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Manipulation of Adenosine Kinase Affects Sleep Regulation
in Mice
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Sleep and sleep intensity are enhanced by adenosine and its receptor agonists, whereas adenosine receptor antagonists induce wakeful-
ness. Adenosine kinase (ADK) is the primary enzyme metabolizing adenosine in adult brain. To investigate whether adenosine metabo-
lism or clearance affects sleep, we recorded sleep in mice with engineered mutations in Adk. Adk-tg mice overexpress a transgene
encoding the cytoplasmic isoform of ADK in the brain but lack the nuclear isoform of the enzyme. Wild-type mice and Adk /'~ mice that
have a 50% reduction of the cytoplasmic and the nuclear isoforms of ADK served as controls. Adk-tg mice showed a remarkable reduction
of EEG power in low frequencies in all vigilance states and in theta activity (6.25-11 Hz) in rapid eye movement (REM) sleep and waking.
Adk-tg mice were awake 58 min more per day than wild-type mice and spent significantly less time in REM sleep (102 = 3 vs 128 = 3 min
in wild type). After sleep deprivation, slow-wave activity (0.75-4 Hz), the intensity component of non-rapid eye movement sleep,
increased significantly less in Adk-tg mice and their slow-wave energy was reduced. In contrast, the vigilance states and EEG spectra of
Adk "' and wild-type mice did not differ. Our data suggest that overexpression of the cytoplasmic isoform of ADK is sufficient to alter
sleep physiology. ADK might orchestrate neurotransmitter pathways involved in the generation of EEG oscillations and regulation of

sleep.

Introduction

The neuromodulator adenosine plays a key role in sleep regula-
tion (Radulovacki, 1985; Benington and Heller, 1995; Basheer et
al., 2004; Datta and Maclean, 2007; Huang et al., 2007; Scharf et
al., 2008). Adenosine and adenosine receptor agonists enhance
non-rapid eye movement (NREM) and rapid eye movement
(REM) sleep (Marley and Nistico, 1972; Haulica et al., 1973; Sny-
der et al., 1981; Virus et al., 1983; Radulovacki et al., 1985; Sarda
et al., 1986; Martin et al., 1989; Ticho and Radulovacki, 1991;
Portas et al., 1997). Moreover, the adenosine agonist cyclopenty-
ladenosine enhanced EEG slow-wave activity (SWA) (power be-
tween 0.75 and 4 Hz) (Benington et al., 1995; Schwierin et al.,
1996). Adenosine receptor antagonists (caffeine, cyclopentyl-
theophylline) induce wakefulness (Yanik et al., 1987; Biaggioni et
al., 1991; Landolt et al., 1995; Schwierin et al., 1996; Huang et al.,
2005). The effects of adenosine on sleep are mediated by adeno-
sine A, (Basheer et al., 2001; Thakkar et al., 2003; Alanko et al.,
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2004; Bjorness et al., 2009) and A,, receptors (Hayaishi et al.,
2004). Inhibition of gliotransmission attenuated the accumula-
tion of sleep pressure through A, receptors (Halassa et al., 2009).

Despite its ubiquitous presence, some studies indicated a role
ofadenosine in sleep in specific brain regions. The basal forebrain
was suggested to gate sleep via adenosinergic inhibition of wake-
promoting cholinergic neurons (Porkka-Heiskanen et al., 1997,
2000; Strecker et al., 2000). However, stimulation of adenosine
receptors in other regions (e.g., hypothalamus) also induced
sleep (Satoh et al., 1998, 1999; Scammell et al., 2001; Gallopin et
al., 2005; Methippara et al., 2005; Oishi et al., 2008).

A little explored avenue in sleep is the in vivo manipulation of
adenosine kinase (ADK), the primary enzyme regulating adeno-
sine metabolism in rodents (Mathews et al., 1998; Boison, 2006).
Inhibition of ADK activity induced a larger adenosine increase in
hippocampal and cortical slices than adenosine deaminase inhi-
bition (Pak et al., 1994; Lloyd and Fredholm, 1995; White, 1996).
Moreover, adenosine release was higher in ADK-deficient fibro-
blasts compared with adenosine deaminase-deficient fibroblasts
(Huber etal., 2001). Sleep deprivation (SD) had no effect on ADK
activity in the cortex and basal forebrain, but the diurnal varia-
tion of ADK activity (Chagoya de Sanchez et al., 1993; Alanko et
al., 2003) was maximal in the cortex (Mackiewicz et al., 2003).

Here, we used mice constitutively overexpressing a transgene
for the cytoplasmic isoform of Adk (Adk-tg). These mutants are
characterized by increased ADK enzyme activity and reduced
adenosine tone in the brain (Fedele et al., 2005). Based on the
reduced adenosine tone, mutants display spontaneous intrahip-
pocampal seizures (Li et al., 2007, 2008a,b), increased susceptibility
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Figure1.

