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Target-Specific Encoding of Response Inhibition: Increased
Contribution of AMPA to NMDA Receptors at Excitatory
Synapses in the Prefrontal Cortex
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Impulse control suppresses actions that are inappropriate in one context, but may be beneficial in others. The medial prefrontal cortex
(mPFC) mediates this process by providing a top-down signal to inhibit competing responses, although the mechanism by which the
mPFC acquires this ability is unknown. To that end, we examined synaptic changes in the mPFC associated with learning to inhibit an
incorrect response. Rats were trained in a simple response inhibition task to withhold responding until a signal was presented. We then
measured synaptic plasticity of excitatory synapses in the mPFC, using whole-cell patch-clamp recordings, in brain slices prepared from
trained rats. Response inhibition training significantly increased the relative contribution of AMPA receptors to the overall EPSC in
prelimbic, but not infralimbic, neurons of the mPFC. This potentiation of synaptic transmission closely paralleled the acquisition and
extinction of response inhibition. Using a retrograde fluorescent tracer, we observed that these plastic changes were selective for efferents
projecting to the ventral striatum, but not the dorsal striatum or amygdala. Therefore, we suggest that response inhibition is encoded by
a selective strengthening of a subset of corticostriatal projections, uncovering a synaptic mechanism of impulse control. This information
could be exploited in therapeutic interventions for disorders of impulse control, such as addiction, attention deficit– hyperactivity
disorder, and schizophrenia.

Introduction
A deficit in impulse control, described as the tendency toward
unplanned actions without due consideration of their conse-
quences (Moeller et al., 2001), is a primary characteristic of many
psychiatric disorders. This includes, but is not limited to, drug ad-
diction, attention deficit–hyperactivity disorder, schizophrenia, ob-
sessive–compulsive disorder, pathological gambling, binge eating,
and antisocial personality disorders. These disorders also share a
common element of altered frontal cortical functioning, fitting
with evidence that frontal lobe damage disrupts inhibition of
inappropriate actions (Miller, 1992).

Extensive animal studies propose a central role for the medial
prefrontal cortex (mPFC) in impulse control. First, defined ana-
tomical lesions in rodents have isolated behavioral disinhibition
to the mPFC (Chudasama et al., 2003; Dalley et al., 2008). Sec-
ond, blockade of glutamatergic transmission (Carli et al., 2006)
or inactivation of the mPFC by muscimol infusion (Narayanan
and Laubach, 2008) increases premature responses in tasks that
require subjects to inhibit responding before a signal. Third, ac-
tivity of mPFC neurons increases during periods that subjects

must inhibit a response (Niki and Watanabe, 1976, 1979). Persis-
tent firing of mPFC neurons, therefore, may signal subcortical tar-
gets to inhibit a motor response (Narayanan and Laubach, 2006).

The mPFC is not a unitary structure, but is divided into sub-
regions based on connectivity and functionality (Heidbreder and
Groenewegen, 2003). The efferent projections of the mPFC are
heterogeneous (Vertes, 2004; Gabbott et al., 2005; Wang et al.,
2006), with the prelimbic and infralimbic regions making denser
projections to the striatum and amygdala, respectively. Projec-
tions from the mPFC to the striatum are of particular interest to
the current study, as this region is implicated in impulse control
(Dalley et al., 2007).

Despite extensive investigation into the neuropharmacologi-
cal substrates of impulse control (see Hayton and Olmstead,
2009, for a review), few studies have examined the synaptic mech-
anisms that underlie this process. In fact, the neuronal changes
associated with the acquisition of inhibitory control remain un-
derstudied. We addressed this gap in the literature by examining
plasticity of excitatory synaptic transmission within the mPFC.
More specifically, we combined behavioral testing with patch-
clamp recordings in the whole-cell configuration to determine
how the mPFC encodes impulse control.

Rats were trained in a simple response inhibition (RI) task; we
then prepared brain slices containing the mPFC and examined
changes in glutamatergic transmission in these subjects. We hy-
pothesized that learning to withhold a response would increase
the contribution of the AMPA relative to the NMDA component
of EPSCs, a widely used indicator of plasticity at excitatory syn-
apses (Nicoll and Malenka, 1999; Ungless et al., 2001).
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In a second and third set of experiments, we recorded from
slices prepared from rat brains midway through acquisition of the
task, and following extinction of response inhibition. In a final
experiment, we microinjected a retrograde fluorescent tracer into
three subcortical targets of the mPFC: the ventral striatum, dorsal
striatum, and basolateral amygdala. We then recorded from neu-
rons projecting to these specific targets to determine whether
changes in synaptic transmission were selective to a specific cor-
tical efferent.

