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Graph theoretical analysis of functional magnetic resonance imaging (fMRI) time series has revealed a small-world organization of
slow-frequency blood oxygen level-dependent (BOLD) signal fluctuations during wakeful resting. In this study, we used graph theoretical
measures to explore how physiological changes during sleep are reflected in functional connectivity and small-world network properties
of a large-scale, low-frequency functional brain network. Twenty-five young and healthy participants fell asleep during a 26.7 min fMRI
scan with simultaneous polysomnography. A maximum overlap discrete wavelet transformation was applied to fMRI time series ex-
tracted from 90 cortical and subcortical regions in normalized space after residualization of the raw signal against unspecific sources of
signal fluctuations; functional connectivity analysis focused on the slow-frequency BOLD signal fluctuations between 0.03 and 0.06 Hz.
We observed that in the transition from wakefulness to light sleep, thalamocortical connectivity was sharply reduced, whereas cortico-
cortical connectivity increased; corticocortical connectivity subsequently broke down in slow-wave sleep. Local clustering values were
closest to random values in light sleep, whereas slow-wave sleep was characterized by the highest clustering ratio (gamma). Our findings
support the hypothesis that changes in consciousness in the descent to sleep are subserved by reduced thalamocortical connectivity at
sleep onset and a breakdown of general connectivity in slow-wave sleep, with both processes limiting the capacity of the brain to integrate
information across functional modules.

Introduction
Graph theoretical analysis of functional magnetic resonance im-
aging (fMRI) time series has revealed a small-world organization
of human functional brain networks (Achard et al., 2006), with
high local clustering and short path length (Bullmore and Sporns,
2009). A small-world topology is a promising model for large-
scale brain networks (Bassett and Bullmore, 2006) as it supports
both specialized processing in local clusters and integrated pro-
cessing over the entire network (Sporns et al., 2004). Small-world
properties of large-scale brain networks have helped characterize
aging processes (Meunier et al., 2009; Supekar et al., 2009), intel-
ligence (van den Heuvel et al., 2009), psychiatric disorders like
schizophrenia (Bassett et al., 2008), and neurodegenerative dis-
orders (Stam, 2009; Stam et al., 2009).

Here, we apply graph theoretical analysis to study functional con-
nectivity in sleep, as the loss of consciousness in sleep is paradoxically
accompanied by similar or even increased functional connectivity
(Ferri et al., 2007, 2008; Horovitz et al., 2008; Dimitriadis et al., 2009;
Larson-Prior et al., 2009). Graph theory analysis of scalp electro-

encephalography (EEG) during sleep revealed not only increased
neocortical connectivity but also increased small-world properties
on specific frequency bands (Ferri et al., 2007, 2008; Dimitriadis et
al., 2009). fMRI studies on slow (�0.1 Hz) spontaneous blood
oxygen level-dependent (BOLD) signal fluctuations during sleep
have focused on so-called resting networks, and reported no or
minimal changes in the default mode network during light sleep
(Horovitz et al., 2008) or a trend for increased connectivity in
other resting networks (Larson-Prior et al., 2009). A breakdown
of the coupling between the anterior and posterior nodes of the
default mode network was found to occur in slow-wave sleep
(Horovitz et al., 2009; Sämann et al., 2009).

According to an information integration account of con-
sciousness (Tononi, 2004), not the connectivity of the system per
se but its capacity to integrate information across modules is
critical in understanding why consciousness fades in early sleep
(Tononi and Massimini, 2008). Increased levels of functional
connectivity could result in lower values for information integra-
tion of the network as a whole (Tononi and Sporns, 2003), and
fading consciousness as a consequence, depending on other net-
work properties. The trend that the fading of consciousness in
early non-rapid eye movement (NREM) sleep is accompanied by
increased cortical connectivity would be in line with an informa-
tion integration account of consciousness if a crucial node, such
as the thalamus (Steriade et al., 1993; McCormick and Bal, 1997),
is excluded from the network. The thalamus shows decreased
activity at sleep onset (Kaufmann et al., 2006), and this tempo-
rally precedes deactivation of the cortex (Magnin et al., 2010);
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but, decreased activity could still result in high functional con-
nectivity with cortical regions when intrinsic fluctuations remain
highly synchronized.

With simultaneous EEG/fMRI measurements during all
NREM stages, we aimed to examine whether light sleep is associ-
ated with increased connectivity and exclusion of the thalamus
from the large-scale brain network. In slow-wave sleep, we ex-
pected a breakdown in (cortical) connectivity as demonstrated by
Massimini et al. (2005) in a high-density EEG study.

Materials and Methods
Participants
Twenty-five young and healthy subjects participated in the study: 12
females with a mean � SD age of 24.8 � 2.5 years; and 13 males with a
mean � SD age of 24.7 � 3.2 years. Subjects were instructed to follow a
regular sleep-wake schedule with bedtimes between 11 P.M. and 8:00
A.M. in the week before the experiment, which was documented by sleep
diaries. Subjects were asked to get up �3 h earlier on the experimental
day to increase the probability of falling asleep in the MRI scanner. Wrist
actigraphy was used during the night and day before the experiment to
control subjects’ adherence to the sleep restriction. Simultaneous EEG/
fMRI measurements started at 9:00 P.M. with EEG montage; in the MRI
scanner, subjects were informed that no active participation was required
in the following 2–3 h, and that they could fall asleep. The study protocol
was in accordance with the Declaration of Helsinki and was approved by
a local ethics review board. Participants provided their written informed
consent after the procedure had been fully explained and were reim-
bursed for their participation.

