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Presynaptic stimulation stochastically recruits transmission according to the release probability (Pr ) of synapses. The majority of central
synapses have relatively low Pr , which includes synapses that are completely quiescent presynaptically. The presence of presynaptically
dormant versus active terminals presumably increases synaptic malleability when conditions demand synaptic strengthening or weak-
ening, perhaps by triggering second messenger signals. However, whether modulator-mediated potentiation involves recruitment of
transmission from dormant terminals remains unclear. Here, by combining electrophysiological and fluorescence imaging approaches,
we uncovered rapid presynaptic awakening by select synaptic modulators. A phorbol ester phorbol 12,13-dibutyrate (PDBu) (a diacyl-
glycerol analog), but not forskolin (an adenylyl cyclase activator) or elevated extracellular calcium, recruited neurotransmission from
presynaptically dormant synapses. This effect was not dependent on protein kinase C activation. After PDBu-induced awakening, these
previously dormant terminals had a synaptic Pr spectrum similar to basally active synapses naive to PDBu treatment. Dormant terminals
did not seem to have properties of nascent or immature synapses, judged by NR2B NMDAR (NMDA receptor) receptor subunit contri-
bution after PDBu-stimulated awakening. Strikingly, synapses rendered inactive by prolonged depolarization, unlike basally dormant
synapses, were not awakened by PDBu. These results suggest that the initial release competence of synapses can dictate the acute response
to second messenger modulation, and the results suggest multiple pathways to presynaptic dormancy and awakening.

Introduction
Presynaptic modulators often act by altering the probability of
transmitter release (Pr), which is heterogeneous across the pop-
ulation of presynaptic terminals of a neuron (Hessler et al., 1993;
Rosenmund et al., 1993; Murthy et al., 1997). Conventionally,
measuring synaptic Pr is accomplished by electrophysiological or
optical assessments. Both approaches are biased toward sampling
the responses of synapses with higher synaptic Pr. Populations of
synapses with extremely low Pr or completely dormant presynap-
tic terminals are more difficult to detect, despite evidence for
such populations (Tong et al., 1996; Murthy et al., 1997; Ma et al.,
1999; Moulder et al., 2004; Slutsky et al., 2004). Whether these
populations are subject to presynaptic modulation by second
messenger systems has only begun to be investigated.

There is good evidence that prolonged activation of cAMP/
PKA (protein kinase A) pathways by forskolin (FSK) awakens
presynaptically dormant synapses (Chavis et al., 1998; Ma et al.,
1999; Moulder et al., 2008). At least in some systems, this presyn-

aptic activation requires protein synthesis (Ma et al., 1999) and
takes several hours. However, rapid activation of cAMP signaling
does not seem to increase functional terminals (Trudeau et al.,
1996), despite apparent enhancement of synaptic output by elec-
trophysiological assessment (Weisskopf et al., 1994; Trudeau et
al., 1996; Lonart et al., 1998). Whether rapid potentiation of
transmission by other modulators involves awakening dormant
synapses is less clear.

Here, we focus on phorbol ester modulation of glutamate
transmission. Classically, phorbol ester stimulation activates pro-
tein kinase C (PKC) pathways (Blumberg, 1991). However, phor-
bol esters also bind to other proteins with diacylglycerol-binding
domains, including the vesicle priming protein Munc13; activa-
tion of Munc13 by phorbol esters promotes vesicle release
through this PKC-independent mechanism (Betz et al., 1998;
Rhee et al., 2002). Both PKC-dependent and PKC-independent
pathways may participate in acute synaptic modulation by phor-
bol esters (Wierda et al., 2007; Lou et al., 2008). Although the
phenomenon of phorbol ester potentiation and its underlying
molecular mechanisms have been intensively studied (Brose and
Rosenmund, 2002; Silinsky and Searl, 2003), it remains unknown
whether phorbol esters potentiate synaptic function in part by
acting on dormant synapses.

Using both electrophysiological and imaging assessments, we
show that phorbol esters activate preexisting presynaptically dor-
mant synapses in addition to enhancing transmitter output prob-
ability at already active synapses. Interestingly, after activation by
phorbol 12,13-dibutyrate (PDBu), presynaptic quiescent syn-
apses appear to have heterogeneous Pr that is similar to basal,
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untreated active synapses. Despite its effects on basally dormant
synapses, PDBu does not reactivate presynaptic terminals ren-
dered inactive by sustained depolarization, suggesting multiple
independent routes to presynaptic dormancy. In summary, our
work increases understanding of the complex effects of phorbol
esters on presynaptic function. Among its rapid effects is a resto-
ration of presynaptic function at terminals that do not normally
contribute to synaptic transmission.

Materials and Methods
Cell cultures. Dissociated hippocampal cultures were prepared as previ-
ously described (Mennerick et al., 1995; Moulder et al., 2007). Briefly,
hippocampi were harvested from Sprague Dawley rats at postnatal days
1–3 and were dissociated enzymatically using 1 mg ml �1 papain, and
then mechanically with a glass pipette. Dissociated neurons were then
plated at 100 cells mm �2 for low-density microisland plating (for elec-
trophysiological recording) or �650 cells mm �2 for high-density mass
cultures (for imaging experiments). For island cultures, culture plates
were precoated with 0.15% agarose and were stamped or sprayed with
type I collagen (0.5 mg ml �1) as the microdot substrate. For mass cul-
tures, collagen was spread uniformly across a 25-mm-diameter glass cov-
erslip. Culture media consisted of Eagle’s minimal essential medium
(Invitrogen) supplemented with 5% heat-inactivated horse serum, 5%
fetal bovine serum, 17 mM glucose, 400 �M glutamine, 50 U ml �1 peni-
cillin, and 50 �g ml �1 streptomycin. To suppress glial proliferation, 6.7
�M cytosine arabinoside was added to the cultures 3– 4 d after plating.
One-half of the culture media was removed and replaced with Neuro-
basal medium plus B27 supplement 1 d after antimitotic addition. Cells
were used for experiments 9 –14 d after plating.

Electrophysiology. Whole-cell recordings were performed with a
MultiClamp 700B amplifier and Digidata 1440A acquisition system (Molec-
ular Devices); data were acquired in Clampex 10 (Molecular Devices). Re-
cordings were conducted in extracellular solution (bath) consisting of the
following (in mM): 138 NaCl, 4 KCl, 2 CaCl2, 0.01 glycine, 10 glucose, and 10
HEPES (Invitrogen), pH 7.25. AMPA-sensitive receptor (AMPAR)-
mediated current was isolated by 50–75 �M D-amino-5-phosphonovaleric
acid (D-APV) (Tocris); NMDA-sensitive receptor (NMDAR)-mediated cur-
rents were isolated by 1–2 �M 2,3-dioxo-6-nitro-1,2,3,4-tetrahydrobenzo-
[f]quinoxaline-7-sulfonamide (NBQX) (Tocris). The 400 �M kynurenate
(for AMPAR current) and 250 �M L-amino-5-phosphonovaleric acid
(L-APV) (for NMDAR current) (Tocris) were added to reduce receptor de-
sensitization and to minimize access resistance errors associated with the
large autaptic currents. During (5S,10R)-(�)-5-methyl-10,11-dihydro-5H-
dibenzo[a,d]cyclohepten-5,10-imine maleate (MK-801) blocking proce-
dures, L-APV was omitted. Nontransmitter-mediated residual current was
evaluated in the presence of 1–2 �M NBQX and 75 �M D-APV and was
subtracted from the evoked EPSCs. Solution was perfused by a gravity-based
multibarrel perfusion system at the rate of 0.2 ml min�1 with �100 ms
complete solution switch. For sucrose-evoked responses, flow rate was in-
creased to 1.6 ml min�1 with �50 ms solution switch. Responses to modu-
lators (PDBu and forskolin) were measured immediately after the 2 min
application. Responses to PDBu remained elevated for at least 2 min after
modulator removal (supplemental Fig. S2, available at www.jneurosci.org as
supplemental material). Electrode pipettes with open tip resistance of 3–5
M�were filled with the internal pipette solution containing the following (in
mM): 140 K-gluconate, 4 NaCl, 0.5 CaCl2, 10 EGTA, and 10 HEPES, pH 7.25.
After the whole-cell mode was established, cells were voltage clamped at �70
mV, and EPSCs were evoked by a brief (1 ms) depolarization to 0 mV. Only
cells with access resistance of �11 M�, membrane resistance of �150 M�,
and leak current of �200 pA were recorded. Series resistance was compen-
sated by 80%. Leak current was subtracted off-line. Signals were sampled at 5
or 10 kHz and filtered at 2 kHz. All recordings were performed at room
temperature.