Materials and Methods
Subjects. One hundred eight male Long–Evans rats (Charles River), aged
21 postnatal days (PND) at the start of the experiment, were singly
housed in standard polycarbonate cages on a reverse light– dark cycle
(lights on at 7:00 P.M.). All testing was conducted during the dark cycle.
During a 10 d acclimatization period, rats had ad libitum access to food
(Lab Diet; PMI Nutrition International) and water. Three days before
training, food was restricted to 120 min of daily ad libitum access, such
that animals gained 10 –15 g per week.

Subjects in the retrograde labeling experiments (n � 53) had fluores-
cent microspheres injected into several prelimbic target regions. At age
35– 46 PND, rats were anesthetized with isoflurane (2–5% at a rate of 2 L
of O2/min) and the skull was exposed with 1.5 cm dermal incision run-
ning caudally along the midline of the skull. The skin was retracted and a
small hole was drilled using a dental drill. A 500 nl Hamilton Syringe
(Hamilton) was then lowered into the ventral striatum [�1.3 anteropos-
terior (AP), �1.5 lateral (L), �6.5 dorsoventral (DV)], dorsal striatum
(lateral: 0.0 AP, �3.7 L, �5.2 V; medial: 0.0 AP, �1.9 L, �5.0 V), or
basolateral amygdala (�2.5 AP, �4.5 L, �9.0 V), and 75 nl of fluorescent
microbeads (0.04 �m far red-fluorescent TransFluoSpheres beads; In-
vitrogen) was injected over 60 s. The rats received 1 mg/kg Anafen both
preoperatively and postoperatively for 3 d. Subjects were then food re-
stricted for 3 d, and training began as described below. Following slice
preparation (discussed below), the remaining brains were fixed in para-
formaldehyde and the location of microbead infusions was verified post-
mortem. Data from subjects with injections beyond the anatomical
boundaries of the intended targets were discarded.

All experiments were conducted in accordance with the guidelines
provided by the Canadian Council on Animal Care, and were approved
by the Queen’s University Animal Care Committee.

Apparatus. Behavioral testing was conducted in operant boxes (26.5 �
22.0 � 20.0 cm), each housed in a sound-attenuating chamber (built in
house). Each box was fitted with two retractable levers positioned on one
wall. A food magazine was located between the two levers, which dis-
pensed 45 mg dustless food pellets (BioServ). Signal lights were located 4
cm above each lever and the food magazine, and an indirect house light
illuminated the entire chamber. A tone generator produced a sine-wave
12–16 kHz, 80 –90 db tone. A standard PC in an adjacent room con-
trolled the equipment and was used for data collection (software written
in-house using BASIC).

Behavioral procedures. Behavioral inhibition was assessed in the RI
task, which is a modified version of the signaled nose-poke task for mice
(Bowers and Wehner, 2001). Initially, rats were magazine trained for 1 d,
receiving 20 sucrose pellets on a variable-time 90 s schedule. Rats were
then trained to lever press for food on a continuous reinforcement sched-
ule. Only one lever was inserted into the chamber, with the lever assign-
ment (left vs right) counterbalanced across animals. This lever remained
consistent for future stages of the experiment. A signal (lever light) was
turned on throughout these sessions, except during delivery of the re-
ward (1 s). Training continued until the rat earned a minimum of 80
pellets in a 60 min session for 2 consecutive days.

Rats then progressed to the full RI task. Trials progressed through an
intertrial interval (ITI), premature phase, and response phase (see Fig.
1 A). During the 10 s ITI, all lights were extinguished and the lever was
retracted. During the premature phase (variable duration, see below), the
lever was extended, the tone activated, and the house light illuminated.
Lever presses during this period reinstated the ITI with no delivery of a
sucrose pellet. If the rats did not respond during the premature phase, the

trial progressed to the response phase (10 s), which was signaled by
illumination of the lever light. A lever press during the response phase
delivered a sucrose pellet, illuminated the magazine light for 1 s and
initiated the next trial. If the response phase elapsed with no lever press,
the lever retracted and the next trial was initiated. In each trial, responses
were classified as “premature,” “correct,” or “omission.” Sessions were
terminated once rats obtained 100 pellets or completed 200 trials, unless
otherwise indicated.

Rats were initially trained without a delay for two sessions. Subse-
quently, animals were trained on a 2 s delay, and advanced to a 4 s delay
after achieving �80% accuracy for two consecutive sessions. One rat was
advanced to the 4 s delay after failing to reach this criterion after 15
sessions. Electrophysiological measurements began after rats achieved
�80% accuracy at the 4 s delay for two consecutive sessions.