EEG power density in microvolt square per hertz (0.75—25 Hz) in NREM sleep (NREMS), REM sleep (REMS), and waking in WT (black dots; n = 14) and Adk-tg mice (white dots; n = 11)

during the 24 h baseline. Shown are the mean values of the parietal (PAR) and frontal (FRO) EEG. Triangles, Genotype differences ( p << 0.05 for NREMS PAR and waking; p << 0.01 for NREMS FRO

and REMS; Bonferroni’s adjustment for multiple comparisons).

to stroke or seizure-induced neuronal cell
death (Pignataro et al., 2007), and cognitive
impairment (Yee et al., 2007). We hypothe- EEG
sized that the transgene overexpression in

Adk-tg mice should affect sleep. As controls, NREM sleep

we chose Adk™~ mice, which have re- EMG
duced ADK in the liver, but normal aden-

osine metabolites (Boison et al., 2002) and

wild-type (WT) littermates. The mice EEG
were subjected to 6 h SD to stimulate sleep

! REM sleep
regulatory mechanisms. MG
Materials and Methods
Animals. Adult heterozygous male mice orig-

EEG

inating from a targeted disruption of the
Adk-gene (Adk */7), maintained on a mixed
129/JEms X C57BL/6 background (for char-
acterization, see Boison et al., 2002), and WT
littermates were obtained by heterozygous
breeding (n = 15 Adk /7 n = 14 WT mice).
Mice overexpressing the cytoplasmic isoform
of ADK were derived by rescuing the lethal
phenotype of Adk '~ mice by introducing a
UbiAdk transgene into the Adk ™'~ back-
ground (Fedele et al., 2005) and maintained by homozygous breeding of
Adk-tgmice (n = 11). The mice were kept individually in Macrolon cages
(36 X 20 X 35 cm) with food and water available ad libitum, maintained
on a 12 h light/dark cycle (~30 lux; light onset at 8:00 A.M.) at 23°C
ambient temperature. The Cantonal Veterinary Office of Zurich ap-
proved all experimental procedures.

Surgery: EEG/EMG electrode implantation. Mice were implanted epi-
durally with gold-plated miniature screws (0.9 mm diameter) for EEG
recording under isoflurane anesthesia [right hemisphere: above the fron-
tal (FRO), 1.5 mm anterior to bregma, 2 mm lateral to the midline, and
the parietal cortex (PAR), 2 mm posterior to bregma, 3 mm lateral to
midline; reference: above the cerebellum, 2 mm posterior to lambda, on
the midline]. Two gold wires (0.2 mm diameter) were inserted bilaterally
into the neck muscles for EMG recording. The electrodes were connected
to stainless-steel wires fixed to the skull with dental acrylic cement. The
mice were connected by a fine cable to a swivel and remained connected
throughout the experiment. At least 3 weeks were allotted for recovery
from surgery and a minimum of 3 d for habituation to the recording
chambers before data collection.

Experimental protocols. Recordings were performed during a 24 h base-
line followed by 6 h SD starting at light onset and 18 h recovery. SD was
performed by directly observing the mice and introducing new material
into the cage (e.g., nesting material, wood or cardboard pieces) whenever
a mouse appeared to be drowsy. If necessary, acoustic stimulation was
used by gentle tapping on the cage (Tobler et al., 1997). Special care was
taken not to interfere with eating and drinking behavior. Data were col-
lected from frontal and parietal EEG derivations, because slow waves and
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EMG
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spindles in NREM sleep are more prominent in the frontal EEG, whereas
theta activity in waking and REM sleep is prominent in the parietal EEG.

A separate batch of Adk-tg (n = 12) and WT mice (n = 11) were placed
in single cages equipped with an infrared sensor mounted above the cage
for undisturbed, continuous motor activity recordings for 10 consecutive
days (Chronobiology kit; Stanford Software Systems).

Data acquisition and analysis. The EEG and EMG signals were ampli-
fied (amplification factor, ~2000), conditioned by analog filters (high-
pass filter: —3 dB at 0.016 Hz; low-pass filter: —3 dB at 40 Hz, less than
—35dBat 128 Hz) sampled with 512 Hz, digitally filtered [EEG: low-pass
finite impulse response (FIR) filter, 25 Hz; EMG: bandpass FIR filter,
20-50 Hz], and stored with a resolution of 128 Hz. The EEG power
spectra were computed for 4 s epochs by a fast Fourier transform routine.
Adjacent 0.25 Hz bins were averaged into 0.5 Hz (0.25-5 Hz) and 1.0 Hz
(5.25-25 Hz) bins. The EMG was full-wave rectified and integrated over
4 s epochs; ambient temperature within the animal cage was sampled at
4 s intervals. Before each recording, the EEG and EMG channels were
calibrated with a 10 Hz, 300 wV peak-to-peak sine wave.