Pharmacological reagents. Unless otherwise specified, reagents were pur-
chased from Sigma-Aldrich. Stock solutions of MK-801 (10 mM; Tocris),
NMDA (100 mM), 4-aminopyridine (4-AP) (100 mM), and ifenprodil (3
mM) were dissolved in distilled water and diluted to the indicated concen-
trations. Stock solutions of bicuculline (50 mM), forskolin (50 mM), 3-[1-[3-

(dimethylamino)propyl])-5-methoxyindol-3-yl]-4-(1H-indol-3-yl)pyrrole-2,
5-dione (Gö6983) (2 or 20 mM), 3-[3-[4-(1-methylindol-3-yl)-2,5-dioxopy-
rrol-3-yl]indol-1-yl]propylcarbamimidothioate (Ro31-8220) (2 or 20 mM),
and PDBu (1 or 5 mM) were made in DMSO and diluted in working solu-
tions. The final concentration of DMSO was never higher than 0.1%. This
DMSO concentration had no effect on synaptic transmission (supplemental
Fig. S3, available at www.jneurosci.org as supplemental material).

Data analysis. Data were analyzed by Clampfit10 (Molecular Devices)
or by customized Igor Pro procedures (Wavemetrics). Residual
stimulation-associated capacitive and presynaptic currents in the sample
traces in all figures were blanked for clarity; sample traces in Figures 3 and
7 were low-pass filtered with a digital eight-pole Bessel filter at 500 Hz for
clarity. Data fitting was performed by commercially available fitting rou-
tines (Clampfit and Igor Pro). All results are presented as mean � SEM.
Paired or unpaired t test or one-way ANOVA were used for statistic
analysis.

Imaging experiments, image acquisition, and analysis. Mass cultures
prepared under identical conditions and in parallel with autaptic cultures
were used for imaging experiments 11–14 d in vitro. Mass cultures were
used because single synapses could be identified much more reliably in
this culture preparation than in autaptic cultures. Autaptic synapses tend
to nest near the soma and proximal dendrites, and the extensive synaptic
overlap makes sampling individual synapses problematic. Before the ex-
periment, the cultures were rinsed with extracellular solution plus 50 �M

D-APV and 1 �M NBQX. Functional synapses were identified by an FM1-
43FX dye loading-based assay (Betz and Bewick, 1992). This assay takes
advantage of activity-dependent dye loading in presynaptic terminals
whose vesicles actively participate in exo-endocytic cycles. Such presyn-
aptic FM dye loading does not occur in presynaptic terminals that are
functionally silent (Rosenmund et al., 2002; Altrock et al., 2003; Moulder
et al., 2004, 2006).

To label functional synapses, hyperkalemic extracellular solution (45
mM [K �]o, equimolar substitution for Na �, with 25 �M D-APV and 1 �M

NBQX) was used to trigger transmitter release in the presence of FM1-
43FX (10 �M; Invitrogen) for 2 min. This protocol is designed to release
all functionally competent vesicles in the recycling pool, regardless of
vesicular Pr (Pyle et al., 2000; Harata et al., 2001). The FM1-43FX loading
protocol is expected to directly depolarize the membrane potential to
approximately �20 mV (Moulder et al., 2006; Crawford et al., 2009) and
therefore promote transmitter release from terminals, independent of
presynaptic action potentials. After labeling, Advasep-7 (500 �M; CyDex)
was added to remove residual dye for another 10 s. Dye labeled cultures
were rinsed and fixed in 4% paraformaldehyde and 0.2% glutaraldehyde
in PBS for 10 min. Fixed cultures were incubated in blocking solution
containing 4% goat serum and 0.05% Triton X-100 for 15 min. For
vesicular glutamate transporter 1 (vGluT-1) staining, the fixed cultures
were incubated in primary vGluT-1 antisera (Millipore Bioscience Re-
search Reagents) diluted 1:2000 in blocking solution for 3 h. Alexa Fluor
647-conjugated anti-guinea pig antisera (1:500; Invitrogen) were used to
visualize vGluT-1 labeling. Cultures on glass were mounted on a micro-
scope slide with Fluoromount-G (Southern Biotechnology). Experimental
conditions for each slide were coded before subsequent image acquisi-
tion and analysis, and the experimenter was kept naive to experimental
conditions through the data acquisition and analysis procedures.

All images were acquired under a 60� oil objective by a C1 scanning
laser coupled to a Nikon TE300 inverted microscope (Nikon). Acquisi-
tion gain setting, scanning rate, and Z-stack setting were identical across
the acquired fields within an experiment. Data analysis was performed in
MetaMorph (Molecular Devices). Fluorescence images were acquired
sequentially from the vGluT-1 and FM1-43FX channels. Fields were se-
lected on the basis of exhibiting discrete vGluT-1-immunoreactive
puncta (Moulder et al., 2010). Ten regions of interest in each field, cor-
responding to vGluT-1-immunoreactive puncta, were selected without
reference to the FM1-43FX image. The FM1-43FX image was then su-
perimposed and independently thresholded. To distinguish active from
inactive synapses, we used a relative FM1-43FX thresholded area cutoff.
The thresholded FM1-43FX area of active synapses was required to be
�12.5% of the thresholded vGluT-1 area of the same punctum. This
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criterion was chosen because the nonthresholded FM1-43FX labeling
intensity of 51 synapses identified as inactive by this criterion in our data
set (five experiments) was not significantly different from surrounding
cellular background fluorescence near the same synapses ( p � 0.1). The
use of a percentage area criterion guarded against artifactual assignment
of small synapses to the inactive group, but an activity criterion based on
a fixed-area cutoff of 10 thresholded pixels of FM1-43FX staining (Moulder
et al., 2006) yielded similar results (see Results). For the present experi-
ments, 250 vGluT-1-immunoreactive synapses from five independent
experiments (10 puncta from each of five fields in each experiment) were
analyzed in each condition. Additional evidence for presynaptically in-
active synapses is the bimodal distribution of FM1-43FX fluorescence
intensity of vGluT-1-positive terminals when hundreds of terminals
from a single experiment are examined (Moulder et al., 2006). One com-
ponent of the distribution is indistinguishable from background fluores-
cence and thus represents the population of inactive terminals. A second,
broader, nonzero component represents active terminals (Moulder et al.,
2006).

Results
PDBu recovers postblock NMDAR-mediated current
We first tested whether synaptic modulators could potentiate
transmitter output from synapses with basally low release activ-
ity. To selectively eliminate neurotransmission from active syn-
apses, we took advantage of an irreversible use-dependent
NMDAR antagonist MK-801 (Huettner and Bean, 1988). At low-
frequency stimulation (0.1 Hz), MK-801 blocks NMDAR only at
synapses that release glutamate in response to the stimulation
(Hessler et al., 1993; Rosenmund et al., 1993). Consequently, the

synaptic NMDAR remaining functional after MK-801 blocking
trials should represent the receptors residing at synapses that are
the least active during the stimulation. We examined whether
modulator application after synaptic block of NMDAR current
(INMDAR) causes recovery of synaptic INMDAR. The recovered
INMDAR is presumably mediated by the receptors that remain
functionally intact after MK-801 block and therefore represent
the transmitter output from synapses that release glutamate only
after modulator treatment.

In the presence of MK-801 (5 �M), 25–35 action potential
stimuli at 0.1 Hz depressed synaptic INMDAR to �3% of the initial
INMDAR (3 � 0.4% of the initial INMDAR; n 	 8) (Fig. 1A). Isolated
AMPAR current (IAMPAR) and the IAMPAR paired-pulse ratio
(PPR) (second EPSC/first EPSC; 50 ms interpulse interval), how-
ever, was minimally affected by MK-801 application (IAMPAR am-
plitude after the MK-801 blocking protocol, 83 � 7% of the
initial IAMPAR; p 	 0.06; baseline PPR, 0.71 � 12%; PPR after
MK-801 blocking, 0.66 � 6%; p 	 0.09; n 	 8). The insignificant
trend toward reduced IAMPAR likely resulted from weak, variable
time-dependent rundown. These results indicate that MK-801
selectively antagonizes NMDARs; blocking synaptic NMDARs
did not detectably change presynaptic release properties. There
was very little recovery of INMDAR 2–3 min after MK-801 removal
(Fig. 1A,D2). The slight increase of INMDAR may reflect minor
dissociation of MK-801 from the receptors because of the preced-
ing trials of depolarization applied to sample the residual current
after MK-801 block (Huettner and Bean, 1988). Alternatively, the