Operant control rats underwent an identical training program, but the
lever was withdrawn during the premature phase (Fig. 1 B), preventing
premature responses. Yoked controls received identical cues as the RI
task, such that all lights, sounds, lever extensions/retractions were iden-
tical to the experimental group, but reward deliveries were automatic and
independent of lever presses. Reward delivery was set at 1 s to match
mean response time in the RI group (Fig. 1C). Yoked and operant con-
trols were matched to rats in the RI task such that they underwent an
identical number of sessions at each delay period. Food restricted con-
trols were given an identical feeding schedule as other subjects, but did
not receive any behavioral training. Age controls were left in their home
cage with ad libitum access to food for the duration of the experiment.
During extinction training (Fig. 1 D) any response after lever extension
(correct or premature) resulted in reward delivery. That is, subjects con-
tinued to receive a sucrose pellet for each lever press, but no longer had to
withhold responding until the discriminative stimulus was presented.

In a separate experiment, we recorded from brain slices prepared from
rats as they acquired the ability to withhold responding. Specifically,
animals were trained on only a 4 s delay with 100 trials per session, and we
calculated AMPA/NMDA in groups of rats on the first session of the
response inhibition task in which they achieved 40% (n � 5), 60% (n �
4), or 80% (n � 4) accuracy.

To further probe the plasticity of mPFC synapses, we examined
whether AMPA/NMDA would be retained after extinction of the re-
sponse inhibition. Three groups of rats were trained on the 4 s delay, until
all subjects had achieved �80% accuracy. Next, one group underwent
extinction by reinforcing any responses, either premature or correct,
until accuracy was reduced to �20% for 2 consecutive days (Extinct
group; n � 5). A second group received a matched number of days
without any training (Pause group; n � 5), and a third group performed
additional sessions of the standard response inhibition task for an equal
number of days (Train group; n � 4).

Preparation of brain slices. Within 2 h of the final training session, rats
were anesthetized with isoflurane and killed, and the brains were ex-
tracted for slice preparation. Coronal slices (250 �m) were prepared on a
vibrating blade microtome in an ice-cold, oxygenated physiological so-
lution containing (in mM) 126 NaCl, 2.5 KCl, 1.2 MgCl2, 2.5 CaCl2, 1.2
NaH2PO4, 25 NaHCO3 and, 11 D-glucose. Slices were incubated in oxy-
genated physiological solution at 34°C for 60 min then transferred to a
holding bath for patch-clamp electrophysiology. During patch clamping,
slices were constantly perfused (1.5 ml/min) with physiological solution
maintained at 34°C and equilibrated with 95% O2/5% CO2.

Electrophysiology recordings. The mPFC was visualized and Layer V
pyramidal neurons identified by shape, and located using white matter
landmarks. Whole-cell voltage-clamp recordings were obtained from layer
V pyramids with borosilicate glass pipettes (1.5–2.5 M� tip resistance). Re-
cordings were obtained with a Multiclamp 700B amplifier connected to a
Digidata 1440A digitizer (Molecular Devices). Data were collected and ana-
lyzed using Axograph X for windows (V 1.2, AxographX.com).

Neurons were voltage clamped at �60 mV, and EPSCs were evoked by
stimulating (0.05– 0.5 mA; 0.1 Hz) layer II/III with a biphasic stimulus
isolator (World Precision Instruments) through a decapolar matrix elec-
trode (FHC). Polysynaptic EPSCs were pharmacologically isolated by
bath application of picrotoxin (100 �M; Sigma-Aldrich). Baseline record-
ings were made for 5 min at �40 mV. The AMPA receptor contribution
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to the EPSC determined by bath application (2– 4 min) of D-AP5 (50 �M;
2-amino-5-phosphono-pentanoate; Sigma-Aldrich). NMDA receptor
contribution was calculated offline by subtracting AMPA current from
total EPSC. Focal recordings were obtained by an identical process, but
used a theta glass pipette (Harvard Apparatus), placed in close proximity
(	50 �M) to the apical dendrite of recorded neurons.

Statistical analyses. Accuracy was assessed as the percentage of trials in
which animals successfully inhibited lever pressing in the premature
phase. This dependent measure was calculated as a percentage of correct
response out of total trials with a response [100 � (correct responses)/

(premature � correct responses)]. Behavioral
data were analyzed using repeated measures
ANOVA with group as a between-subjects
variable.