The three vigilance states NREM sleep, REM sleep, and waking were
determined off-line by visual inspection of the parietal and frontal EEG,
EMG records and EEG power in the slow-wave range (0.75—-4 Hz) for 4 s
epochs. Epochs containing EEG artifacts in one derivation were excluded
from spectral analyses of both EEG derivations (6.3 = 0.6% of recording
time, which occurred mainly during active waking). Vigilance states
could always be determined. The frequency and duration of vigilance
state episodes was computed using the methods of Deboer et al. (1994).
Sleep continuity was assessed by determining the number of brief awak-
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Table 1. Amount of vigilance states
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WT (n = 14) Adk '~ (n=15) Adk-tg (n = 11)
Baseline SD and recovery Baseline SD and recovery Baseline SD and recovery

NREM sleep

24 hvalue 7383 =165 576.9 = 12.8*** 7521 £ 127 593.0 = 9.2%** 7063 = 8.3 568.8 == 7.0%**

L1-6/SD 200.7 = 5.0 82*+18 209.9 + 4.2 122 £ 21 2153 53 0101

L7-12 202.0 =47 217.8 £ 3.5* 2044 =34 217.0 = 3.4 2147 = 3.6 2375 *3.1%

D13-18 147.6 = 6.5 164.9 = 6.4* 148.7 = 7.2 169.1 = 4.7%* 1139 + 5.8% 1482 =54

D19-24 187.9 =52 185.6 = 5.0 189.1 =43 1938 = 3.5 162.5 + 5.7* 183.0 =58
REM sleep

24hvalue 1280 £ 3.1 1021 £ 2.5%%* 123.0 £34 101.9 = 2.5 1024 £ 33" 813 = 3.t

L1-6/SD 347 =13 0+0 35116 0.1+0.1 31914 00=x0

L7-12 41.4+11 395*+15 394+1.0 40115 365+ 1.2° 349 =14

D13-18 202+ 15 29.0 = 1.6%* 177 213 28.7 £ 1.1 120 = 13* 21.2 + 1.8%*

D19-24 319 *+13 33610 307 =11 331*+12 220 + 18" 252*+19
Waking

24 hvalue 573.7 =168 761.0 £ 14.0%** 564.9 £ 13.8 745.1 £ 9.5%** 6313 + 8.8* 789.9 * 8.4***

L1-6/SD 1246 = 5.6 351.8 =18 115.0 = 4.9 347.8 £ 2.1 1128 = 6.2 3599 £ 0.1

L7-12 116.6 = 4.8 102.8 + 4.3* 116.2 = 3.5 1029 = 3.8** 108.8 = 3.5 87.6 +3.5%

D13-18 1922 *+73 166.0 = 7.4* 193.6 = 8.0 162.2 = 5.4** 2342 + 70" 190.6 + 6.9"

D19-24 1402 5.8 140.8 £ 5.5 140.1 + 4.8 1332 £39 1755 + 6.8* 1518 £ 7.0

Mean values = SEM as minutes of NREM sleep, REM sleep, and waking in WT, Adk *~, and Adk-tg mice for 6 and 24 hintervals during a baseline day and a day consisting of 6 h SD followed by 18 h recovery. L, Light; D, dark.
Differences between the baseline and experimental day: *p << 0.05, **p < 0.005, and ***p < 0.0001, paired t test following significant ANOVA interaction repeated “day: BL versus recovery” by repeated “three 6 h intervals” for NREMS,
REMS, and waking ( p << 0.005). In Adk-tg mice, interaction for NREMS and waking was nonsignificant, but repeated-factor “day” was p << 0.0001 and Tukey’s “day” was p < 0.0001.

Differences between WT and Adk-tg mice: p << 0.05, *p < 0.005, unpaired t test following significant ANOVA interaction “genotype” by repeated “three/four 6 h intervals” for NREM sleep, REM sleep, and waking ( p << 0.05). The
interaction was nonsignificant for REMS during recovery, but factor “genotype” was p << 0.0001 and Tukey's “genotype” was p << 0.0001. No differences were found between WT and Adk */~ mice.

enings (episodes of waking, <16's) (Deboer et al., 1994). The time course
of SWA (0.75-4 Hz), spindle frequency activity (SFA) (10.25-15 Hz),
and theta activity (6.25-9 Hz) for 2 min before and after the transition
from waking or REM sleep to NREM sleep or from NREM sleep to REM
sleep was computed as previously (Franken et al., 1994). Data analysis
was performed using the MATLAB software package (The MathWorks).

Western blot analysis. We determined protein levels of ADK in brains
of Adk-tg, Adk ™~ and WT mice that had been used for sleep recordings
(n = 6 mice per genotype). Brain tissue from the right hemispheres was
processed for aqueous protein extracts as previously described (Gouder
etal., 2004). Cell extracts were resuspended, each containing 40 ug pro-
teins, and electrophoresed in a 10% Tris-glycine gel. After blotting, the
membranes were incubated with polyclonal rabbit antiserum against
ADK (1:5000) and processed as described previously (Gouder et al.,
2004). The membranes were then developed by incubation with
peroxidase-conjugated anti-rabbit antibody (7074; 1:8000; Cell Sig-
naling). Immunoblots were quantified using a Kodak Scientific
Imaging System (version 3.6.5.k2; Kodak). To normalize ADK immu-
noreactivity, a mouse monoclonal anti-a-tubulin antibody (sc-8035;
1:5000; Santa Cruz) was reprobed on the same blot and the OD ratio
of ADK/a-tubulin was calculated.

Statistical analysis. Genotype differences were evaluated by linear
mixed model ANOVA, corrected for multiple comparison when appro-
priate, or by a repeated-measures ANOVA (SAS software; SAS Institute).
Post hoc paired and unpaired ¢ test or the Tukey—Kramer, Bonferroni,
and Kruskal-Wallis tests were performed if the results of the ANOVA
reached statistical significance ( p < 0.05). All reported values are means
over 615 mice * SEM.