Figure 1. Modulators differentially potentiate NMDAR-mediated EPSCs after MK-801 block of synaptic NMDARs. A, Example of progressive MK-801 block during evoked stimulation and
subsequent recovery of INMDAR. Synaptic receptor blockade was accomplished by delivering low-frequency presynaptic stimulation (0.1 Hz) in the presence of MK-801 (5 �M). The gray bar indicates
the time period when MK-801 was applied; the open bars show application of regular extracellular saline solution (bath) or of elevated Ca 2� (4Ca 2�). The recovered INMDAR in regular external bath
or 4 mM Ca 2� was sampled 2–3 min after MK-801 wash off. The amplitude of INMDAR is plotted against the stimulus episode. Inset, Superimposed initial (a), the basal recovered INMDAR (b), and the
recovered current in 4 mM Ca 2� (c) shown from the corresponding time point in the amplitude–stimulus plot. B, C, Similar to A, with PDBu (1 �M) (B) or FSK (50 �M) (C) applied during the 2 min
interval after MK-801 wash off. D1, Summary of synaptic INMDAR potentiation by modulators after synaptic receptor blockade. The residual INMDAR after MK-801 block is set as 100% (PDBu: 526 �
71%, n 	 10, *p � 0.00007; FSK: 184 � 25%, n 	 7; 4 mM Ca 2�: 150 � 17%, n 	 8; statistical comparison is with the control: 147 � 12%, n 	 8). D2, Comparison of the percentage INMDAR

recovery (
 recovered current 	 recovered current � residual current) after modulator treatment. The 
 recovered INMDAR is normalized to the initial INMDAR. The initial INMDAR is set to 100% (PDBu:
20 � 5%, n 	 10, *p � 0.005; FSK: 3.2 � 0.8%, n 	 7; 4 mM Ca 2�: 3.0 � 0.4%, n 	 8; statistical comparison is with the control: 1.6 � 0.5%, n 	 8). E, Synaptic NMDAR blockade
did not affect IAMPAR potentiation by modulators. E1, Sample traces of IAMPAR in 4 mM Ca 2�, PDBu, and FSK (gray); traces are superimposed on their corresponding initial EPSC (black).
The percentage potentiation of EPSCs by modulators is summarized in E2 (PDBu: 230 � 23% of initial IAMPAR, n 	 10, *p � 0.0002; FSK: 157 � 19% of the initial IAMPAR, n 	 7, **p �
0.02; 4 mM Ca 2�: 163 � 8% of the initial IAMPAR, n 	 7, ***p � 0.002; all statistics are compared with the control: 83 � 8%, n 	 8). Error bars indicate SEM.
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weak recovery of residual current might represent a small contri-
bution from receptor diffusion from perisynaptic to synaptic sites
(Tovar and Westbrook, 2002). Regardless of the causes of the
weak recovery, the small fraction of current increase under con-
trol conditions indicated that MK-801 block was relatively irre-
versible within the time interval of our experiments (Huettner
and Bean, 1988). Applying similar blocking trials to neurons in 4
mM [Ca 2�], which was designed to raise vesicular Pr at active
terminals, did not further reduce the residual current (blocking
in 4 mM Ca 2�, 3.2 � 1.0% to the initial INMDAR; n 	 8; blocking
in 2 mM Ca 2�, 4.6 � 0.8%; p 	 0.32; n 	 9), suggesting applica-
tion of MK-801 in 2 mM Ca 2� using our stimulation protocol was
sufficient to block virtually all active synapses. Together, these
results confirm that our protocol asymptotically blocked
NMDARs at the population of presynaptically active terminals.

After similar blocking trials with MK-801, application of
PDBu, as previously documented, strongly potentiated IAMPAR

(Fig. 1E1,E2). PDBu effects on AMPAR-mediated EPSCs have
previously been shown to be primarily through presynaptic
mechanisms (Malenka et al., 1986; Hori et al., 1999) (but see
Carroll et al., 1998). Interestingly, PDBu also promoted a
strong recovery of synaptic INMDAR after MK-801 block (Fig.
1B,D1,D2). PDBu resulted in approximately fivefold potentia-
tion of the residual INMDAR after MK-801 block (Fig. 1D1), and
the net current recovery was �20% of the initial current before
receptor block (Fig. 1D2).

cAMP increases awakening of dormant presynaptic terminals,
but the effect is slow to develop (Ma et al., 1999; Yao et al., 2006).
We used acutely applied FSK to determine whether rapid cAMP
increases, similar to rapid PDBu effects, recruit release from
synapses that are not blocked by MK-801. As a presynaptic com-
parator, we also examined the effect of elevated extracellular
Ca 2� on residual INMDAR. As expected, FSK application robustly
potentiated IAMPAR (Fig. 1E1,E2). However, in contrast to PDBu,
acute FSK application after MK-801 block resulted in only a min-
imal recovery of postblock synaptic INMDAR (Fig. 1C,D1,D2).
Evoked EPSCs in 4 mM Ca 2�, which is expected to increase ve-
sicular Pr at active terminals but not to awaken dormant synapses,
increased IAMPAR to �1.5-fold (Fig. 1E1,E2), but again this ma-
nipulation caused only a minimal increase of INMDAR after MK-
801 block (Fig. 1A,D1,D2). The residual current potentiation
and the ratio of current recovery to the initial current before
MK-801 block were similar in FSK and 4 mM Ca 2� (Fig.
1D1,D2), suggesting that acute FSK, similar to elevated Ca 2�, did
not significantly recruit transmission from synapses protected
from MK-801 block. The minimal recovery of INMDAR in 4 mM

Ca 2� after MK-801 block, which potentiated IAMPAR, also indi-
cates that potentiation of residual INMDAR did not result from
transmitter spillover to the receptor domains that were not pre-
viously exposed to transmitter.

To confirm further that the recovered INMDAR after PDBu
potentiation was not mediated by residual receptors that were not
completely blocked at the initially active terminals, we also exam-
ined the effect of PDBu on INMDAR recovery after MK-801 block
of synaptic current in elevated Ca 2� (4 mM). Blocking receptors
with MK-801 in higher Ca 2�, which raises overall vesicular and
synaptic Pr at active terminals while block is proceeding, ensures
even more complete receptor block, including extrasynaptic re-
ceptors that might be recruited only under high vesicular Pr con-
ditions. After receptor block in elevated Ca 2�, PDBu still
significantly promoted INMDAR recovery (PDBu potentiation,
515 � 52% of residual current; n 	 8). This result confirms that
PDBu-dependent recovery of INMDAR was not caused by incomplete

receptor block at the terminals in combination with transmit-
ter spillover after potentiation. We hypothesized that PDBu-
induced INMDAR recovery after MK-801 block represents a
unique presynaptic effect of PDBu potentiation at initially dor-
mant synapses.

Although these experiments help exclude incomplete MK-801
block because of low vesicular Pr, they do not account for the
possibility that NMDA receptors remain unblocked because of
action potential propagation failures into terminals during stim-
ulation. PDBu might recover synaptic INMDAR as a result of in-
creased excitability in axon branches that normally fail to
transmit action potentials. We have previously shown that action
potential invasion is reliable at autaptic synapses under normal
conditions, and manipulations designed to increase axon excit-
ability do not significantly alter autaptic output (He et al., 2002).
Nevertheless, we performed additional tests for the present work.
First, we tested whether increasing presynaptic stimulus duration
recruits larger synaptic responses. We found no significant
change in EPSC amplitude with presynaptic stimulus durations
of 1, 2, or 3 ms (supplemental Fig. S1A, available at www.
jneurosci.org as supplemental material). Furthermore, wider
stimuli did not recover more synaptic INMDAR after the MK-801
blocking protocol (supplemental Fig. S1B, available at www.
jneurosci.org as supplemental material). As another test of com-
plete MK-801 block, we applied 4-AP (100 �M) after the MK-801
blocking protocol to artificially enhance excitability of un-
clamped axonal regions. We observed no significant INMDAR re-
covery after MK-801 block (supplemental Fig. S1C, available at
www.jneurosci.org as supplemental material), unlike our obser-
vations with PDBu. Additional evidence that changes in excitabil-
ity do not explain the PDBu effect come in experiments below in
which we used secretagogues (e.g., hypertonic challenge and di-
rect depolarization) designed to circumvent action potential
propagation entirely. Together, these results all suggest that
PDBu-induced excitability changes do not account for the obser-
vation of INMDAR recovery after MK-801 block.

Modulators equally enhance IAMPAR and INMDAR

To test our hypothesized explanation of PDBu induced current
recovery after MK-801 block, we next performed various tests of
a postsynaptic explanation for the PDBu-induced INMDAR recov-
ery. Differential effects of PDBu and FSK on post-MK-801, resid-
ual INMDAR may result from preferential potentiation of specific
postsynaptic receptors (i.e., PDBu preferentially potentiated
INMDAR, or FSK preferentially potentiated IAMPAR). In mature
hippocampal neurons, AMPARs and NMDARs are colocalized in
excitatory terminals (Forsythe and Westbrook, 1988; Bekkers
and Stevens, 1989); pure presynaptic potentiation typically af-
fects AMPAR- and NMDAR-mediated EPSCs in parallel (Perkel
and Nicoll, 1993; Tong and Jahr, 1994). If PDBu and FSK prefer-
entially modulate NMDARs or AMPARs, we would expect that
PDBu and FSK should differentially affect EPSCs mediated by
NMDARs versus EPSCs mediated by AMPARs. We measured
dual-component EPSCs before and after modulator application
in the absence of MK-801 (Fig. 2A). We defined the amplitude of
the AMPAR component of the EPSC as the current peak within
10 ms after stimulation was initiated, whereas the amplitude of
INMDAR was denoted as the averaged current within a 5 ms bin 35
ms after stimulation initiation (Tsien et al., 1996; Myme et al.,
2003).