Electrophysiological data were analyzed us-
ing a two-way (region � group) ANOVA for
the initial experiments, and a one-way (group)
ANOVA for extinction, partial training, focal
stimulation, and target-specific experiments
using SPSS (V14.0). Post hoc tests (Fischer’s
LSD) were conducted where appropriate.

Results
Response inhibition training
Rats (n � 6) were initially trained in the RI
task with a 2 s premature phase (Fig. 2A).
Despite poor performance during the ini-
tial session, the ability to inhibit prema-
ture responses improved rapidly from the
first to the final session (t(5) � 4.21, p �
0.008). Five of the six subjects reached cri-
terion (�80% accuracy for two consecu-
tive sessions) within 15 sessions and one
subject was advanced without reaching
criterion (Fig. 1B, inset). Performance on
the first session of the 4 s premature phase
was significantly worse than the final ses-
sion of the 2 s phase (t(5) � 6.56, p �
0.001) and again, accuracy improved
from the first to the final session at the 4 s
delay (t(5) � 9.47, p � 0.001). All rats
completed at least two sessions with
�80% accuracy at the 4 s delay. Once this
criterion was reached, rats were killed and
mPFC brain slices were prepared for
patch-clamp recordings.

Synaptic changes underlying
response inhibition
The ratio of AMPA to NMDA receptor
currents (AMPA/NMDA) in layer V pyra-
midal cells was measured by stimulating
layers II/II of the mPFC in the presence
and absence of the NMDA antagonist
D-AP5 (50 �M). Neurons in the prelimbic
cortex, but not in the adjacent infralimbic
cortex, substantially increased AMPA/
NMDA after training in the RI task (Fig.
2B,C) (group � region: F(4,105) � 3.58,
p � 0.009; groupPL: F(4,63) � 10.27, p �
0.001; groupIL: F(4,42) � 0.58, p � 0.99).
Post hoc tests revealed that increased
AMPA/NMDA was restricted to impulse
control ( p � 0.005), and demonstrated
that learning to lever press with identical
cues, but no response inhibition (operant

control; n � 5), failed to modify AMPA/NMDA. Likewise, pas-
sive food delivery (yoked control; n � 4), food restriction (weight
control; n � 5), or development (age control; n � 6) failed to alter
synaptic plasticity in the prelimbic or infralimbic cortices. These
changes in AMPA/NMDA cannot be attributed to different cel-
lular properties, as input resistance, series resistance, membrane
capacitance, and holding current showed no differences between
training conditions (Table 1).

Figure 1. Visual schematic of behavioral tasks with arrows indicating possible outcomes. A, The RI task requires subjects to
withhold responding until the correct phase. Responses during the correct phase result in a sucrose pellet reward and reinstate the
intertrial interval (ITI). Responses during the premature phase restore the ITI with no reward. Failure to respond during the correct
phase results in an omission and reinstates the ITI. B, The operant control is identical to the RI task, but the lever is withdrawn
during the premature phase, preventing any premature responses. C, The yoked control has identical stimuli to the RI task, but lever
presses have no programmed consequence. A sucrose pellet is delivered automatically 1 s after the initiation of the correct phase.
D, In the extinction task, sucrose pellets are delivered following a response in either the premature or correct phase.
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Because of differing resistances, absolute values for AMPA
and NMDA currents are intrinsically more variable than the
AMPA/NMDA ratio. Thus, it is not surprising that peak AMPA
and NMDA currents showed no significant changes with training
(Table 2) (AMPA: F(4,63) � 1.21, p � 0.31; NMDA: F(4,63) � 0.50,
p � 0.73). However, examining cumulative EPSC evoked in the 500
ms after stimulation (i.e., area under the curve) revealed increased
AMPA current (F(4,63) � 2.87, p � 0.03), but no changes in cumu-
lative evoked NMDA current (F(4,63) � 0.08, p � 0.99), suggesting
that the shift in AMPA/NMDA is driven by increased AMPA, not
decreased NMDA, current in the prelimbic cortex.

Focal stimulation was examined by stimulating proximal to
the apical dendrite, within layer V, using a theta-glass stimulator.
When AMPA/NMDA was measured using only focal stimulation
(Fig. 2D), learning the RI task failed to produce a shift in AMPA/
NMDA (F(2,42) � 0.117, p � 0.89). This suggests the shift in

glutamatergic transmission is selective to synapses between the
external (II/III) and deep layers (V) of the cortex.

Partial training
Subjects were trained on a 4 s delay only, and we calculated
AMPA/NMDA in groups of rats on the first session of the re-
sponse inhibition task in which they achieved 40%, 60%, or 80%
accuracy. As shown in Figure 3, AMPA/NMDA in the PL cortex
increased progressively as the ability to inhibit a response im-
proved (F(2,48) � 6.237, p � 0.004), and post hoc tests revealed a
significant difference between subjects trained to 40% and 80%
accuracy ( p � 0.05).