Results

Overexpression of Adk affects the EEG and impairs

sleep regulation

We previously demonstrated reduced adenosinergic tone in
Adk-tg mice (Fedele et al., 2005) that was subsequently validated
in several experimental paradigms (Li et al., 2007, 2008a,b; Pig-
nataro et al., 2007; Yee et al., 2007). We therefore hypothesized
that this genetic modification would affect sleep.

EEG power spectra
A statistically significant reduction of EEG power density was
observed in the frequencies <4 Hz in all vigilance states in Adk-tg

mice compared with WT mice (Figs. 1, 2). In addition, in REM
sleep and waking, EEG power was significantly lower in the
Adk-tg mice in the frequencies encompassing the theta band
(6.25-11 Hz) (Fig. 1).

Baseline sleep

Adk-tg mice slept ~60 min less than WT mice in the dark period
(Table 1; Fig. 3, left). The duration of their waking and NREM
sleep episodes was significantly longer than in WT mice, whereas
their total episode number was lower, indicating more consoli-
dated sleep in Adk-tg mice (Table 2). The relative number of
longer NREM sleep episodes (>128 s) was higher in Adk-tg mice
compared with WT mice at the cost of shorter (36—64 s) episodes
(Fig. 4, left) (p < 0.005, Tukey—Kramer test). Sleep fragmenta-
tion (defined as the occurrence of waking episodes <16 s per
hour of sleep) differed between the genotypes (Adk-tg, 20.1 =
1.3; WT, 24.7 = 1.5; p = 0.039, unpaired ¢ test).

The amount of REM sleep as well as REM sleep per total sleep
time was reduced in Adk-tg mice (Table 1; Fig. 3, left) because of
a decreased REM sleep episode frequency (Table 2) ( p = 0.0041,
unpaired ¢ test).

Motor activity data obtained in a separate group of Adk-tgand
WT mice corroborated the sleep findings. Adk-tg mice spent
more time active in the dark period (12 h dark: 328.8 = 11.3 vs
268.5 = 9.1 min; p = 0.0017, unpaired ¢ test). The intensity of
their movements (activity counts per minute) was also signifi-
cantly higher compared with WT mice (Fig. 4).

In summary, during baseline, sleep and EEG power in fre-
quencies encompassing SWA in NREM sleep and theta activity in
waking and REM sleep were reduced in Adk-tg mice.

Effects of enhanced sleep pressure by 6 h SD

During recovery after SD, Adk-tg and WT mice showed the typ-
ical compensatory increase of NREM sleep with a concomitant
reduction in waking (Table 1, Fig. 3). However, the NREM sleep
increase was significantly larger in the Adk-tg mice in hours 7-12
(Table 1). The REM sleep rebound was delayed to the second 6 h
recovery interval in all mice (Table 1). Although the baseline
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Figure3. Time course of the vigilance states NREM sleep, REM sleep, waking, and REM sleep
as percentage of total sleep time (REMS/TST) in WT and Adk-tg mice during the 24 h baseline
(BL) (left panels) and 18 h recovery (Rec.) (right panels) after 6 h SD (gray area). Shown are
mean 2 h values. Triangles, Genotype differences ( p << 0.05, unpaired ¢ test; ANOVA “geno-
type” by repeated “2 hinterval”; NREMS BL, £ 1, 553y = 5.67,p <<0.0001, and Rec., Fg 154 =
2.14,p = 0.034; REMSBL, F 1, 553 = 2.54, p = 0.0046, and Rec., F g 154 = 1.81,p = 0.078,
“genotype” f; ,3) = 26.82, p < 0.0001, followed by Tukey—Kramer “genotype” p < 0.0001;
REMS/TSTBL, £y 253 = 1.14, p = 0.33, “genotype” f; ,3) = 20.96, p = 0.0001 followed by
Tukey—Kramer “genotype” p << 0.0001, and Rec., Fg 154 = 2.04, p = 0.0437; waking BL,
Fan2s3) = 5.25,p << 0.0001, and Rec,, Fig 154 = 1.91,p = 0.06).

genotype differences in REM sleep persisted during recovery (Fig.
3), the response to SD was similar in Adk-tg and WT mice
(recovery-baseline, 6 h intervals 1-3: —1.9 = 1.2 vs —1.5 * 1.1
min, p = 0.81;89 = 1.5vs9.2 = 1.4 min, p = 0.88; 1.8 = 1.5 vs
3.2 £ 2.0 min, p = 0.56, unpaired t test, in WT vs Adk-tg mice,
respectively).