Application of PDBu potentiated IAMPAR and INMDAR in par-
allel, with no distinguishable difference in the degree of potenti-
ation (Fig. 2A, left; B, left panel). This result is consistent with the
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idea that acute PDBu treatment has primarily a presynaptic ac-
tion. After acute incubation with FSK, potentiation in IAMPAR was
also indistinguishable from INMDAR potentiation (Fig. 2A, right;
B, right panel). Thus, FSK treatment also resulted in an equal
enhancement of IAMPAR and INMDAR. These results showed that,
with brief incubation, PDBu and FSK did not preferentially aug-
ment current mediated by specific postsynaptic receptors and
therefore suggest a presynaptic effect of EPSC potentiation.

Increases in open probability (Po) of NMDARs have been
reported with phorbol ester stimulation and/or PKC activation
(Durand et al., 1992; Xiong et al., 1998; Lan et al., 2001). An
increase in Po might be expected to result in nonparallel modu-
lation of AMPAR and NMDAR EPSC components. Therefore,
the results in Figure 2 argue against a PDBu effect on Po under our
conditions. In addition, if PDBu increases Po of NMDARs and
thereby contributes to the INMDAR recovery after MK-801 block,
we would also expect that PDBu should retard the decay of
NMDAR-mediated EPSCs (Jahr, 1992). However, we found that,
in the presence of PDBu, the weighted time constant of NMDAR-
mediated EPSCs was 178 � 10 ms, which was not significantly
different from the weighted decay constant in the baseline (164 �
28 ms; n 	 7; p 	 0.86). Therefore, PDBu-mediated recovery of
INMDAR does not result from increased Po of NMDARs under our
conditions.

PDBu does not increase surface NMDARs
Work from others has shown that prolonged treatment with
phorbol esters promotes surface NMDAR
insertion and receptor assembly in hip-
pocampal neurons (Lan et al., 2001; Scott
et al., 2001). We next explored whether
acute treatment with PDBu in our system
leads to detectable increases in surface
NMDARs that might cause INMDAR re-
covery after MK-801 block. To test
whether PDBu increased surface NMDARs,
we blocked whole-cell NMDARs by ap-
plying MK-801 (20 �M) in the presence of
the exogenous agonist NMDA (1 mM) and
examined the increases of the whole-cell
INMDAR after PDBu treatment. Whole-
cell blockade of NMDARs depressed
NMDA-evoked current to �4% of the ini-
tial current (4.3 � 1.8%; n 	 6) (Fig. 3A, top
panel). Whole-cell blockade of NMDARs
affected neither evoked synaptic IAMPAR

(104 � 10% of baseline; n 	 6) nor PPR
measured by IAMPAR (baseline PPR,
0.89 � 15%; PPR after whole-cell block,
0.78 � 17%; p 	 0.32), suggesting that
blocking whole-cell NMDARs did not af-
fect presynaptic transmitter output. Two
minutes after MK-801 wash-off, residual
whole-cell responses to NMDA were
slightly increased (Fig. 3A, top panel; C,
left). The slight increase of whole-cell IN-

MDAR may result from weak unblocking of
antagonist from the receptors during the
preceding trial of NMDA application,
which measured the residual current after whole-cell MK-801
block (Huettner and Bean, 1988). Acute PDBu application after
whole-cell receptor blockade resulted in minimal increases in the
NMDA-evoked whole-cell current (Fig. 3A, bottom panel). The

mild increases in NMDA-evoked current in PDBu was indistin-
guishable from that in control (Fig. 3C, left), suggesting that acute
application of PDBu did not significantly increase total NMDARs
at the cell surface.

Figure 2. Modulators equally potentiate AMPAR- and NMDAR-mediated EPSCs. A, The ef-
fect of modulators on AMPAR and NMDAR EPSCs was examined by comparing AMPAR and
NMDAR components of EPSCs before and after 2 min of modulator application. Examples of
EPSC in PDBu (left panel; gray) or FSK (right panel; gray) are superimposed on the respective
baseline EPSCs (black). B, Summary of potentiation of AMPAR (A) or NMDAR (N) components by
PDBu (left) and FSK (right). The gray lines represent responses from individual cells. For PDBu,
IAMPAR, 199 � 16% of baseline; INMDAR, 199 � 21% of baseline; n 	 6; p 	 0.99. For FSK,
IAMPAR, 145 � 9% of baseline; INMDAR, 147 � 15% of baseline; n 	 6; p 	 0.88. Error bars
indicate SEM.

Figure 3. Acute PDBu application does not increase surface NMDARs. A, After whole-cell blockade of NMDARs, PDBu caused
minimal recovery of whole-cell INMDAR. Sample traces of time-dependent (A, top) or PDBu-dependent (A, bottom) effect on
whole-cell INMDAR after blocking surface NMDARs. B, Similar to A. The comparison of time-dependent effect and the effect of PDBu
on synaptic INMDAR after whole-cell NMDAR blockade. C, Quantification of residual whole-cell and synaptic INMDAR after control or
PDBu treatment after surface receptor blockade. The peak currents are normalized to the initial current before MK-801 block
(whole-cell current: 5.8 � 2.5% in control, n 	 6; 6.2 � 2.2% in PDBu, n 	 6; p 	 0.58; synaptic current: 5.2 � 1.2% in control,
n 	 6; 7 � 2.5% in PDBu, n 	 6; p 	 0.59). Error bars indicate SEM.
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To test whether PDBu selectively increases synaptic
NMDARs, we examined the effect of PDBu on the synaptic
INMDAR after whole-cell blockade of NMDARs. Consistent with
the results from sampling whole-cell NMDA responses, we found
that, after whole-cell blockade of NMDARs, PDBu application
did not significantly increase synaptic INMDAR compared with
control cells (Fig. 3B,C, right), despite strong potentiation mea-
sured in IAMPAR (225 � 32% of baseline; n 	 6; p � 0.04). These
results therefore suggest that acute treatment of PDBu did not
lead to significant increases of NMDARs in postsynaptic sites.
Together, our results suggest that acute application of PDBu does
not detectably increase surface NMDARs.

PDBu-mediated recovery of INMDAR is PKC independent
Under certain conditions, phorbol esters enhance the clustering,
movement, and channel gating of NMDARs (Durand et al., 1992;
Kutsuwada et al., 1992; Lu et al., 2000; Lan et al., 2001; Scott et al.,
2001; Groc et al., 2004), and these effects are PKC dependent
(Durand et al., 1992; Xiong et al., 1998; Lu et al., 2000; Lan et al.,
2001; Scott et al., 2001; Fong et al., 2002). Presynaptically, phor-
bol esters act at least partly through PKC-independent mecha-
nisms to potentiate transmission (Searl and Silinsky, 1998; Rhee
et al., 2002; Lou et al., 2008). To distinguish whether postsynaptic
PKC activation by PDBu results in NMDAR modification, which
in turn leads to the current recovery after MK-801 block, we
evaluated the action of PDBu after pharmacological inhibition of
PKC activity. Because PKC activity is present in both presynap-
tic and postsynaptic compartments, we first tested PKC-
independent presynaptic potentiation of PDBu. We measured
PDBu potentiation of IAMPAR in the presence a PKC inhibitor. We
used the broad-spectrum PKC inhibitor Gö6983 to block PKC
activation by PDBu. The pharmacological activity of Gö6983 was
verified by two independent assays in hippocampal excitatory
autapses (Chang and Mennerick, 2010). These control experi-

ments were performed concurrently with experiments in the
present work and showed that Gö6983 inhibits two previously
documented PKC-dependent phorbol ester effects: phorbol
ester-induced speeding of vesicle replenishment after depletion
(Stevens and Sullivan, 1998) and phorbol ester-induced occlu-
sion of Gi/o G-protein-mediated synaptic depression (Zamponi
et al., 1997).

Application of Gö6983 (2 �M) alone did not alter evoked
AMPAR-mediated EPSCs (control, 5.06 � 0.98 nA, n 	 9; Gö6983,
4.82 � 0.78 nA, n 	 10; p 	 0.85). Preincubation of Gö6983 did not
prevent subsequent PDBu potentiation of IAMPAR (Fig. 4A1,A2),
consistent with an important role of PKC-independent mechanisms
in phorbol ester potentiation (Rhee et al., 2002).