EEG/fMRI acquisition
Polysomnographic recordings were performed using an MR-compatible
EEG system placed according to the international 10/20 electrode system
with 19 EEG channels referenced against FCz, an electrooculogram, sub-
mental electromyogram, and an electrocardiogram (sampling rate, 5
kHz; EasyCAP modified for sleep, Brain Products; VisionRecorder Ver-
sion 1.03, Brain Products). fMRI was performed at 1.5 tesla (Signa LX,
GE Healthcare) using an eight-channel head coil. Due to technical re-
strictions, a total of 800 functional whole-brain images [echo planar
imaging (EPI)] (repetition time, 2000 ms; echo time, 40 ms; flip angle,
90°; 64 � 64 matrix, in-plane resolution 3.4 � 3.4 mm 2; slices, 25; slice
thickness, 3 mm; gap, 1 mm; oriented along the anterior commissural–
posterior commissural axis) were acquired per fMRI run over 26.7 min.
Sleep was evaluated online using Vision RecView software (Brain Prod-
ucts). This online evaluation of the polysomnographic recordings was
used, in addition to the participant’s subjective report, to verify whether
sleep occurred or the experiment was to be repeated, resulting in a total of
40 fMRI runs.

EEG analysis
EEG data were first corrected for gradient-induced and cardioballistic
artifacts (VisionAnalyzer 1.05, Brain Products). Bandwidth was set to
0.5–30 Hz. Sleep recordings were scored according to the criteria of
Rechtschaffen and Kales (1968) in 20 s epochs. The hypnograms of the 40
recorded 26.7 min sessions were then screened for intervals consisting of
5 min of one specific, uninterrupted sleep stage with a presence of �85%
throughout the epoch, without arousals or movement artifacts in either
EEG or fMRI. This resulted in 93 epochs of the following vigilance stages:
wakefulness (S0: 27); sleep stage 1 (S1: 24); sleep stage 2 (S2: 24); and
slow-wave sleep (SW: 18). One S1 epoch was lost due to technical prob-
lems, resulting in 92 epochs for the final analysis. Details of sleep dura-
tion, subjects’ sleep architecture, and extracted epochs are displayed in
Table 1 and supplemental Table S1 (available at www.jneurosci.org as
supplemental material).

fMRI analysis
Preprocessing. The fMRI preprocessing steps were performed using SPM5
software (www.fil.ion.ucl.ac.uk/spm) and consisted of the following: (1)
slice time correction to account for interleaved slice acquisition; (2) re-
alignment of time series to the first image using rigid body transforma-

tion to correct for head motion (only head movements �2 mm between
two subsequent slices were accepted); and (3) linear and nonlinear spatial
normalization of the images to a standard EPI template in Montreal
Neurological Institute (MNI) space (SPM5 distribution) and resampling
to a voxel resolution of 2 � 2 � 2 mm 3 using a fifth degree spline
interpolation.

Removal of nuisance signals. To remove unspecific signal variation
from the time series, the following regressors were defined in a multiple
regression model and regressed out from the spatially unsmoothed im-
ages: 1– 6, six parameters derived from the realignment step; 7–12, their
respective first-order derivatives; 13–14, global signals within white mat-
ter and CSF; and 15–16, their respective first-order derivatives. This is in
line with previous studies on thalamocortical functional connectivity
(Zhang et al., 2008), which omitted the global signal from the multiple
regression models as it was observed to correlate strongly with the thal-
amus. The resultant residual images contained signal fluctuations not
explained by regressors 1–16, and after addition of the constant value
these images were used for extraction of region-based time courses.

Time course extraction and transformation. Functional images were
parcellated into 90 cortical and subcortical regions using the anatomical
template image created by Tzourio-Mazoyer et al. (2002). Regional time
series were extracted using the mean signal of all voxels inside a particular
region with the Marsbar toolbox (version 0.41) (Brett et al., 2002) for
SPM5. Functional time series underwent a maximum overlay discrete
wavelet transform as implemented by Achard et al. (2006) in the R-package
Brainwaver (http://cran.r-project.org/web/packages/brainwaver), resulting
in four frequency bands (level 1: 0.13– 0.25 Hz; level 2: 0.06 – 0.13 Hz;
level 3: 0.03– 0.06 Hz; level 4: 0.01– 0.03 Hz) with frequency band-specific
correlation matrices of the 90 regions (for the full analysis pipeline, see
supplemental Fig. S1, available at www.jneurosci.org as supplemental
material). As previous studies have shown that small-world properties of
human functional brain networks are most robust at the frequency band
0.03– 0.06 Hz (Achard et al., 2006), and magnetoencephalography and
fMRI studies observed a peak frequency of spontaneous oscillations
�0.05– 0.06 Hz (Cordes et al., 2001; Stam, 2004; Salvador et al., 2005), we
report results regarding this frequency band of interest. Results on level 4
(0.01– 0.03 Hz) can be found in supplemental Figure S2 (available at
www.jneurosci.org as supplemental material). Note that as our epochs
were relatively brief and consisted of 150 time points, the frequency band
0.01–0.03 Hz yielded few data for reliable wavelet correlation estimations.