SWA and slow wave energy

We hypothesized that, after SD, mice overexpressing ADK would
display a reduced increase in SWA. Accordingly, sleep intensity
was significantly lower in Adk-tg mice compared with WT mice
(Fig. 5A). The magnitude of the typical SD-induced initial in-
crease in SWA was not only lower by 9-12% in Adk-tg mice (first
2hinterval: p < 0.01, unpaired ¢ test, for PAR and FRO EEG), but
SWA remained lower in Adk-tg mice throughout the entire re-
covery period in both EEG derivations (Fig. 5A4). Although base-
line levels were attained by all mice after 4—6 h recovery, only
Adk-tg mice showed a subsequent negative rebound below base-

Palchykova et al. ® Adenosine Kinase and Sleep

line. The genotype SWA difference in NREM sleep was also evi-
dent at the transitions from waking to NREM sleep during the
first 6 h recovery interval (Fig. 5B). The increase (i.e., buildup) of
SWA in Adk-tg mice was significantly lower compared with WT
mice immediately after the transitions and remained below the
WT increase throughout the 2 min NREM sleep episodes. During
the corresponding baseline interval, the dynamics of SWA
buildup had been similar in the two genotypes (Fig. 5B). All
genotype differences dissipated in the second 6 h recovery
interval.

We computed slow-wave energy (SWE) (0.75-4 Hz), which
takes into account the difference in the amount of NREM sleep
between genotypes. Despite the larger amount of NREM sleep,
Adk-tg mice reached a significantly lower SWE level after 18 h
recovery compared with WT mice in the parietal EEG (82.1 = 1.3
vs 87.5 = 1.8%; p = 0.034, unpaired t test). Significance was not
attained in the frontal EEG because of larger interindividual vari-
ability (82.2 = 1.9 vs 87.9  2.2%; p = 0.072).

SFA
Slow waves and spindles are EEG hallmarks of NREM sleep, the
latter being most prominent at the transition from NREM sleep
to REM sleep (Franken et al., 1994; Vyazovskiy et al., 2004). Spin-
dle density and SWA in NREM sleep show interrelated dynamics
in rats and humans (Aeschbach et al., 1997; Vyazovskiy et al., 2004).
In addition to the reduced levels of SWA attained by Adk-tg mice, the
typical surge of SFA immediately before the NREM—REM sleep
transitions was significantly reduced in Adk-tg mice during baseline
(Fig. 6) and recovery (data not shown) compared with WT mice.
Overall, Adk-tg mice showed a reduced homeostatic response
to enhanced sleep pressure compared with WT mice.

Theta peak frequency in REM sleep was lower in Adk-tg mice
Oscillations in the theta frequency range are a distinct feature of
REM sleep in rodents (Figs. 1, 2) (Huber et al., 2000). REM sleep
EEG spectra were significantly lower in the theta frequency range
in Adk-tg mice compared with WT mice. Based on the significant
bins in Figure 1 (7.25-11 Hz), we investigated whether EEG
power would be affected at the transitions from NREM to REM
sleep. Adk-tg mice lacked the typical, prominent increase in theta
activity after the transitions to REM sleep (Fig. 6). Their theta
activity levels were significantly lower than those of WT mice 20's
before the transitions and remained at a consistently low level
after the transitions to REM sleep (the result was similar when the
time course of the traditional theta frequency band, 6.25-9 Hz,
was computed).

Adenosine is directly linked to energy metabolism in the cell
(Scharfetal., 2008) and the peak frequency of theta in REM sleep
was affected by a deficiency in energy metabolism (Tafti et al.,
2003). We determined the peak frequency within the theta fre-
quency band for individual mice. In Adk-tg mice, the peak was at
a significantly lower frequency than in WT mice (7 = 0.1 Hz vs
8 + 0.1 Hz; p < 0.0001, unpaired ¢ test).

Effects of Adk overexpression on EEG power during

induced wakefulness

To investigate whether the genotype differences in the response
to SD were attributable to behavioral differences during SD, we
analyzed the corresponding EEG spectra (Fig. 7). The typical in-
crease in EEG power in the course of SD was observed for a large
frequency range (0.75-8 Hz) in both genotypes and in higher
frequencies (13-15 Hz; p < 0.05, paired ¢ test) in Adk-tg mice.
The rise rate of EEG power (interval 3 as percentage of interval 1)
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Table 2. Frequency and duration of vigilance state episodes
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WT (n = 14) Adk-tg (n = 11)
Frequency Duration (min) Frequency Duration (min)
NREMS 569.1 £ 213 1.32 £ 0.06 382.8 = 17.1%* 1.88 = 0.09%*
REMS 123.0 £5.8 1.06 = 0.04 96.9 + 4.5% 1.06 = 0.02
Waking 566.2 * 20.9 1.03 = 0.04 381.9 £ 17.5% 1.69 = 0.09%*
Mean frequency and duration of NREM sleep (NREMS), REM sleep (REMS), and waking episodes == SEM in WT and Adk-tg mice during the 24 h baseline.
Genotype differences: *p << 0.005, **p << 0.0005, unpaired ¢ test.
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Figure 4. Left, Number of NREM sleep episodes in WT (n = 14) and Adk-tg mice (n = 11) B Wake  NREMS Wake  NREMS
during the 24 h baseline. Mean values are expressed as percentage of the total number of NREM aaa a4 aa Recovery:
sleep episodes. Numbers below the x-axis are duration range in seconds. Triangles, Genotype 140 +WT
differences (p < 0.005, Tukey—Kramer; ANOVA “genotype” by “episode duration” F, 5 = & 120 +Adk-tg
14.02, p < 0.0001). Right, Activity intensity (defined as infrared counts/number of 1 min =< 100 .
epochs with counts >0; mean 1 h values; average of 10 consecutive baseline days) in WT (n = = 80 ?’f_sv‘f/lllr_‘e'
11) and Adk-tg mice (n = 12). Triangles, Genotype differences ( p << 0.05, unpaired t test; ? 60 o Adk-tg
ANOVA “genotype” by repeated “1 hinterval” F 3 43 = 4.32, p << 0.0001). 40 PAR ERO
20 T T T T 1 T T T T 1
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differed between the. two genotypes in frequenc.les w1th1.n the Minutes
SWA band, theta activity, and SFA (Fig. 7). The increase in the
2.25-3.5 Hz band was apparent in all mice (interval 1 vs 3: p << Figure5. 4,Time course of SWAin NREM sleep in the parietal (PAR) and frontal (FRO) EEGin