Extinction
After subjects reached criterion in the RI task, response inhibition
was extinguished by reinforcing all lever presses, even those that
occurred before the signal (Fig. 4A). AMPA/NMDA in the Ex-
tinct group was compared to subjects who continued to respond
at criterion levels in the RI task (Train) and to subjects who had
equivalent days without any training (Pause). Subjects in the Ex-
tinct group showed a rapid decline in accuracy relative to subjects
in the Train group (session: F(5,35) � 14.74, p � 0.001; group:
F(1,7) � 359.13, p � 0.001; session � group: F(5,35) � 26.95, p �
0.001). Extinguishing response inhibition reduced AMPA/
NMDA in the PL cortex (Fig. 4B) (F(2,76) � 8.88, p � 0.001),
restoring it to near-baseline levels. Cessation of training (Pause
group) also reduced AMPA/NMDA (albeit to a lesser degree than
extinction), suggesting that maintenance of task performance is
necessary to preserve these plastic changes.

Target specificity
Fluorescent microbeads infused into the ventral striatum, medial
dorsal striatum, lateral dorsal striatum, or basolateral amygdala
were retrogradely transported to the PL and neurons containing
these beads could be identified for patch-clamp electrophysiol-
ogy after training was completed (Fig. 5).

AMPA/NMDA increased in PL neurons projecting to the ven-
tral striatum after training in the response inhibition task (Fig. 6)
(F(2,45) � 6.74, p � 0.003), whereas neurons projecting to the ba-
solateral amygdala showed no effect of training (Fig. 6) (F(2,44) �
0.27, p � 0.77). AMPA/NMDA was enhanced in neurons projecting
to the dorsal striatum following training in the operant control ver-
sion of the task. The enhancement of AMPA/NMDA in operant
controls was observed equally in projections to lateral and medial
regions of the dorsal striatum (training: F(2,85) � 8.57, p � 0.001;
training � projection: F(2,85) � 0.61, p � 0.94; trainingMedial: F(2,33) �
4.64, p � 0.02; trainingLateral: F(2,52) � 4.75, p � 0.01).

Discussion
Our study demonstrates that learning to inhibit a simple response
enhanced the relative contribution of AMPA to NMDA currents
in prelimbic, but not infralimbic, synapses of layer V pyramidal
neurons. We also observed a tight association between perfor-
mance in the response inhibition task and changes in glutamater-
gic transmission in that performance during extinction of the
response inhibition and partial training sessions closely tracked
changes in AMPA/NMDA. This effect was selective to neurons
making projections to the ventral striatum, but not the dorsal
striatum or basolateral amygdala. Although we recognize the dif-
ficulty in establishing causation with this approach, the close re-
lationship between alterations in AMPA/NMDA and successful
performance during acquisition, maintenance, and extinction of
response inhibition suggests that we uncovered a synaptic sub-

Figure 2. Training on an RI task strengthened AMPA/NMDA in prelimbic mPFC neurons. A,
Accuracy improves after training in the RI task with both 2 s (left) and 4 s (right) premature
phases. Individual subject data inset. B, Learning the RI task produced larger AMPA/NMDA in
the prelimbic (white bars), but not the infralimbic (black bars), region of the mPFC ( #p � 0.005
vs all groups). Sample sizes for cells (above) and subjects (below) are indicated within the bars.
C, Representative AMPA (black) and NMDA (gray) EPSCs from RI task and operant control neu-
rons in the prelimbic (top) and infralimbic (bottom) cortex (calibration: 500 nA/0.1 s). D, Train-
ing on the RI task failed to enhance AMPA/NMDA when measured by focal stimulation.
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strate for inhibiting inappropriate responses. Together, our data
reveal a synaptic substrate of response inhibition via a target-
specific enhancement of excitatory synaptic transmission in the
mPFC. We propose that synapses within the prelimbic cortex
change their relative contribution of AMPA and NMDA gluta-
mate receptor components to encode response inhibition, a
mechanism reminiscent of long-term potentiation (LTP) at exci-
tatory synapses (Nicoll, 2003).