Having confirmed that PDBu effectively potentiated presyn-
aptic neurotransmission in the absence of PKC activation, we
next asked whether PKC inhibition, which should also prevent
postsynaptic modification of NMDARs, compromises current
recovery by PDBu. After MK-801 block of synaptic NMDARs,
PKC inhibition did not prevent PDBu-mediated recovery of syn-
aptic INMDAR (Fig. 4B2) compared with PDBu alone. Inhibiting
PKC activity by another class of PKC inhibitor, Ro31-8220 (2
�M), yielded a similar result (IAMPAR potentiation: 172.1 � 12.8%
in PDBu/Ro31-8220, n 	 11; 246.1 � 36.1% in PDBu, n 	 10;
p 	 0.07; INMDAR recovery: 20.5 � 4.7% in PDBu/Ro31-8220,
n 	 11; 32.5 � 7.1% in PDBu, n 	 10; p 	 0.17). These results
suggest that PKC-dependent modulation of postsynaptic
NMDARs does not contribute strongly to the recovery of INMDAR.
Together, these results suggest that the enhancement by PDBu of
synaptic strength at terminals with very low synaptic Pr or dor-
mant terminals is mainly PKC independent.

PDBu potentiation and the readily releasable vesicle pool
If our hypothesis is correct that PDBu recovers INMDAR by pre-
synaptically resurrecting functionally dormant synapses, this ef-
fect should also be evident as increases in the number of readily
releasable vesicles, the vesicle pool that is docked and primed at
presynaptic active zones. Readily releasable vesicle pool (RRP)
size is often measured as hypertonic sucrose-evoked AMPA
EPSCs (Rosenmund and Stevens, 1996; Schikorski and Stevens,
2001). Hypertonicity-evoked release also circumvents potential
PDBu effects on action potential propagation or waveform, since
this secretagogue bypasses action potential propagation and
Ca 2� influx (Rosenmund and Stevens, 1996). We used 0.75 M

sucrose to ensure a saturated rate of vesicle release (Rosenmund
and Stevens, 1996; Basu et al., 2007; Wierda et al., 2007). In our
cultures, PDBu treatment led to an �25% increase in the RRP
(Fig. 5A), quantitatively consistent with the degree of INMDAR

recovery observed in Figure 1D2. Therefore, results from
sucrose-evoked EPSCs help exclude both excitability changes and
changes in NMDA receptor function as explanations for the
PDBu-induced recovery of INMDAR.

We also performed similar experiments in mass cultures to
ensure that activation of dormant synapses is not unique to au-
taptic synapses. In conventional mass cultures that form more
complex and divergent synaptic interconnections, we examined
sucrose responses as in the autaptic recordings in Figure 5A. Sim-
ilar to autaptic responses, sucrose-evoked synaptic responses in
mass culture were mildly but significantly potentiated after PDBu
application (Fig. 5B). These observations from conventional syn-
aptic connections suggest that the effects of PDBu are not con-
fined to autaptic synapses.

In mass cultures, we also tested for PDBu-mediated recovery
from dormancy using an NMDAR-based assay. We triggered

Figure 4. PKC inhibition does not prevent INMDAR recovery by PDBu. A, PDBu effectively
potentiated IAMPAR (A1) and robustly recovered INMDAR (B1) after MK-801 block. A1, Sample
trace of IAMPAR potentiation after PDBu treatment from the same cell is superimposed on the
initial current. B1, PDBu-recovered INMDAR is superimposed on the initial (before blocking) and
the postblock residual current. A2, B2, Similar to A1 and B1, PKC inhibitor Gö6983 (2 �M) was
present before and during the experiments. Average PDBu effect on IAMPAR potentiation in the
absence (PDBu) or presence (PDBu/Gö) of PKC inhibitor: 192.3 � 23.5% in PDBu, n 	 9;
147.2 � 19.1% in PDBu/Gö6983, n 	 11; p 	 0.15. Average effects of PDBu from the exper-
iment in B are given as percentage of initial current before MK-801 block: 17.6 � 4.7% in PDBu,
n 	 9; 15.4 � 2.9% in PDBu/Gö6983, n 	 11; p 	 0.7.
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transmitter release by incubating cells for
10 min in 200 mM sucrose in the presence
of 10 �M MK-801 (with NBQX and bicu-
culline present throughout). Because
sucrose-induced release is not dependent
on action potentials or calcium, our pro-
tocol helped ensure that even NMDARs at
synapses that were infrequently activated
by spontaneous activity would be blocked.
After incubation, we measured synaptic
NMDAR responses to spontaneous net-
work activity. After MK-801 block, we
never saw synaptic events within 150�
210 s continual recording from any of
four cells, even during elevated K� appli-
cation to stimulate network activity and
glutamate release (n 	 4). By contrast,
during PDBu application, synaptic
NMDAR events became more evident (12
burst-like events in 150 s of recording
from four cells) (supplemental Fig. S4,
available at www.jneurosci.org as supple-
mental material). In all cells, we verified
that these post-PDBu currents were sensitive to D-APV. The
burst-like nature of the currents could be associated with
NMDAR resurrection by PDBu throughout the network, with
the long-lived NMDAR EPSPs promoting bursts of firing in pre-
synaptic cells. Thus, this experiment is generally consistent with
the idea that presynaptic dormancy also applies to more complex
networks.

Synaptic release properties and PDBu-mediated potentiation
Our results thus far exclude postsynaptic explanations for PDBu-
mediated revival of INMDAR after synaptic MK-801 block and
support the idea that PKC-independent presynaptic actions of
PDBu recruit release from dormant terminals in simple and com-
plex networks. In the literature, phorbol esters enhance vesicle
release efficiency, increase synaptic Pr, and hence increase synap-
tic strength (Malenka et al., 1986; Shapira et al., 1987; Basu et al.,
2007). In many studies, the effect of phorbol ester on vesicular
release efficiency is evaluated by paired-pulse modulation
(Shapira et al., 1987; Muller et al., 1988; Yawo, 1999), or by the
ratio of charge integral from an isolated evoked EPSC relative to
the release from the entire release-ready vesicle pool (Basu et al.,
2007; Wierda et al., 2007). These estimates, however, evaluate the
conglomerate of changes in release from the entire population
vesicles distributed across all synapses (Branco and Staras, 2009).
Therefore, nothing is known about the synaptic Pr profile of the
initially dormant synapses once their release activity is restored.

The Pr profiles of a population of synapses can be revealed by
the kinetics of MK-801 progressive block of INMDAR (Hessler et
al., 1993; Rosenmund et al., 1993). We used the kinetic changes in
the progressive block after PDBu potentiation to probe changes
of synaptic Pr distribution in the activated synapses after poten-
tiation. We also examined the synaptic Pr profile from those ba-
sally quiescent terminals, once they were activated by PDBu, with
similar MK-801 progressive block.

In control cells, the decay of the first 25 peak NMDAR EPSCs
during MK-801 progressive block was best described by a sum of
two exponentials (Fig. 6A2, open circle), suggesting that synaptic
transmission was composed of fast and slow components, which
represent at least two populations of synapses with high and low
Pr (Hessler et al., 1993). Note that this observation does not ex-

clude the idea of a continuous distribution of synaptic Pr values
(Rosenmund et al., 1993; Murthy et al., 1997).

PDBu treatment before any MK-801 application accelerated
the subsequent MK-801 progressive block of the current (Fig.
6A1; A2, solid circle). Because we have previously ruled out the
effect of PDBu on Po of NMDARs (Fig. 2), the most plausible
explanation for the faster EPSC block by MK-801 is that PDBu
elevated Pr across synapses. The accelerated decay during pro-
gressive current block also yielded a greater proportion of the fast
component compared with the control (23.8 � 9.8 vs 64 � 3%)
(for full fit parameters, see Fig. 6A2, legend), suggesting that
PDBu increased the average synaptic Pr, as well as increasing the
proportion of high Pr terminals (Rosenmund et al., 1993).

Blocking synaptic NMDARs at untreated synapses eliminated
INMDAR from synapses that respond to our stimulus protocol.
After receptor blockade, PDBu promoted recovery of INMDAR as
described previously. The MK-801 progressive block of PDBu-
recovered INMDAR also consisted of biexponential components
with significantly slower decay (Fig. 6A2, gray circle) compared
with the basal, unblocked population of terminals that were po-
tentiated by PDBu before progressive block. The slower decay of
the EPSC block in the recovered current suggests that the
recovered current arises from a subset of terminals that exhib-
ited significantly lower synaptic Pr than the PDBu-potentiated
population of initially active synapses.