0.0005), but the rise rate was significantly lower in the Adk-tg
mice ( p = 0.0487, Kruskal-Wallis test). Theta activity was signif-
icantly higher in Adk-tg mice than in WT mice throughout SD
(riserate, p = 0.0004, unpaired ¢ test). SFA increased in the course
of SD in Adk-tg mice only (p = 0.044, paired t test) but was
significantly lower during the first two 2 h intervals compared
with WT mice (rise rate, p = 0.0455, unpaired  test).

Reduced expression of Adk has no major effect on sleep

Our previous data suggest that adenosine metabolism is not sig-
nificantly altered in Adk™'™ mice [normal AMP, ADP, ATP,
SAM (S-adenosylmethionine), SAH (S-adenosylhomocysteine)
levels and normal physiology] (Boison et al., 2002). We therefore
hypothesized that sleep would not be altered under conditions of
reduced ADK, but normal adenosine metabolites. The amount of
sleep (Table 1, Fig. 8), as well as the average duration and fre-
quency of vigilance state episodes (data not shown), did not differ
between Adk 7'~ and WT mice. Moreover, the 24 h baseline time
course of SWA in NREM sleep was similar in the two genotypes
(Fig. 8). When sleep pressure was enhanced by SD, the typical
increase in NREM sleep, REM sleep, and SWA in NREM sleep
was evident, but none of these variables differed significantly
between Adk ™t~ and WT mice (Table 1). We conclude that the
changes in ADK expression per se in the absence of any changes in
adenosine metabolites do not affect sleep.

ADK protein expression level

To validate our findings, we retrospectively quantified ADK pro-
tein expression levels in brain extracts from representative exper-
imental animals of each genotype after the conclusion of the

WT and Adk-tg mice during 18 h recovery after 6 h SD (gray area). Mean 2 h values are expressed
as percentage of the mean 24 h baseline SWA in NREM sleep of the corresponding EEG. Geno-
type differences ( p <<0.001, Tukey—Kramer; ANOVA “genotype” F; 5, = 29.04,p << 0.0001
for PAR, and f; 5,y = 14.23, p <<'0.0009 for FRO; interaction “genotype” by “2 h interval”
Fig 183 = 1.06, p = 0.39 for PAR, and Fg 143 = 1.55, p = 0.14 for FRO). Differences from
corresponding baseline interval in Adk-tg (open squares below the curves; p << 0.05, paired ¢
test; ANOVA “condition” by “2 hinterval” F g 59 = 32.81and 46.08, p < 0.0001 for PAR and
FRO, respectively) and WT mice (filled squares; p < 0.0001, paired t test; F g 5, = 48.32and
46.76, p < 0.0001 for PAR and FRO). B, Time course of SWA during the 2 min before and after
transitions from waking to NREM sleep. Mean 20 s values computed for the first 6 hinterval after
SD and the corresponding baseline interval are expressed as percentage of the mean 24 h
baseline SWA in NREM sleep. Triangles, Genotype differences during recovery (p << 0.05,
unpaired t test; ANOVA “genotype” by “20 s epoch”: F 5 5,y = 2.01,p = 0.0276 for PAR, and
Fans2) = 2.73,p = 0.0024 for FRO).

experiments (n = 6 per genotype). Adk-tg mutants expressed
significantly higher ADK levels in the brain (142% vs WT mice;
p < 0.001, unpaired t test) of the short ADK isoform (Fig. 9),
whereas ADK expression levels of the short and long ADK iso-
forms in Adk '~ mice were significantly lower (65% of WT mice;
p < 0.001, unpaired ¢ test).

Discussion

Adenosine levels in adult brain are primarily regulated by an
astrocyte-based adenosine cycle (Boison, 2008). Astrocytes can
release adenosine precursor ATP either by vesicular transport
(Pascual et al., 2005) or via hemichannels (Kang et al., 2008).
Once outside the cell, ATP is rapidly degraded by a cascade of
ectonucleotidases (Zimmermann, 2000). In contrast to conven-
tional neurotransmitters, there is no regulated transporter-
mediated reuptake system for adenosine. On the contrary,
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astrocytes express two types of equilibrative nucleoside trans-
porters (Baldwin et al., 2004). Inside the cell, adenosine is re-
moved by phosphorylation into AMP by ADK. Thus, ADK drives
the influx of adenosine into the astrocytes and regulates the abun-
dance of extracellular adenosine.