In this investigation, we designed a task that would be ac-
quired rapidly with low demands on cognitive processes such as
discrimination, timing, and attention. The simplicity of the task
is an advantage in that we can minimize the possibility that
changes in synaptic plasticity are due to confounding factors. A

disadvantage is that it may be difficult to generalize our findings
to other measures of response inhibition, particularly as many of
these tasks require subjects to choose between several actions,
time a delay without signals, inhibit an action already in progress,
or sustain a response until a release signal is presented. Given the
distinct pharmacological and anatomical systems that mediate
these different tasks (see Hayton and Olmstead, 2009, for a re-
view), it would be surprising if they were encoded by a mecha-
nism that is identical to that of our simple response inhibition
task. Indeed, lesion studies have confirmed a role for other mPFC
regions, including the infralimbic and anterior cingulate cortices
(Chudasama et al., 2003), in response inhibition. Moreover, an-
tagonism of NMDA receptors in the infralimbic, but not the
prelimbic, cortex disrupts response inhibition in the five-choice

Table 1. Cell characteristics of layer V pyramidal neurons of rats trained in the RI task and behavioral controls

Training group Number of subjects Number of cells AMPA/NMDA Series resistance (M�) Input resistance (M�) Membrane capacitance (pF) Holding current (pA)

Prelimbic
RI task 6 16 1.21 � 0.09 7.1 � 0.6 53.0 � 3.5 45.2 � 2.4 655.0 � 38.8
Operant control 5 15 0.70 � 0.08 6.3 � 0.7 52.5 � 6.0 53.4 � 3.6 638.8 � 85.9
Yoked control 4 12 0.76 � 0.07 6.9 � 0.8 55.4 � 5.9 49.8 � 4.2 637.1 � 68.1
Weight control 5 11 0.72 � 0.07 5.4 � 0.5 48.2 � 3.9 59.9 � 8.3 595.1 � 52.1
Age control 6 16 0.69 � 0.05 5.4 � 0.2 55.0 � 6.0 54.5 � 2.4 605.1 � 67.0

Infralimbic
RI task 5 11 0.74 � 0.09 6.6 � 0.7 72.1 � 11.0 48.1 � 6.3 537.9 � 70.8
Operant control 5 13 0.75 � 0.06 8.3 � 1.3 73.1 � 7.6 41.3 � 3.6 449.8 � 39.7
Yoked control 4 7 0.76 � 0.10 8.2 � 1.1 101.5 � 7.7 43.7 � 5.5 366.4 � 89.2
Weight control 4 10 0.83 � 0.08 6.6 � 0.6 61.6 � 6.6 45.1 � 2.4 550.9 � 117.9
Age control 4 12 0.75 � 0.07 5.5 � 0.2 48.1 � 3.5 48.1 � 3.5 579.3 � 90.2

Values were obtained with a 10 ms, �10 mV pulse while holding neurons at �40 mV. No significant differences between experimental groups were observed for any variable, with the exception of AMPA/NMDA (bolded).

Table 2. Absolute contribution of AMPA and NMDA receptors to EPSCs in the prelimbic cortex

RI task Operant control Yoked control Weight control Age control F p

AMPA
EPSC peak (pA)a 1145.34 � 106.5 813.73 � 122.8 891.65 � 163.3 864.46 � 118.37 871.75 � 114.59 1.21 0.31
EPSC area (nA � ms)b 232.18 � 37.28 133.31 � 23.76 145.83 � 30.54 113.07 � 18.06 129.50 � 24.24 2.87 0.03

NMDA
EPSC peak (pA)a 1005.31 � 113.92 1138.75 � 94.51 1159.51 � 146.84 1169.08 � 123.58 1207.24 � 95.56 0.50 0.73
EPSC area (nA � ms)b 341.5 � 36.49 336.07 � 34.09 358.06 � 57.50 324.16 � 41.59 336.93 � 37.66 0.08 0.99

AMPA EPSC area showed a significant enhancement after training in the RI task. aMaximum current observed following stimulation, subtracted from baseline holding current. bCalculated as area under the curve for 500 ms following
stimulation, subtracted from baseline holding current.

Figure 3. Partial training produces proportional increases in AMPA/NMDA ratios. Data
points represent AMPA/NMDA of neurons from subjects trained to 40% accuracy (n � 5), 60%
accuracy (n � 4), or 80% accuracy (n � 4) in the RI task. Representative AMPA (black) and
NMDA (gray) EPSCs for each group at right (calibration: 500 nA/0.1 s; *p � 0.05).

Figure 4. Extinguishing response inhibition returned AMPA/NMDA to baseline. A, Accuracy
was rapidly reduced from baseline levels (day 0) in RI-task when all lever presses were rein-
forced (extinction). The Train group continued to perform the task without any changes in
accuracy and the Pause group received equivalent days off. B, Extinction of response inhibition
reduced AMPA/NMDA (Extinct group). Equivalent days without training reduced AMPA/NMDA
in the Pause group, but to a lesser degree than in the Extinct group (*p � 0.05).
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serial reaction time task (Murphy et al., 2005), suggesting that
subregions of the mPFC make distinct contributions to response
inhibition, depending on the task.