When comparing the rate of progressive block, the contrast in
synaptic Pr profiles between PDBu-recovered current (slow MK-
801 block) (Fig. 6A2, gray) and the current that was derived from
all synapses in the presence of PDBu (fast MK-801 block) (Fig.
6A, solid) suggests that PDBu did not potentiate synaptic output
uniformly across terminals. Release from initially dormant syn-
apses was restored by PDBu. However, this restoration was not
accompanied by the high synaptic Pr profile and fast MK-801
block observed at initially active terminals potentiated by PDBu.
Instead, the MK-801 block profile from the awakened terminals
was closer to the slow MK-801 block profile of naive active syn-
apses before PDBu application (control, without PDBu) (Fig.
6A2, open). The difference in synaptic Pr distributions induced
by PDBu from initially active terminals versus quiescent termi-

Figure 5. Sucrose-evoked EPSCs are increased by PDBu. A, Hypertonic sucrose solution (0.75 M) was used to evoke release from
autaptic neurons as a measure of the RRP size before and after PDBu administration for 2 min. Sucrose was applied during the entire
trace shown. After PDBu challenge, RRP, measured as sucrose-evoked postsynaptic charge integral, was slightly but significantly
increased [128 � 9% to control (100%); n 	 9; *p � 0.02]. The percentage increase was consistent with the degree of INMDAR

recovery. The gray traces represent individual examples of normalized postsynaptic charge measured before and immediately after
PDBu treatment. B, Similar to A, EPSC response to hypertonic sucrose challenge in mass cultures. PDBu increased the EPSC to 128�
8% of baseline (100%) (n 	 9; *p � 0.03). Bath solution included 25 �M bicuculline and 25 �M D-APV. Error bars indicate SEM.
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nals may suggest that initial release competence of the terminal
affects the nature of PDBu potentiation.

To test further whether the initial release properties of syn-
apses affects their response to PDBu, we examined whether PDBu
differentially potentiates synaptic output from terminals with
different Pr. We reasoned that a single episode of brief depolar-
ization should evoke transmitter release from the terminals of
highest synaptic Pr, the synaptic output from the high Pr termi-
nals should dominate the isolated EPSC at baseline. Likewise,
after partially (achieved with MK-801 during a limited number of
stimulus trials) or fully blocking the synaptic INMDAR, the residual
current should represent the synaptic output from the remaining
low Pr terminals. If the initial Pr state affects synaptic response to
PDBu potentiation, we would expect differential effects of PDBu
potentiation on the residual current from partially or fully
blocked cells compared with that in the control. We compared
the level of PDBu potentiation in the control current, the residual
current from partially blocked cells, and the residual current
from fully blocked cells.

In the control cells without any preceding receptor block,
PDBu, as previously shown, increased baseline INMDAR approxi-
mately twofold (Fig. 6B1, left). Partial elimination of INMDAR to
�15% of the initial NMDAR-mediated current did not affect
IAMPAR (102 � 10% of the initial IAMPAR before MK-801 block;
n 	 10). Interestingly, PDBu treatment in partially blocked cells
resulted in approximately threefold potentiation from the resid-
ual INMDAR (Fig. 6B1, middle). When compared with the cells in
which the synaptic INMDAR was fully eliminated, PDBu potentia-
tion of the residual current was, as previously shown, close to
fivefold (Fig. 6B1, right).

Because there is considerable variability in the degree of PDBu
potentiation across cells, we used PDBu potentiation of AMPAR-
mediated EPSCs as the internal potentiation reference and nor-
malized the level of PDBu potentiation in INMDAR to IAMPAR

potentiation from the same cell. This normalization should rep-
resent the true PDBu potentiation of INMDAR from synapses with
different Pr. After normalizing to the level of IAMPAR potentiation,
PDBu treatment in control, unblocked cells yielded the expected
relative potentiation value near 100% (resulting from parallel
NMDAR and AMPAR EPSC potentiation) (Fig. 6B2). When
similar normalization was applied to the current potentiation
from partially blocked and from fully blocked cells, the ratio of
INMDAR versus IAMPAR potentiation increased from �100% in
control to �150% in the partially blocked cells and to �200% in
fully blocked cells (Fig. 6B2). The graded increases of PDBu po-
tentiation in INMDAR suggest that PDBu more strongly potenti-
ates low Pr terminals. Thus, the initial synaptic Pr may influence
synaptic response to PDBu potentiation. This result, combined
with the progressive MK-801 block experiment, is consistent with
the idea that level of potentiation might be negatively correlated
to the initial release activity (Stevens and Wang, 1994; Gerber et
al., 2008).

NR2B contribution of the recovered current does not differ
from baseline
The results thus far suggest that PDBu potentiated postblock
INMDAR by presynaptic mechanisms; the recovered currents arise
from a subset of dormant synapses, or synapses with very low Pr,
that are not recruited by Ca 2� or by FSK. Studies have suggested
that synaptic NMDAR composition correlates with synaptic ac-
tivity as well as with developmental stage. Synapses with lower
functionality or immature (nascent) synapses possess greater
NR2B subunit postsynaptically (Williams et al., 1993; Monyer et

Figure 6. Synaptic Pr differs at active versus dormant synapses after PDBu potentiation. A,
PDBu-activated quiescent synapses show lower overall synaptic Pr. A1, Examples of graded
depression of INMDAR during MK-801 progressive block in control synapses (left), synapses that
were potentiated by PDBu without previous MK-801 block (middle), and PDBu-recovered syn-
apses (right). EPSCs from the indicated stimulus episodes in the presence of MK-801 are super-
imposed. A2, Peak INMDAR during MK-801 is normalized to the initial INMDAR and plotted against
stimulus episode. The plot, averaged from eight to nine cells, is best fitted by a sum of two
exponentials (gray lines) in all three conditions. The kinetics of progressive block (25 stimuli) has
�fast 	 2.0 � 0.6 (23.8 � 9.8%) and �slow 	 7.6 � 0.9 (67.3 � 9.2%) in control (open; n 	
8), �fast 	 1.38 � 0.04 (64 � 3%) and �slow 	 5.99 � 0.59 (32 � 3%) in PDBu-potentiated
current (solid; n 	 9), and �fast 	 1.98 � 0.35 (38 � 6%) and �slow 	 14.58 � 3.8 (62.6 �
2%) in PDBu-recovered current (gray; n 	 8). B, PDBu more strongly potentiated INMDAR at
synapse with low Pr. B1, Examples of PDBu-dependent potentiation from a neuron without
receptor blockade (left), a neuron with synaptic INMDAR that was partially blocked (�15% of
initial current; middle), and a neuron with synaptic INMDAR that was fully blocked (right). The
EPSCs after PDBu potentiation (gray) are superimposed on the EPSC before PDBu treatment
(black). B2, Summary of PDBu-mediated potentiation in all three conditions. Level of INMDAR

potentiation by PDBu is normalized to IAMPAR potentiation from the same cells (no block, n 	
12; partial block, n 	 10; full block, n 	 11; p � 0.00003 by one-way ANOVA; *p � 0.003,
compared with no block; **p � 0.05, compared with partial block by paired t test). Error bars
indicate SEM.
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al., 1994; Kirson and Yaari, 1996; Tovar
and Westbrook, 1999; Ehlers, 2003). There-
fore, PDBu-recovered synapses may be
dominated by NR2B-containing receptors.
We used the NR2B-specific antagonist ifen-
prodil to probe NR2B contribution to the
recovered INMDAR. We compared the ifen-
prodil sensitivity of the initial INMDAR and
of PDBu-recovered INMDAR. In the con-
trol condition, the peak of the initial (un-
treated, unblocked) INMDAR was reduced
by �60% in the presence of ifenprodil (3
�M) (Fig. 7A, left panel). After MK-801
block, PDBu-recovered INMDAR showed
similar ifenprodil sensitivity (Fig. 7A, right
panel), suggesting that PDBu-recovered
INMDAR consisted of a similar NR2B contri-
bution compared with the initial EPSC.

In addition, we also examined the de-
activation kinetics of the initial and the
recovered INMDAR. EPSCs mediated by
NR2B-contaning receptors feature slower
deactivation kinetics compared with
EPSCs mediated by NR2A-containing re-
ceptors (Cull-Candy and Leszkiewicz,
2004). The deactivation current of
NMDAR-mediated EPSC can be fitted by
a sum of two exponentials, which yields a
weighted � 	 132 � 13 ms (n 	 6) in the
initial current (Fig. 7B). In the recovered
current, we found a slightly but not significantly slower decay
with weighted � 	 181 � 24 ms (Fig. 7B). Together, the pharma-
cological and kinetic results suggest that there is no significant
difference in the level of NR2B component in the initial current
and the recovered current. Thus, the synapses that give rise to
the recovered current do not preferentially harbor NR2B-
containing receptors.

