. The cumulative number of
presses required to obtain these infusions is also shown. *p << 0.05, significantly different from controls. n/group = 7-9. B, Time
course for amphetamine self-administration on the 4 d before infection (arrow) and the 14 d after infection. Data are shown as
group mean (==SEM) number of amphetamine infusions obtained. C, Location of the injection cannula tips for rats included in the

J. Neurosci., January 20, 2010 - 30(3):939-949 - 947

reward (Kelz et al., 1999; Todtenkopf et
al.,, 2006). In the present experiments,
aCaMKII overexpression did not alter to-
S| tal GluR1 or GluR2 levels, indicating that
; alterations in AMPA receptor subunit
7717 %, levels were not responsible for the en-
hanced locomotion and amphetamine self-
administration observed after NAcc shell
aCaMKII overexpression. It remains to
be determined whether transient viral-
mediated aCaMKII overexpression also
leads to increased cell surface expression of
AMPA receptors.

The postphosphorylation cascades ini-
tiated by aCaMKII that lead to long-
lasting functional upregulation of AMPA
receptors remain to be identified. These
may involve decreases in protein phospha-
tase activity as psychostimulant exposure
has been shown to attenuate calcineurin

/ ‘ levels and activity in striatum (Lin et al.,
) 20 2002; Hu et al., 2005). Because PKC phos-
phorylates GluR1 (Ser831) and PKC
activity is known to contribute to the ex-
pression of psychostimulant sensitization
(Pierce etal., 1998; Gnegy, 2000), it is pos-
sible that amphetamine and CaMKII-
mediated alterations in the activity of this
enzyme also contribute. Overexpression
of aCaMKII in optic tectal neurons also
enhances and stabilizes synaptic strength
(Wu and Cline, 1998), increases AMPA
receptor-mediated transmission (Wu et
al., 1996), and likely contributes to these effects by promoting the
long-lasting enlargement of spines (Matsuzaki et al., 2004). As
large spines are associated with increased AMPA receptor-
mediated currents and have been proposed to act as stable phys-
ical traces of long-term memory (Grutzendler et al., 2002;
Trachtenberg et al., 2002; Kasai et al., 2003; Matsuzaki et al.,
2004), such long-lasting neuroadaptations could have resulted
from transient «CaMKII overexpression and mediated the en-
hanced AMPA- and amphetamine-induced locomotor respond-
ing observed long after infection in the present experiments.

The transient increases in aCaMKII and the long-lasting
aCaMKII-induced neuroadaptations and enhancements in be-
havioral responding observed in the present experiments are
consistent with previous findings showing that repeated exposure
to cocaine transiently increases NAcc a«CaMKII levels (Boudreau
et al., 2009) and that a«CaMKII regulates AMPA receptor signal-
ing in NAcc neurons (Sun et al., 2008). Recent evidence suggests
that CaMKII can be recruited in these neurons by a pathway
initiated by activation of D; DA receptors leading to phosphory-
lation by PKA of L-type calcium channels, an increase in inward
calcium conductance, and activation of CaMKII (Surmeier et al.,
1995; Hernandez-Lopez et al., 1997). Cocaine-induced reinstate-
ment is dependent on this pathway and phosphorylation of
GluR1 (Ser831) in NAcc shell neurons (Anderson et al., 2008)
and D, DA receptor activation PKA-dependently increases
GluR1 cell surface expression in primary NAcc neuron cultures
(Chao et al., 2002; Mangiavacchi and Wolf, 2004; Sun et al.,
2008). Consistent with these findings, the long-lasting functional
upregulation of NAcc shell AMPA receptors observed after tran-
sient viral-mediated «CaMKII overexpression is dependent on
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D, DA receptor and PKA activation (Singer et al., 2007). Consid-
ering that CaMKII also contributes to the sensitization of NAcc
DA release, this enzyme may enhance behavioral output in
amphetamine-exposed rats by acting presynaptically and postsyn-
aptically in the NAcc to produce a sensitizing feedforward loop in-
volving enhanced DA release and functional upregulation of AMPA
receptors, together leading to increasing excitability in medium
spiny neurons (Loweth and Vezina, 2010).
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