Role of ADK in sleep homeostasis

In this study, we show for the first time that increasing ADK, the
key enzyme controlling adenosine levels, robustly altered vigi-
lance states and specific EEG oscillations that are the hallmarks of
NREM sleep, REM sleep, and wakefulness. In particular, the in-
creases in brain ADK protein and ADK activity in Adk-tg mice
resulted in a remarkable reduction of EEG power below 4 Hz and
in the theta frequency range (Fig. 1), pointing to a deficiency in
mechanisms generating EEG slow waves and theta oscillations.
Moreover, ADK overexpression led to a

reduction of sleep, which was partially
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Figure 6.  Time course of speific frequency bands during the 2 min before and after transi-

tions from NREM to REM sleep in WT and Adk-tg mice. SFA (10.25—15 Hz) in the frontal EEG (left
panel) and theta frequency activity (7.25—11 Hz) in the parietal EEG (right panel). Mean 20 s
values for the 24 h baseline are expressed as percentage of the mean 24 h baseline SFA or theta
activity in NREM sleep. Triangles, Genotype differences (SFA, p << 0.0005, unpaired t test;
ANOVA “genotype” by “20 s epoch”: F;; 55,y = 10.64 and 41.49, p << 0.0001 for SFA and theta
activity, respectively).

compensated for by an increase in sleep @ 2.25-3.5 Hz 6.25-9 Hz 11.25-15 Hz
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remarkable since Adk-tg mice had slept Hours

less than WT mice during the dark period

preceding SD. Therefore, they were under Figure7.  Time course of EEG powerin waking in three frequency bands in the parietal EEG of WT and Adk-tg mice during the 6 h

higher sleep pressure at the beginning of
SD. The deficiency in sleep regulatory
mechanisms was further demonstrated by
the lower SWE accumulated after 18 h re-
covery in Adk-tg mice.

ADK is highly conserved in evolution and ubiquitously ex-
pressed (Boison, 2006). Its importance for survival is emphasized
by the lethality of the disruption of the Adk gene (Boison et al,,
2002). Two different isoforms of ADK exist (Cui et al., 2009), a
cytoplasmic isoform thought to regulate ambient levels of aden-
osine, whereas a nuclear isoform might be implicated in epige-
netic mechanisms. This dual functionality of the enzyme has been
postulated previously (Studer et al., 2006). Heterozygous Adk
mice have no obvious phenotype (Boison et al., 2002), which we
here confirmed for sleep and sleep regulation. We reported pre-
viously that Adk ™/~ mice display alterations in ADK expression in
the absence of changes in adenosine metabolism. These findings
suggest that the nuclear isoform of ADK is likely not involved in
sleep regulation. In line with this notion, Adk-tg mice that selec-
tively overexpress the cytoplasmic isoform of ADK, but lack the
nuclear isoform of ADK, show a profound sleep phenotype. To-
gether, these data suggest that the cytoplasmic, but not the nuclear
isoform of ADK is involved in sleep regulation.

Sleep deprivation enhanced extracellular adenosine, which
thereafter decreased during recovery sleep (Porkka-Heiskanen et
al., 1997, 2000; Basheer et al., 2004). Benington and Heller (1995)
proposed that adenosine continues to be released during recovery
from SD as a product of a putative restorative process occurring
during sleep. The astrocytic and neuronal ADK overexpression in
Adk-tg mice should lead to a faster adenosine clearance from the
extracellular space resulting in a slower accumulation of sleep need
during prolonged wakefulness, and in a reduced response to SD.
Thus, we had hypothesized that the overall reduction in brain aden-
osine levels in Adk-tg mice might not only modify sleep under base-

SD (gray area) and first 6 h recovery. Mean 2 h values are expressed as percentage of the mean 24 h baseline power in the
corresponding frequency band in waking. Triangles, Genotype differences ( p << 0.05, unpaired ¢ test; ANOVA “genotype” by “2 h
interval” Fi5 14y = 2.46, p = 0.037, for 2.25-3.5 Hzband, F s 1,4y = 15.67 and 6.95, p << 0.0001, for 6.25-9 and 11.25-15 Hz
band, respectively). Asterisks, Difference between the first and last 2 h SD interval ( p << 0.05, paired ¢ test).
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Figure 8.  Time course of NREM sleep (NREMS), REM sleep (REMS), and SWA (EEG power
between 0.75 and 4 Hz) in NREM sleep in the parietal (PAR) and frontal (FRO) EEG in WT (black
dots;n = 14) and Adk ™/~ mice (white dots; n = 15) during the 24 h baseline. The white and
black bars indicate the 12 h light and dark period. Data represent 2 h means; SWA is expressed
as percentage of the 24 h mean SWA in NREM sleep.

line conditions but also attenuate the rise in sleep pressure during
SD, and impair sleep restorative processes during recovery.