We performed an additional analysis using a low-pass filter (�0.10
Hz) in FSL 4.0 (www.fmrib.ox.ac.uk/fsl) on the residual images. Extrac-
tion of the time courses occurred according to the same procedure as
described above, and time courses were correlated with Pearson’s R cor-
relation coefficient to obtain a 90 � 90 correlation matrix. The results of
this analysis are reported in supplemental Figure S3 (available at www.
jneurosci.org as supplemental material) and below.

Graph theoretical analysis of functional correlation matrices. The corre-
lation matrices were thresholded to obtain a binary connection matrix
that was used to calculate network properties as the clustering coefficient
C and the mean shortest path length L with the Brain Connectivity Tool-
box for Matlab (Rubinov and Sporns, 2010). Because there is no gold
standard for a threshold for such a binary matrix (e.g., a connection
probability of 10%), we report binary connection matrices with all pos-
sible thresholds unless otherwise stated. The wavelet correlation thresh-
old used to obtain a particular connection probability served as an
indicator for general connectivity, and all Pearson’s R values were
Fisher z-transformed to fulfill the assumption of normality for the para-
metric tests that are described in the subsection Statistical testing. At the

Table 1. Values of sleep stage recordings per fMRI run

Sleep stage Length (min)a

Wakefulness 6.8 � 5.2
Sleep stage 1 5.9 � 4.2
Sleep stage 2 10.0 � 5.4
Slow-wave sleep 4.8 � 5.8
Latency waking to sleep stage 2 6.7 � 4.9
aValues are mean � SD.
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lowest thresholds (e.g., connection probabilities of 10 and 20%), nodes
may be disconnected from the network, resulting in infinite path lengths.
In line with Hayasaka and Laurienti (2010), we therefore calculated the
path length L as the harmonic mean of geodesic distances.

By definition (Watts and Strogatz, 1998), a network has a small-world
organization if the ratio gamma (�), defined as C/Crandom, is �1 and a
ratio lambda (�), defined as L/Lrandom, is �1, with Crandom and Lrandom

reflecting the clustering coefficient and path length of a random network
with the same connection probability. As suggested by Stam et al. (2007),
a random graph should have a similar degree distribution to the original
graph. In line with previous research (Liu et al., 2008), we randomly
rewired thresholded graphs according to a Markov chain (Maslov and
Sneppen, 2002) as implemented in the BCT-toolbox (Rubinov and
Sporns, 2010). Both Crandom and Lrandom were calculated as the average
clustering coefficient and path length of 10 randomly rewired matrices
that were generated for each of the 92 epochs at each threshold. Small-
worldness (�) was calculated as gamma/lambda, with values �1 reflect-
ing a small-world topology.

Visualization of functional brain networks. Binary connection matrices
were visualized using the Pajek software package (vlado.fmf.uni-lj.si/
pub/networks/pajek). For a multidimensional visualization of functional
connectivity in different sleep stages the Kamada–Kawai layout algo-
rithm was used (Kamada and Kawai, 1989), which locates highly con-
nected nodes (network hubs) in the geometrical center and sparsely
connected nodes more peripherally, based on their path length. This
layout algorithm iteratively adjusts the positions and forces the nodes to
minimize the total energy of the system. For this visualization, binary
connection matrices were generated at a connection probability of 25%
to create a network that was sparsely connected but not fragmented in S0.
In addition, differential (anatomical) graphs were created to illustrate
which correlation pairs had an absolute differential correlation ��R���
0.20 between two stages.

Analysis of subsystems. To evaluate subsystem-specific connectivity
changes throughout sleep, we categorized the 90 regions into five sub-
systems according to Mesulam (2000): primary sensory, association, sub-
cortical, paralimbic, and limbic regions (see supplemental Table S2,
available at www.jneurosci.org as supplemental material). The correla-
tion coefficients were grouped into 1 of 15 possible categories (e.g., asso-
ciation–association, association–limbic, association–primary sensory),
averaged per category and Fisher z-transformed to fulfill the assumption
of normality for the parametric tests that are described under the sub-
heading Statistical testing.

Connection length. To examine whether sleep alters the ratio of long
versus short connections, we split all possible connections into two
groups with distances �75 and �75 mm in length in MNI space between
nodes (Achard et al., 2006). The length of a specific connection was
calculated by subtracting the respective [X Y Z] coordinates of two nodes,
i and j, from each other and square root transform the sum of the squared
differential scores, as follows:

Length � �[�Xi � Xj	
2 � �Yi � Yj	

2 � �Zi � Zj	
2].

We then calculated per epoch the mean (z-transformed) correlation co-
efficient for the long distances and the short distances, and the ratio
between both (long-short) correlation values was compared across sleep
stages as described below.