Learning-induced changes in AMPA/NMDA occur in a vari-
ety of paradigms and brain regions. For example, AMPA/NMDA
increases in the ventral tegmental area following cocaine sensiti-
zation (Ungless et al., 2001; Borgland et al., 2004), in the amyg-
dala following fear conditioning (Lin et al., 2010), and in the bed
nucleus of the stria terminalis following lever pressing for sucrose
or cocaine (Dumont et al., 2005). Most importantly, exposure to
drug-paired cues, after responding for heroin has been extin-
guished, reduces AMPA/NMDA in the mPFC (Van den Oever et
al., 2008), which in turn promotes relapse to drug seeking. This
reduction in AMPA currents in the mPFC provides an exciting
parallel to our findings, in that both relapse to drug seeking and
premature responding can be defined as failures of impulse con-
trol. In line with these studies, inactivation of the dorsal mPFC
blocks cue-, drug-, and stress-induced reinstatement of cocaine
seeking (McFarland and Kalivas, 2001; McLaughlin and See,
2003; McFarland et al., 2004). Changes in glutamatergic trans-
mission within the mPFC, therefore, may be a mechanism that
mediates the withholding of responses for both drugs and natural
rewards. Enhancement of AMPA/NMDA after learning the re-
sponse inhibition task was restricted to
ventral striatum projections, sparing dor-
sal striatum or basolateral amygdala pro-
jections. Given evidence that the ventral
striatum is a substrate of impulse control
(Pattij et al., 2007, Dalley et al., 2008), our
results point to this structure as an interme-
diary in the mPFC-motor cortex circuit. In
fact, neural recordings revealed that the
mPFC indirectly inhibits the motor cortex
during periods of response inhibition
(Narayanan and Laubach, 2006). The fact
that synaptic transmission was enhanced in
a subpopulation of PL neurons demon-
strates that increases in AMPA/NMDA were
not an artifact of global changes in mPFC
function or connectivity. Therefore, we
identified an anatomical substrate for the
behavioral/physiological relationship we
observed originally. Explicitly, response in-
hibition is encoded as increased synaptic
transmission in a specific prelimbic-ventral
striatum projection. Although we did not
examine it specifically, it is likely that this
plasticity is confined to the core region of
the nucleus accumbens as prelimbic neu-
rons project, preferentially, to the core
whereas infralimbic neurons project, pri-
marily to the shell (Berendse et al., 1992;
Vertes, 2004). Moreover, deep brain stim-
ulation of the core enhances impulse con-
trol, whereas stimulation of the shell
disrupts it (Sesia et al., 2008). Antagonism of dopamine receptors
in the core and shell subregions also produce differential effects
on impulsivity (Pattij et al., 2007; Besson et al., 2010), supporting
the idea that the neural circuit of impulse control involves specific
striatal targets from prelimbic afferents.

To date, the best-described example of PFC plasticity is fear
extinction, which provides a fascinating parallel to impulse con-
trol (Morgan et al., 1993; Morgan and LeDoux, 1995). In fear

extinction paradigms, subjects initially learn a simple association
(shock–tone pairing), which is then extinguished by presenting
the tone alone. Fear extinction, or inhibition of a previously
learned association, is encoded by LTP-like changes in the infral-
imbic cortex (Santini et al., 2004; Quirk and Mueller, 2008).
Thus, there appears to be a functional dissociation between the
two adjoining mPFC regions: inhibition of conditioned fear is
encoded by infralimbic projections to the amygdala (Quirk and

Figure 5. Retrograde transport of fluorescent beads permits identification of neurons pro-
jecting to target areas. A, Representative image of prelimbic region under fluorescence (medial
at left; dorsal at top). Lines mark approximate boundaries of layer V, box indicates magnified
area of interest (scale bar: 100 �m). B, C, Prelimbic pyramidal neuron under dark-field (B) and
fluorescent (C) light (scale bars: 10 �m).

Figure 6. Target-specific enhancement of AMPA/NMDA after learning the RI task. A, Injections sites for subjects trained in the
RI task (F), as well as operant (f) and weight (Œ) controls. B, AMPA/NMDA increased in projections to the ventral striatum (left)
after training in the RI task, and in projections to the dorsal striatum (center) following training in the operant control task.
Projections to the basolateral amygdala (right) showed no effect of training. Sample sizes for cells (above) and subjects (below) are
indicated within the bars (*p � 0.001 vs all groups).