PDBu promotes transmitter release from presynaptically
silent synapses
Our results suggest that PDBu promotes synaptic output from
synapses that contribute very little to baseline transmission.
These synapses could represent synapses with very low Pr and/or
synapses that are completely dormant. Work from our group and
others has shown that a fraction of glutamate terminals appear to
be completely dormant presynaptically (Rosenmund et al., 2002;
Altrock et al., 2003; Moulder et al., 2004; Ting et al., 2007). These
latent synapses are considered presynaptically inactive because
they contain presynaptic vesicles, identified by immunoreactivity
for vGluT-1 or other vesicle markers, but fail to detectably recycle
vesicles, defined by FM1-43FX uptake on strong depolarization
designed to trigger recycling of all release-competent vesicles. We
next asked whether PDBu-recovered EPSCs represent, in part,
restoration of synaptic activity at these presynaptically inactive
terminals. We examined the percentage of inactive synapses from
the cultures that were acutely exposed to FSK or to PDBu for 2
min. The synaptic activity of individual terminals was assessed by
FM1-43FX labeling with hyperkalemic depolarization (45 mM

[K�]o for 2 min) (Pyle et al., 2000; Harata et al., 2001); excitatory
terminals were then identified by positive immunoreactivity for
vGluT-1. Inactive excitatory synapses were those that were im-
munoreactive for vGluT-1 but lacking FM1-43FX labeling (i.e.,
failed to meet a threshold that exceeded background fluorescence

intensity) (see Materials and Methods). In the control condition,
the percentage of inactive synapses from the identified excitatory
terminals was �20% (Fig. 8A, left; B). Acute application of PDBu
prominently reduced the percentage of inactive synapses (Fig.

Figure 7. The initial INMDAR and PDBu-recovered INMDAR have similar NR2B contribution. A, The initial (left) and the recovered INMDAR

(right)exhibitedsimilarsensitivitytoifenprodil (3�M).Thesampletracesoftheinitial (left)andtherecovered(right) INMDAR inthepresence
of ifenprodil are superimposed on the current in the absence of ifenprodil. Average ifenprodil sensitivity in the initial current and in
PDBu-recovered current was 59.3�4.1% at baseline, n	9; 51.8�4.9% in PDBu-recovered current, n	9; p	0.06. B, The initial and
the recovered INMDAR have similar deactivation kinetics. The decay of the recovered INMDAR is indistinguishable from that of the initial
current. Example of recovered INMDAR superimposed on the initial current (left). Right, The recovered INMDAR is scaled and superimposed on
the peak of the initial current. The average weighted � of the baseline NMDAR-mediated EPSCs and the recovered EPSCs from 6 cells
(weighted �	 132 � 13 ms in baseline; 181 � 24 ms in PDBu-recovered current; p 	 0.07).

Figure 8. PDBu reduces the percentage of inactive excitatory synapses. A, Example images from
control (left), PDBu (middle)-, and FSK (right)-treated synapses. Active synapses were labeled with
FM1-43FX (green); glutamatergic terminals were identified by immunoreactivity to vGluT-1 antisera
(red). Puncta that are positive for vGluT-1 antisera but devoid of FM1-43FX labeling are inactive exci-
tatory synapses (arrows). B, Quantification of the percentage of inactive glutamatergic terminals in
control (20.4 � 2.8%), or PDBu (3.6 � 1.1%)-, and FSK (15.2 � 3%)-treated synapses (*p �
0.00005 compared with control; n 	 5). Summary results represent 250 puncta in each condition
sampled in 50 fields from five independent experiments. Fields were selected and analyzed by an
observer naive to experimental condition. Error bars indicate SEM.
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8A, middle; B), indicating restored vesicle cycling at initially dor-
mant terminals. In contrast to PDBu, acute (2 min) application of
FSK did not change the percentage of inactive synapses (Fig. 8A,
right; B).

We have previously used a fixed area threshold to identify
inactive synapses, whereby active synapses must exceed a thresh-
olded area of 10 pixels in the FM1-43 channel (Moulder et al.,
2006, 2010). By this criterion, a somewhat higher percentage of
inactive synapses was observed in all conditions, but similar com-
parative results were obtained (27.2 � 3.0% control; 7.2 � 1.8%
PDBu; 25.6 � 3.4% FSK).

Our previous work has shown that prolonged treatment (4 h)
with FSK reduces the percentage of inactive synapses (Moulder et
al., 2008). In sibling cultures of those represented in Figure 8, we
repeated the experiments with 4 h FSK treatment and indepen-
dently verified the reduction in dormant terminals with pro-
longed FSK treatment (13.6 � 2.3% presynaptically inactive
glutamatergic terminals compared with 27.2 � 2.9% in control;
n 	 5; p � 0.0008). Therefore, the effects of prolonged activation
of cAMP-dependent pathways are distinguishable from acute po-
tentiation by FSK. In summary, acute treatment of PDBu, but not
FSK, effectively activated transmitter release from the preexisting
presynaptically silent synapses.

PDBu potentiation in depolarization-silenced terminals
We previously reported that increasing network activity by pro-
longed (4 h) depolarization with 35 mM extracellular potassium
([K�]o) depresses synaptic output (Moulder et al., 2004). The
synaptic output is depressed as a result of an increase in presyn-
aptically silent synapses (Moulder et al., 2004). We next asked
whether depolarization-inactivated presynaptic terminals, like
the dormant synapses in baseline conditions, can be reactivated
by PDBu. If PDBu restores release from depolarization-
inactivated terminals, we would expect a greater IAMPAR potenti-
ation and a greater INMDAR recovery in depolarized cultures,
relative to the depressed baseline in these cultures. We depolar-
ized neurons with 35 mM [K�]o for 4 h and examined whether
PDBu treatment more strongly potentiates IAMPAR and more
strongly recovers postblock INMDAR. Depolarization reduced the
average IAMPAR by 70% (Fig. 9A1,A2), as previously reported
(Moulder et al., 2004). In the depolarized neurons, PPR did not
change while the evoked EPSC was depressed (Fig. 9A, legend),
suggesting that vesicle Pr from the remaining active terminals did
not change. These results are consistent with the idea of binary
inactivation of terminals (Moulder et al., 2004). In depolarized
neurons, PDBu treatment did not cause more potentiation of
IAMPAR compared with the control (nondepolarized) (Fig. 9B).
Similarly, PDBu resulted in a similar level of recovery in post-
block INMDAR (Fig. 9C). These results suggest that PDBu does not
potentiate synaptic output from the synapses that are inactivated
by prolonged depolarization.

Discussion
In this study, we used pharmacology, physiology, and activity-
dependent presynaptic labeling to probe the properties of quies-
cent (mute) synapses after synaptic potentiator treatment. These
multiple approaches showed that presynaptically quiescent syn-
apses are rapidly activated by PDBu, but not by FSK or by ele-
vated extracellular Ca 2�. Both basally functional and basally
dormant, refractory terminals are potentiated by PDBu. After
PDBu activation, initially quiescent terminals display heteroge-
neous synaptic Pr reminiscent of the Pr of basally active synapses.
Quiescent synapses contain NMDA receptors pharmacologically

and kinetically indistinguishable from those of active synapses.
Last, PDBu restores release at basally quiescent synapses, but not
at depolarization-inactivated synapses. These observations high-
light different mechanisms underlying seemingly similar second
messenger-mediated presynaptic potentiation; whereas acute
FSK-mediated potentiation mainly enhances synaptic output
from the preexisting active terminals, PDBu increases Pr at the
active terminals and restores release competence at basally dor-
mant synapses. These observations may help to elucidate the roles
of different signaling pathways in temporal or spatial changes of
neuronal connectivity.

Presynaptic causes of PDBu-mediated INMDAR recovery
Several alternative mechanisms could potentially cause the
potentiation-associated revival of the synaptic INMDAR after MK-
801 block. First, transmitter could spill out from synapses as a
result of transmission enhanced by conventional increases in ve-
sicular Pr. This transmitter overlap from active terminals may
taint receptors not previously exposed to transmitter during MK-
801 application and could cause PDBu-induced recovery of
INMDAR. Enhanced presynaptic release increases the likelihood of

Figure 9. PDBu does not reactivate depolarization-inactivated synapses. A, Prolonged de-
polarization (35 mM [K �]o for 4 h) reduced synaptic current but did not affect PPR. Sample
paired AMPAR-mediated EPSCs (50 ms interpulse interval) in control (A1) and in previously
depolarized neurons (A2). EPSC measurements here and in other panels were all performed in
physiological [K �]o (4 mM) (see Materials and Methods). The average amplitude of IAMPAR was
3.80 � 0.94 nA in control (Na �; n 	 9), and 1.07 � 0.34 nA in depolarized neurons (K �; n 	
10; p � 0.03). The paired-pulse ratio (EPSCsecond/EPSCfirst) in control was 0.69 � 0.05 (n 	 9)
and in sibling depolarized neurons was 0.70 � 0.06 (n 	 10; p 	 0.84). B, IAMPAR potentiation
by PDBu was similar in control and in depolarized neurons. Examples of PDBu potentiated
IAMPAR in control (B1) and in depolarized neurons (B2). Average PDBu potentiation in IAMPAR in
control was 264.3 � 70% relative to baseline (n 	 9) and in depolarized cultures it was 266 �
37.7% relative to baseline (n 	 10; p 	 0.98). C, Sample traces of PDBu-mediated recovered
INMDAR in control (C1) and in depolarized neurons (C2). Recovered currents (gray) are superim-
posed on the initial currents (black). Average effect of PDBu on the recovered synaptic INMDAR in
control was 21.6�6.1% relative to the initial current (n	9) and in depolarized neurons it was
31.3 � 6.1% to the initial current (n 	 10; p 	 0.27).
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transmitter spillover, especially when glutamate transporter are
compromised (Mennerick and Zorumski, 1995; Asztely et al.,
1997; Diamond, 2001; Arnth-Jensen et al., 2002; Christie and
Jahr, 2006). In the present study, however, neither of two addi-
tional presynaptic potentiators produced significant INMDAR re-
covery, suggesting that increasing transmission alone, with any
accompanying spillover, is not sufficient to cause current recov-
ery by PDBu after MK-801 block.