Statistical testing. To test between-stage differences in network prop-
erties and correlations, we generated tables with correlation values and
graph theoretical metrics for all 92 epochs at different thresholds (con-
nection probabilities ranged from 10% to 90% with incremental steps of
10%). We included subject identification as an additional variable to
account for nestedness of the data (e.g., a subject could have an epoch in
several sleep stages) with linear mixed models as implemented in SPSS
16.0. We used a significance level of 0.001 to evaluate the main effect of
sleep, and when the main effect was significant, the direction of the effect
was evaluated with post hoc t tests at a nominal �. We used a Bonferroni-
corrected � to test the main effect of sleep on between- and within-
subsystem correlations (corrected for 15 correlations) and on differences
in single regions such as the thalamus (corrected for 90 regions).

Power spectra. To evaluate whether the relative power in the frequency
band of interest changed throughout sleep, we performed a fast Fourier
transform on the regional time courses. We analyzed the power in the
frequency band of interest (0.03– 0.06 Hz) relative to the total power
(0.01– 0.25 Hz) for each epoch, and used this ratio in a linear mixed
model to account for nestedness of the data as described above.

Results
Correlation threshold values and small-world properties
throughout sleep
There was a significant effect of sleep stage on the wavelet thresh-
old correlation at most thresholds (Fig. 1A, Table 2), with post hoc
tests revealing that sleep stages S1 and S2 had higher wavelet
correlation values than both S0 and SW. There was also a signif-
icant effect of sleep stage on the clustering coefficient C (Fig. 1B,
Table 2), with post hoc tests showing the same direction (S1/S2 �
S0/SW), although for several thresholds S0 had a value equal to S1
and S2 (S0/S1/S2 � SW). However, the Crandom values showed
the same differences across sleep stages (S1/S2 � S0/SW), with
even higher F values for the main effect of sleep (Table 2). There-
fore, the gamma (C/Crandom) values had the reverse direction: the
main effect of sleep stage on gamma was significant at all thresh-
olds, and post hoc tests revealed that SW � S0 � S1/S2 or SW/
S0 � S1/S2 (Table 2, Fig. 1C). The effect of sleep on path length L
and lambda (L/Lrandom) was not significant except at a few of the
lowest thresholds (Table 2, Fig. 1D,E). The effect of sleep on
small-worldness � was significant, with post hoc tests revealing
that SW � S0 � S1/S2 or SW/S0 � S1/S2; this effect was driven by
gamma. Note that these changes across sleep stages were most
robust for this frequency band (0.03– 0.06 Hz) (for the frequency
band 0.01– 0.03 Hz, see supplemental Fig. S2, available at www.
jneurosci.org as supplemental material) and that a similar pattern
could be observed in the analysis of the low-pass-filtered time
series (� 0.10 Hz) (see supplemental Fig. S3, available at www.
jneurosci.org as supplemental material).

To examine the increased Crandom values in light sleep, we first
evaluated the random rewiring process in a Knearest-neighbor versus
K plot of the average correlation matrices thresholded at a con-
nection probability of 30% (supplemental Fig. S4, available at
www.jneurosci.org as supplemental material). This plot shows
that the Knearest-neighbor of a node is independent from its K, as
expected in a random graph. We subsequently examined the C
versus K plots at the same threshold, and these illustrated that
although the C values are generally higher in S1 and S2, so are the
Crandom values belonging to the particular distributions in S1 and
S2 (supplemental Fig. S5, available at www.jneurosci.org as sup-
plemental material). Histograms of the sleep-specific degree dis-
tributions (supplemental Fig. S6, available at www.jneurosci.org
as supplemental material) demonstrated that S1 and S2 have a
flatter distribution than S0 and SW. To compare these sleep
stage-specific distributions with a flat distribution with equal fre-
quencies per category, we recoded K into four categories (see
legend to supplemental Fig. S6, available at www.jneurosci.org as
supplemental material), and we observed that S1 and S2 did not
significantly differ from a flat distribution [� 2(3) � 4.4, p � 0.221
and � 2(3) � 3.6, p � 0.308, respectively], whereas S0 and SW did
[� 2(3) � 19.4, p � 0.001 and � 2(3) � 37.8, p � 0.001].

Subsystem connectivity throughout sleep
The differences in general connectivity across sleep stages were
significant in connections involving association, primary sen-
sory, and paralimbic cortices (for Fisher z-transformed correla-
tion values, see Table 3). Post hoc tests revealed that correlations
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were highest in S1 and S2, and lowest in SW, with S0 taking an
intermediate position for some subsystem correlations. Between-
sleep-stage differences were insignificant or nominally significant
when the correlation pair included either the subcortical or the
limbic subsystem, with one exception (primary sensory–limbic).

Differential connectivity between sleep stages
Between-stage differential connectivity graphs are displayed in
Figure 2 and involved nodes are described in supplemental Table
S3 (available at www.jneurosci.org as supplemental material). In
the contrast S0 � S1, the differential correlations were limited to
the bilateral thalamus: of a total of 89 pairwise correlations, the
left thalamus had a �R � 0.20 in 62 correlations and the right

thalamus in 46 correlations. As an illustration of how dissimilar
this differential connectivity of the thalamus was to other regions,
the region with the third-strongest differential connectivity from
S0 to S1 (superior temporal gyrus) had a �R � 0.20 in only three
pairwise correlations. In S2 and SW, these correlations were par-
tially restored: the left thalamus had 50 and the right thalamus 22
correlations with a �R � 0.20 in the contrast SW � S1 (see
supplemental Fig. S2, available at www.jneurosci.org as supple-
mental material). A linear mixed models ANOVA showed that
there was a significant effect of sleep on mean Fisher z-values of
the left thalamus (F(3,84.5) � 6.75, p � 0.05/90 � 0.0006) and on
mean Fisher z-values of the right thalamus (F(3,83.9) � 6.45, p �
0.0006), with the latter threshold reflecting an � that was Bonfer-