11498 • J. Neurosci., August 25, 2010 • 30(34):11493–11500 Hayton et al. • Response Inhibition in mPFC



Mueller, 2008), whereas inhibition of an operant response for
food is encoded by prelimbic projections to the ventral striatum.
The similarities between fear extinction and our response inhibi-
tion paradigm, as well as the previously discussed cue-induced
relapse (Van den Oever et al., 2008), suggest a common mecha-
nism for top-down control of subcortical processes by the mPFC.

Rats trained in the operant control version of the RI task
showed a mild elevation in AMPA/NMDA of prelimbic cortex
projections to the dorsal striatum. We did not observe AMPA/
NMDA changes in the operant control group of the original ex-
periment (Fig. 2A), but less than one-fifth of prelimbic neurons
project to the dorsal striatum (Gabbott et al., 2005). Thus, it is
likely that we sampled only a few dorsal striatum-projecting neu-
rons in the original experiment, which would have minimized the
effect on AMPA/NMDA in the overall population. The func-
tional significance of altered synaptic transmission in the prelim-
bic– dorsal striatal pathway may be revealed by comparing
performance in the RI and operant control tasks. In the latter, the
lever is withdrawn (i.e., unavailable) during the premature phase
so rats learn a predictive association between environmental cues
(sound plus light) and the opportunity to respond for reward.
The dorsal striatum is likely activated under these conditions, given
its prominent role in stimulus-response learning (McDonald and
White, 1993; Packard and Knowlton, 2002). Prelimbic neurons
may control dorsal striatum activity by directing attention to cues
predicting reward availability: mPFC neurons fire when attend-
ing to stimuli (Totah et al., 2009), preparing to act (Cowen and
McNaughton, 2007), or anticipating a reward (Mulder et al.,
2003), and mPFC inactivation impairs cued responding in rats
(Ishikawa et al., 2008). Our data, therefore, support the conten-
tion that prelimbic– dorsal striatal connections encode the rela-
tionship between operant contingencies (Balleine et al., 2009;
Balleine and O’Doherty, 2010), and suggest that synaptic changes
in this circuit may facilitate attention toward stimuli associated
with responding for reward.

Our data fit within broader theories of mPFC function, in-
cluding the idea that dorsal regions of the mPFC contribute to
cognitive processing whereby animals make choices between a
range of behavioral options at any given time (Seamans et al.,
2008). We extend this theory by showing that strengthening of
synapses in the mPFC may bias these processes toward specific
actions, such as inhibiting or initiating a response. Our data also
support the idea that the mPFC instructs “lower” motor systems,
such as the ventral striatum, to wait for a stimulus through top-
down control (Narayanan and Laubach, 2006), and identify pre-
limbic cortex synapses as a site for this learning. This concurs to
previous findings showing that blockade of glutamatergic transmis-
sion (Carli et al., 2006) or inactivation of the mPFC (Narayanan and
Laubach, 2008) impairs response inhibition. We observed changes
in glutamatergic transmission between surface (II/III) and deep (V)
layer neurons of the mPFC, but additional modifications to this
area’s functioning are likely to occur following the acquisition of
response inhibition. For example, experience-dependent changes in
neuronal excitability (Santini et al., 2008), metabotropic glutamate
receptors (Melendez et al., 2004), and NMDA receptors (Turnock-
Jones et al., 2009) have all been observed in the mPFC. In particular,
persistent firing of mPFC neurons, which supports working mem-
ory and attention, is dependent on both AMPA and NMDA re-
ceptors (Wang, 1999; Durstewitz, 2009). In light of these
findings, our results do not preclude the involvement of other
mPFC mechanisms in response inhibition, but suggest that
memories for impulse control are encoded by changes in AMPA/
NMDA. Therefore, tests of impulse control are likely subserved

by dissociable neural systems as each task involves a unique set of
cognitive processes (Hayton and Olmstead, 2009).

Over the past two decades, extensive information has emerged
regarding the mediation of behavioral disinhibition, and more
broadly, impulse control. In rodents, lesions studies identified
where the neural substrates of impulse control are localized
(Chudasama et al., 2003; Dalley et al., 2008), while unit record-
ings showed what these neurons signal (Narayanan and Laubach,
2006). Our study provides the first evidence for how the mPFC
encodes impulse control— by enhancing glutamatergic trans-
mission within the prelimbic cortex. The idea that behavioral
inhibition is represented in the CNS as a memory of a learned
response may provide new directions for investigating and treat-
ing psychiatric disorders of impulse control.
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