A second alternative presynaptic explanation for PDBu-
induced recovery of INMDAR is that PDBu enhances excitability at
axon branches where action potential invasion fails before PDBu
incubation. Several lines of evidence argue against this possibility.
First, artificially enhancing excitability does not recover INMDAR

(supplemental Fig. S1, available at www.jneurosci.org as supple-
mental material). Second, two experimental protocols designed to
circumvent action potentials for evoking release, hypertonicity-
evoked EPSCs and hyperkalemia-induced FM1-43FX labeling, both
suggest that terminals that do not initially participate in release are
recruited by PDBu.

A third alternative explanation for the effects of PDBu after
MK-801 block is postsynaptic modification of NMDARs. Several
studies showed that phorbol esters increase surface expression
(Lan et al., 2001; Scott et al., 2001), alter gating properties
(Durand et al., 1992; Lan et al., 2001; Lin et al., 2006), and en-
hance lateral movement (Fong et al., 2002; Groc et al., 2004) of
NMDARs; inhibiting PKC activity abolishes the modification by
phorbol ester of the receptors (Lan et al., 2001; Fong et al., 2002;
Lin et al., 2006). Several experiments distinguish PDBu-
dependent revival of INMDAR from postsynaptic receptor modifi-
cation. First, with short treatment of PDBu, we failed to detect
significant whole-cell or synaptic current recovery after blocking
all surface receptors, despite robust presynaptic potentiation as-
sessed by IAMPAR. Second, although not all presynaptic effects of
PDBu are PKC dependent, the postsynaptic effects on NMDARs
are PKC dependent (Durand et al., 1992; Lan et al., 2001; Scott et
al., 2001; Fong et al., 2002; Lin et al., 2006). Preventing PKC
activation in the presence of PDBu did not hamper INMDAR re-
covery. Third, the slower progressive NMDAR block of PDBu-
recovered INMDAR compared with PDBu-speeded progressive
block in active synapses excludes simple lateral movement of
NMDARs into active terminals. Fourth, sucrose-evoked AMPAR
EPSCs are potentiated by the amount expected from INMDAR re-
covery experiments (Fig. 5). We cannot fully explain why this
effect of PDBu has not been observed in all previous experiments
(Basu et al., 2007; Wierda et al., 2007), although the small effect
size (25%) relative to effects on evoked EPSCs may partially ex-
plain the discrepancy. Finally, results from presynaptic, activity-
dependent FM dye labeling (Fig. 8) directly support a presynaptic
explanation for PDBu-induced INMDAR recovery.

Presynaptically dormant synapses
Synapses with low functional connectivity, caused either presyn-
aptically or postsynaptically, serve as a reservoir that increases
synaptic malleability (Voronin and Cherubini, 2004; Kerchner
and Nicoll, 2008). Presynaptically silent synapses occur in devel-
oping and mature hippocampal cultures (Tong et al., 1996; Ma et
al., 1999), slices (Kullmann et al., 1996; Gasparini et al., 2000),
spinal cord (Jack et al., 1981), and cultured sensory to motor
neurons in Aplysia (Kim et al., 2003). In hippocampal cultures,
release at quiescent synapses can be recruited by repetitive stim-
ulation (Shen et al., 2006; Yao et al., 2006), application of the
neurotrophic factor BDNF (Collin et al., 2001; Slutsky et al.,
2004), or by prolonged activation of cAMP signaling (Ma et al.,

1999; Moulder et al., 2008), as opposed to the acute cAMP eleva-
tion in the present study. The neurotrophic or activity-dependent
activation of dormant synapses may involve cytoskeletal reorga-
nization at the presynaptic terminals, which facilitates the matu-
ration of release apparatus (Slutsky et al., 2004; Shen et al., 2006;
Yao et al., 2006).

The contrast between immediate actions of FSK and PDBu
may reflect distinct downstream targets of the modulators. The
need for slow, cAMP-dependent unsilencing pathways, nonethe-
less, makes the rapidity of PDBu unsilencing quite surprising and
may suggest multiple routes to synaptic unsilencing. Our results
show that the rapid unsilencing by PDBu is PKC independent.
Because PKC-independent effects of phorbol esters involve the
vesicle priming protein Munc13 (Betz et al., 1998; Rhee et al.,
2002), PDBu-induced synaptic awakening likely involves
Munc13-induced vesicle priming at dormant terminals.

Our previous work has demonstrated a form of activity-
dependent presynaptic adaptation of synaptic output; chronic
depolarization presynaptically silences glutamate transmission
(Moulder et al., 2004, 2006). Depolarization-silenced terminals
are apparently distinct from basally quiescent terminals, as PDBu
restores release at basally quiescent synapses but not at
depolarization-silenced synapses. We have demonstrated this
both with imaging (Moulder et al., 2008) and with electrophysi-
ological assessments (present work). Although reduced levels of
the priming protein Munc13-1 appears to be a commonality be-
tween basally silent and depolarization-silenced synapses (Jiang
et al., 2010), other components contributing to release compe-
tence must differ to explain the selective PDBu sensitivity of ba-
sally dormant synapses. Therefore, there may be at least two
partially independent molecular pathways that lead to presynap-
tic silencing. Additional study is required to delineate the molec-
ular distinction between the two classes of presynaptically silent
synapses.

PDBu-mediated potentiation and synaptic Pr

An increased average Pr from a population of synapses can be
achieved by increasing Pr at each terminal, and/or by increasing
the proportion of high Pr terminals. According to the accelerated
fast decay and the increased fast component in MK-801 progres-
sive block after PDBu potentiation, PDBu seems to increase the
proportion of high Pr terminals. This interpretation is consistent
with the increases of vesicle turnover at active terminals by PDBu
observed by others (Waters and Smith, 2000) and echoes the idea
that PDBu acts on Munc13 to enhance fusion efficiency of vesi-
cles (Basu et al., 2007). A similar synaptic Pr shift is observed with
FSK treatment at the calyx of Held (Kaneko and Takahashi,
2004), suggesting that both FSK and PDBu increase synaptic Pr of
functional terminals.

Interestingly, after PDBu potentiation, the synaptic Pr profile
of initially quiescent synapses does not match the synaptic Pr

profile of the entire population of PDBu-potentiated synapses
(Fig. 6A2). This could represent a deficiency in the quiescent
synapses that renders these synapses unable to exhibit PDBu-
induced Pr potentiation. By this view, PDBu has two entirely
independent effects. One effect increases synaptic Pr at already
active synapses, and the other effect restores dormant synapses to
an active state with a baseline synaptic Pr distribution. Alterna-
tively, the dormant synapses represent synapses at the extreme
low end of the synaptic Pr spectrum. By this view, the PDBu effect
on the dormant synapses is an extension of the observation that
the lowest Pr terminals are most sensitive to PDBu stimulation
(Fig. 6B). This latter view is more parsimonious since it does not
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postulate different molecular mechanisms for the synaptic Pr in-
creases and unsilencing effects. However, this interpretation is
difficult to reconcile with the observations that elevated Ca 2�,
acute FSK treatment, and high potassium depolarization (during
FM1-43FX labeling) are all ineffective in recruiting the PDBu-
sensitive terminals containing low Pr vesicles.

Together, our observations provide evidence for differential
potentiation by synaptic modulators and suggest that presynap-
tically dormant synapses can be rapidly recovered. Our results
suggest multiple molecular and physiological pathways, includ-
ing those that target vesicle priming, can trigger presynaptic un-
silencing. Our studies also provide new insight into the multiple
presynaptic actions of phorbol esters. Rapid awakening of dor-
mant terminals is a form of plasticity that may be particularly well
suited for altering the functional connectivity of neural networks.
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