Figure 1. Connectivity and small-world metrics throughout sleep at various thresholds, depicting the wavelet correlation threshold, clustering coefficient ( C), gamma (C/Crandom), path length
( L), lambda (L/Lrandom), and small-worldness � (gamma/lambda) at all possible thresholds for S0, S1, S2, and SW, for the frequency band 0.03– 0.06 Hz. A, There was a significant effect of sleep on
Rthresh, with post hoc tests indicating that values were higher in S1/S2 than in S0/SW (Table 1). B, A significant effect of sleep on C is shown, with post hoc tests revealing higher values in S1/S2 than
in S0/SW. C, Shows the reverse pattern for gamma as Crandom values were also highest in light sleep. D, E, The effect of sleep on L and lambda was not robustly significant. F, The significant effect of
sleep on sigma (driven by gamma) is depicted, with post hoc tests revealing higher values in S0/SW than in S1/S2, or intermediate values for S0. **Significant at 0.001; *significant at 0.05.

Table 2. Differences in small-world metrics across sleep stages at different thresholds (mean degree K/connection probability)

K Correlation C Crandom L Lrandom C/Crandom L/Lrandom Sigma

9 (10%) 9.8 (86.0)** 2.7 (82.0) 5.7 (83.3)* 4.8 (84.2)* 5.4 (84.2)* 7.7 (83.3)** 1.7 (81.2) 7.9 (83.7)**
18 (20%) 8.9 (86.1)** 0.7 (86.2) 8.4 (84.8)** 3.8 (85.6)* 4.1 (85.2)* 8.0 (84.8)** 2.5 (84.6) 8.7 (84.9)**
27 (30%) 8.3 (86.1)** 8.0 (86.3)** 10.1 (85.0)** 1.3 (84.8) 0.9 (83.6) 8.1 (83.9)** 2.2 (85.3) 8.5 (84.1)**
36 (40%) 7.9 (86.1)** 11.0 (86.3)** 10.4 (85.4)** 0.3 (83.9) 1.7 (84.0) 8.3 (83.3)** 1.4 (85.5) 8.4 (83.8)**
45 (50%) 7.5 (86.1)** 9.5 (86.2)** 10.7 (85.6)** 2.2 (84.2) 5.1 (85.5)* 9.4 (83.7)** 2.8 (85.6)* 9.7 (84.1)**
54 (60%) 7.3 (86.1)** 9.3 (86.2)** 10.7 (85.7)** 4.5 (85.6)* 6.3 (85.6)* 9.9 (84.1)** 3.1 (86.1)* 10.3 (84.2)**
63 (70%) 6.8 (86.1)** 9.3 (86.0)** 10.5 (85.7)** 6.0 (85.6)* 6.8 (85.7)** 9.7 (84.0)** 1.8 (88.0) 10.0 (84.0)**
72 (80%) 5.9 (86.1)* 9.4 (85.9)** 10.0 (85.7)** 6.6 (85.6)** 6.9 (85.6)** 8.9 (84.3)** 1.2 (88.0) 9.2 (84.3)**
81 (90%) 4.4 (86.1)* 9.0 (85.7)** 9.3 (85.7)** 6.9 (85.5)** 6.9 (85.5)** 8.4 (84.2)** 2.0 (88.0) 8.5 (84.2)**
Post hoca S1/S2 � S0/SW S1/S2 � S0/SW S1/S2 � S0 � SW S1 � S0/SW S0/SW � S1/S2 SW � S0 � S1/S2 S2 � S0/SW SW � S0 � S1/S2

(S1/S2 � S0 � SW) (S0/S1/S2 � SW) (S1/S2 � S0/SW) (SW � S1/S2) (S0/SW � S1/S2) (S0/SW � S1/S2)

F values of the main effect of sleep are provided with the adapted df2 between parentheses (df1 � 3).
aPost hoc test results at most thresholds; alternative (and less frequent) results are between parentheses.

*p � 0.05; **p � 0.001.

11382 • J. Neurosci., August 25, 2010 • 30(34):11379 –11387 Spoormaker et al. • Small-Worldness in Sleep



roni corrected for 90 regions. Post hoc tests revealed that for the
bilateral thalamus values were higher in S0 than in S1/S2/SW.

The increase in connectivity in S1 and S2 was mostly confined
to primary sensory and association cortices (see supplemental
Table S3 and supplemental Figs. S7–S9, available at www.
jneurosci.org as supplemental material), with subcortical regions
and angular and cingulate gyri as notable exceptions. The reduc-
tion in connectivity in SW additionally affected the hippocampus
and adjacent regions. Several regions in the temporal lobe (hip-
pocampus, parahippocampal gyrus, middle temporal gyrus, and
temporal pole) had more positive correlations in S1 than SW (see
supplemental Fig. S7, available at www.jneurosci.org as supple-
mental material). Differences in organization of the large-scale
functional brain network are depicted in Figure 3, in which the thal-
amus is disconnected from the network in S1 and S2. Note the
expansion of the network in association, primary sensory, and paral-
imbic cortices in SW.

Decrease in the ratio long versus short distance correlations
throughout sleep
There was a significant effect of sleep on the z-transformed cor-
relation values of short connections (� 75 mm) (F(3,86.3) � 7.45,
p � 0.001), and post hoc tests revealed that values were higher in
S1/S2 than in S0/SW. In addition, we observed a similar effect of
sleep on the z-transformed correlation values of long connections
(� 75 mm) (F(3,86.0) � 8.67, p � 0.001), with post hoc tests again
revealing that values were higher in S1/S2 than in S0/SW. There
was a trend for a significant post hoc difference between S0 and
SW regarding long-connection correlation values ( p � 0.090),
which reflected that correlation values of long connections were
more strongly reduced in SW than short connections. When we
tested this with the ratio of long versus short z-transformed cor-
relation values, we noted a significant effect of sleep (F(3,85.2) �
4.11, p � 0.009), with post hoc tests showing that this ratio (long/
short) was lower in SW than in S0/S1/S2 (all p � 0.022). There
were no differences in this ratio between S0 and S1, S1 and S2, or
S0 and S2 (all p � 0.330).

Differences in relative power across sleep stages
There were few changes in the relative power (frequency band,
0.03– 0.06 Hz relative to 0.01– 0.25 Hz) in any of the 90 tested

regions, with the only nominally significant changes occurring in
the left caudate and putamen and right supramarginal gyrus ( p �
0.05, SW � S0/S1/S2) (see supplemental Table S1, available at
www.jneurosci.org as supplemental material). These differences
were not significant at an � that was Bonferroni corrected for 90
regions. Note that there were no differences in absolute power for
the frequency band 0.03– 0.06 Hz between S0 and S1 for the left
thalamus (t(48) � 0.98, p � 0.334), or for the right thalamus (t(48) �
0.83, p � 0.412).

Discussion
We observed that in the transition from wakefulness to light sleep
stage S1, there was an increase in the correlation threshold to
generate a network with a given connection probability. More-
over, the thalamus disconnected from the large-scale functional
brain network at sleep onset. In the descent from light to slow-
wave sleep, corticocortical functional connectivity decreased,
and there was a more pronounced reduction in the correlation
strength of long than of short connections. In general, functional
connectivity was highest in light sleep and lowest in slow-wave
sleep, with wakefulness taking an intermediate position at some
thresholds. There was also a significant effect of sleep on small-
world properties, in particular on local clustering values, which
were highest in slow-wave sleep and lowest in light sleep when
compared with values of random networks. This indicates that
the large-scale functional brain network moves toward random-
ness in light sleep, whereas the reduced long-range connectivity
and increased local clustering in slow-wave sleep are indicative of
a shift toward a regular network (Watts and Strogatz, 1998), al-
though a small-world topology (� � 1) was present in all stages.

Corticocortical connectivity throughout sleep
We observed a widespread increase in corticocortical connectiv-
ity in light sleep stages (S1/S2, compared with wakefulness), but a
strong reduction of corticocortical connectivity in slow-wave
sleep. These findings extend prior simultaneous EEG/fMRI stud-
ies on BOLD signal fluctuations during sleep, which reported that
functional connectivity was maintained in light sleep and broke
down in slow-wave sleep. Horovitz et al. (2008) noted an increase
in BOLD signal fluctuations in the visual cortices, auditory cor-
tices, and the precuneus, among others, and that default mode

Table 3. Between sleep-stage differences in subsystem connectivity tested by linear mixed models on the Fisher z-transformed correlation coefficients (df1 � 3)

Subsystems F df2 p Post hoc ( p � 0.05)

Neocortical connections
Association–Association 9.15 86.0 �0.001** S1/S2 � S0 � SW
Association–Primary 11.16 85.7 �0.001** S1/S2 � S0 � SW
Primary–Primary 7.69 85.2 �0.001** S1/S2 � S0/SW

Neocortical/(para)limbic connections
Association–Paralimbic 11.82 85.2 �0.001** S1/S2 � S0/SW
Association–Limbic 2.42 85.6 0.072
Limbic–Primary 4.94 83.4 0.003** S1 � S2 � SW, S0 � SW
Paralimbic–Primary 15.06 85.7 �0.001** S1/S2 � S0/SW

Limbic/paralimbic connections
Limbic–Limbic 0.61 84.7 0.611
Limbic–Paralimbic 1.95 85.7 0.127
Paralimbic–Paralimbic 6.76 84.5 �0.001** S1/2 � S0/W

Connections including the subcortical subsystem
Association–Subcortical 2.76 88.0 0.047* (S0 � S2/W)
Limbic–Subcortical 0.30 86.1 0.826
Paralimbic–Subcortical 1.35 88.0 0.263
Primary–Subcortical 1.33 82.6 0.272
Subcortical–Subcortical 0.79 84.4 0.505

*Significant at nominal � of 0.05; **significant at Bonferroni-adapted � of 0.05/15 � 0.0033.
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network connectivity persisted in light
sleep. Sämann et al. (2009) noted the con-
tinued presence of the default mode net-
work in light sleep with a trendwise decrease
in intranetwork connectivity. Larson-Prior
et al. (2009) reported no measurable
changes in functional connectivity in vari-
ous sensory and cognitive resting networks
from wakefulness to light sleep, while an in-
crease in functional connectivity was ob-
served in the dorsal attention network. In
slow-wave sleep, a breakdown of the corre-
lation between the anterior and posterior
nodes of the default mode network was ob-
served (Horovitz et al., 2009; Sämann et al.,
2009), with the posterior areas maintaining
or even strengthening their connectivity
(Horovitz et al., 2009).

Our results extend these previous re-
ports by showing that in particular primary
sensory and association cortices showed
sleep stage-specific differences with an in-
crease in light sleep, and that the reduction
in connectivity in slow-wave sleep was most
pronounced in long-range connections.
This breakdown of corticocortical and long-
range connectivity in slow-wave sleep paral-
lels a combined high-density EEG and
transcranial magnetic stimulation (TMS)
study during sleep (Massimini et al., 2005),
which reported that TMS-induced activa-
tion spread over the cortex during wakeful-
ness but remained local in slow-wave sleep.
The focal pattern of changes in connectivity
across sleep stages needs further attention,
as we observed a more robust reduction of
functional connectivity in slow-wave sleep
in occipital, temporal, and parietal cortices
than in prefrontal cortices. Furthermore,
the increase in corticocortical connectivity
in light sleep did not occur in all regions;
notable exceptions were the subcortical re-
gions and the angular and cingulate gyri.

Thalamocortical connectivity
throughout sleep
We observed that there was one bilateral
region with a higher connectivity in wake-
fulness than in light sleep: the thalamus.
This shows that the paradoxical increase
in functional connectivity in cortical re-
gions in light sleep is accompanied by
exclusion of a pivotal node from the
thalamocortical network, showing that
the fading of consciousness in light sleep
has a temporal relationship with reduced
thalamocortical (but not corticocortical)
connectivity. This is in line with the infor-
mation integration theory of conscious-
ness (Tononi, 2004), which states that not connectivity per se but
rather the capacity to integrate information across different mod-
ules determines the fading of consciousness in early NREM sleep
(Tononi and Massimini, 2008).

The reduction in thalamocortical correlations was specific to
NREM sleep stage 1, as there was a trend for partial restoration of
thalamocortical connectivity in sleep stage 2 and slow-wave sleep.
Sleep stage 1 is considered a transition period rather than a sleep

Figure 2. Differential connectivity graphs. Figure 2 illustrates differences in connections of 90 cortical and subcortical regions in
the transition from S0 to S1 and S2, and finally to SW, with lines depicting a ��R��� 0.20 between two stages. Top left, Illustrates
the breakdown of thalamocortical connectivity from S0 to S1, whereas the top right displays the increased corticocortical connec-
tivity in S1 compared with S0. There are few differences between S1 and S2, whereas a reduction in corticocortical connectivity in
SW is depicted in the lower left panel (for the other contrasts, see supplemental Fig. S7, available at www.jneurosci.org as
supplemental material; regions with at least 15 differential connections are described in supplemental Table S3 available at
www.jneurosci.org as supplemental material). Note that the current threshold of ��R���0.20 is an arbitrary threshold as z-values
for correlation differences fell between [-1.5; 1.5] (see supplemental Figs. S8 and S9, available at www.jneurosci.org as supple-
mental material) and were not significant in univariate tests due to modest group sizes. Figure 2 is provided as an illustration of
between-stage connectivity differences that are described in Table 3 or in the Results section.
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stage per se by several authors (Johnson et al., 1976; Ogilvie et al.,
1991), with sleep stage 2 reflecting more consolidated sleep. Au-
ditory target detection is higher in sleep stage 1 than stage 2
(Campbell and Colrain, 2002; Cote et al., 2002), although waking
detection levels are much higher (Cote et al., 2002). Here, the

subclassification of stage 1 into early stage 1 sleep (stage 1a) and
later stage 1 sleep (stage 1b) may be informative, as detection
levels in late stage 1 sleep appear reduced to levels typical for
consolidated sleep (Niiyama et al., 1994). With our data, we can
conclude that the breakdown of thalamocortical connectivity as

Figure 3. Algorithmic graphs of wakefulness and each NREM sleep stage. The networks represent binary connections, locally organized by a layout algorithm (Kamada and Kawai, 1989)
implemented in the Pajek software package. The algorithm draws distances between nodes as a function of path length. Well-connected nodes (hubs) appear more central, whereas more isolated
regions are located in the periphery. This algorithm further iteratively adjusts the positions of nodes and forces them to reduce the total energy of the system to a minimum (for labels, see
supplemental Table S2, available at www.jneurosci.org as supplemental material). For this visualization, binary connection matrices were generated at a connection probability of 25% to create a
network that was sparsely connected but not fragmented in S0.
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measured by BOLD signal fluctuations has a temporal relation-
ship with falling asleep but not with the consolidation or the
deepening of sleep in later sleep stages. Partial restoration of
thalamocortical connectivity in later sleep stages could be a con-
sequence of sleep-specific phenomena originating in the thala-
mus, such as sleep spindles (Steriade et al., 1994).

Small-world properties throughout sleep
Achard et al. (2006) observed that small-world properties of a
large-scale functional brain network with 90 nodes were most
robust for the 0.03– 0.06 Hz frequency band. We analyzed this
frequency band of interest throughout sleep and observed a main
effect of sleep on local clustering but not characteristic path
length, which was also noted in studies on small-world properties
in sleep that analyzed EEG synchronization (Ferri et al., 2007,
2008; Dimitriadis et al., 2009). In line with Ferri et al. (2008), we
found that the clustering coefficient was increased in light sleep;
however, in our data the clustering coefficients in light sleep were
at the same time closest to clustering coefficients of randomly
rewired graphs. The ratio gamma (C/Crandom) was therefore low-
est in light sleep stages and highest in wakefulness and slow-wave
sleep. This finding shows that the increase in corticocortical con-
nectivity in light sleep was accompanied by a network organi-
zation that moved toward randomness. As Ferri et al. (2008)
observed, the reverse direction for gamma values (highest in light
sleep) at delta and alpha frequency bands, the frequency band
specificity of differences in small-world properties throughout
sleep requires further study.

We further observed an increase in local clustering compared
with random values in slow-wave sleep, with higher values for
gamma in slow-wave sleep than in wakefulness at several
thresholds. Although there were no significant differences for
characteristic path length or its ratio lambda, the correlation val-
ues of physical long-distance connections were sharply reduced
in slow-wave sleep. As a result, the large-scale functional brain
network in slow-wave sleep demonstrated both high “cliqueness”
and fewer physical long-range connections, which reflects a move
toward a regular network (Watts and Strogatz, 1998). This net-
work organization provides a functional brain state optimal for
reprocessing information in segregated functional systems,
which is in accord with a memory reprocessing hypothesis of
slow-wave sleep (Diekelmann and Born, 2010). The functional
relevance of a shift of the large-scale low-frequency functional
brain network to more randomness in light sleep, and to more
regularity in slow-wave sleep, needs further attention, as network
reconfiguration in sleep may well be a key mechanism for our
understanding of plasticity taking place during sleep (Ferri et al.,
2008).

Methodological considerations
The advantage of fMRI over EEG is that connectivity of subcor-
tical structures can be evaluated, but the poor temporal resolu-
tion of fMRI places a restriction on the frequency bands that can
be examined. Moreover, the temporal resolution of fMRI re-
quires long epochs for a reliable estimation of functional connec-
tivity. In our study, we used 300 s epochs containing 150 time
points, an epoch length that is not uncommon for analyses of
resting-state functional connectivity, albeit relatively short.
Longer time series would lead to better estimates of functional
connectivity (Bullmore et al., 2004), manifest in smaller confi-
dence intervals of wavelet correlations (relevant for the frequency
band 0.01– 0.03 Hz). However, these have the practical difficulty
that sleep measurements in the MRI scanner rarely contain pro-

longed intervals of one continuous sleep stage. The noise and
uncomfortable sleeping position increase the chance of transi-
tions between sleep stages (and wakefulness). Our analysis is
therefore a result of optimizing the balance between epoch length
and epoch amount for analysis.

During preprocessing, we controlled for nuisance factors that
may inflate wavelet correlations of fMRI time series (Bullmore et
al., 2004) by regressing out movement, white matter, and CSF
fluctuations and extracting time courses of regions of interest
from the residual images. In a comparison of several preprocess-
ing strategies, Weissenbacher et al. (2009) reported that the spec-
ificity of positive resting-state correlations is optimal when, in
addition, global signal changes are removed. We refrained from
this option as the global signal is highly correlated with the thal-
amus and was therefore excluded from previous studies on
thalamocortical connectivity (Zhang et al., 2008), and since con-
trolling for the global signal also generates artificial anticorrela-
tions that may hamper interpretation of graph theory analyses.

Anatomical parcellation of the supratentorial brain compart-
ment was performed using the Automated Anatomic Labeling
(AAL) atlas (Tzourio-Mazoyer et al., 2002). We used this region-
based approach (Achard et al., 2006; He et al., 2007; Bassett et al.,
2008; Supekar et al., 2009; Wang et al., 2009) instead of a voxel-
wise approach (Eguíluz et al., 2005; van den Heuvel et al., 2008),
although voxelwise approaches provide enhanced spatial local-
ization and increased small-world properties (Hayasaka and
Laurienti, 2010). Since the AAL scheme is based on conventional
macroscopic anatomical landmarks, it does not necessarily reflect
the functional organization of the brain, as for instance that de-
rived from resting state network analyses (Fox and Raichle,
2007). This may affect some of the bivariate connections reported
here, possibly leading to an underestimation of functional
connectivity. Since we aimed to examine differences in small-
worldness across sleep stages, we chose the more conservative
region-based approach.

Conclusion
Our study indicated that graph theory and connectivity metrics
provide a promising framework to describe functional dynamics
across different sleep stages. Our results may be relevant to the
debate over whether low-frequency BOLD signal fluctuations al-
low us to describe changes in consciousness (He and Raichle,
2009; Koch, 2009) and underline the important role of intrinsic
human brain organization in such dynamic phenomena as sleep.
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