The deficiency in the Adk-tg mice was not restricted to EEG
slow waves but also comprised spindle activity in NREM sleep
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Figure 9.  Top, Western blot of ADK protein levels from the right hemisphere of adult WT,
Adk *'~, and Adk-tg mice (numbers 1- 6 correspond to individual mice). Bottom, Correspond-
ing quantitative analysis of the ADK levels of n = 6 mice per genotype (0.D., optical density).
ADK was first normalized to equal loading according to the c-tubulin standard and then to the
ADK level of WT mice (=100%). Differences from WT: **p <0.001, unpaired ¢ test.

and theta activity in waking and REM sleep. Spindle and slow-
wave oscillations originate in the thalamocortical network and
depend on the hyperpolarization of thalamocortical neurons
(Steriade et al., 1993). Notably, Adk-tg mice showed both re-
duced SWA levels in NREM sleep and a 24% lower surge of SFA at
NREM-REM sleep transitions compared with WT mice (Fig. 6).
During SD-induced wakefulness, Adk-tg mice showed a larger
increase of SFA and a smaller increase of SWA (Fig. 7). Adenosine
A, receptors, which are predominantly expressed in the cortex
and in several thalamic nuclei, including the thalamic reticular
nucleus (Rosin et al., 1998; Ochiishi et al., 1999), may mediate
these genotype differences. Robust, but opposing, presynaptic
and postsynaptic effects of adenosine via A, receptors on thalamo-
cortical oscillations were reported in ex vivo thalamic slices (Pape,
1992; Ulrich and Huguenard, 1995; Fontanez and Porter, 2006).
Our results are in agreement with a potent role of adenosine in
mediating the hyperpolarization of thalamocortical neurons,
which de-inactivates the low-threshold calcium channels in tha-
lamic relay nuclei underlying the occurrence of slow waves (for
review, see McCormick, 1992). The reduced adenosinergic tone
in Adk-tg mice (Fedele et al., 2005) may also alter ATP-regulated
phosphorylation of T-type Ca*" channels (Leresche et al., 2004).
In addition, adenosine modulates the release of several neuro-
transmitters (Fredholm et al., 2005), including cholinergic,
monoaminergic, and histaminergic inputs to the thalamocortical
network, which, thereby, may alter the firing pattern of thalamo-
cortical neurons.

The waking EEG is affected by Adk overexpression
Both the amount and quality of wakefulness were affected by
ADK overexpression (Table 1). Adk-tg mice were more active
during their waking bouts compared with WT mice (Fig. 4), con-
firming previous results (Fedele et al., 2005; Yee et al., 2007).
These findings mimic the stimulant properties of the adenosine
receptor antagonist caffeine (Schwierin et al., 1996; Fredholm et
al., 2005; Huang et al., 2005). It is likely that the increase in
wakefulness and corresponding reduction in sleep in Adk-tg mice
is a consequence of reduced adenosinergic tone throughout the
brain, leading to increased activity of the ascending monoamin-
ergic system on the thalamus.

It is well established from human and animal studies that EEG
power in the low frequencies increases in the course of prolonged
wakefulness (Torsvall and Akerstedt, 1987; Franken et al., 1993;
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Cajochen et al., 1995; Aeschbach et al., 1999; Achermann and
Borbély, 2003; Vyazovskiy and Tobler, 2005). We found a robust
increase in EEG power of frequencies <8 Hz in both genotypes in
the course of SD. Interestingly, initial levels and rise rates of
power in specific frequencies were different in Adk-tg mice (Fig.
7). These differences may result from the behavioral alterations
mentioned above. The mechanisms underlying these alterations
remain unclear.

Role of Adk in REM sleep

Strikingly, Adk-tg mice showed an overall reduction of REM
sleep (Table 1). Several lines of evidence support a role of the
adenosinergic system in the onset and maintenance of REM
sleep. Microinjections of the A; receptor agonist cyclopentylad-
enosine in the pontine reticular formation, a region implicated in
the modulation of REM sleep (Monti and Monti, 2000), en-
hanced REM sleep duration in rats (Marks and Birabil, 2000;
Marks et al., 2003). This effect was counteracted by pretreatment
with the adenosine receptor antagonist cyclopentyltheophylline
(Marks and Birabil, 1998). Consistently, microinjections of an
A, , receptor agonist in the same region also enhanced REM sleep
and increased acetylcholine release in rodents (Marks et al., 2003;
Coleman etal., 2006). Initiation of REM sleep may be deficient in
Adk-tg mice because of alterations in glutamatergic excitation
and GABAergic inhibition of REM sleep active neurons in the
sublaterodorsal nucleus (Luppi et al., 2006). Once REM sleep is
initiated, it is maintained normally as indicated by the similar
duration of REM sleep episodes in WT and Adk-tg mice. Under
increased sleep pressure, the REM sleep rebound was similar in
the two genotypes, indicating that basic REM sleep regulatory
mechanisms are intact in Adk-tg mice.

In the present study, reduced theta activity after transitions to
REM sleep in Adk-tg mice implicates a role for adenosine in the
modulation of theta oscillations. Moreover, theta peak frequency
in REM sleep was significantly lower in Adk-tg mice compared
with WT mice, whereas waking theta peak frequency was similar
in the two genotypes (p = 0.18, unpaired ¢ test). Changes in
adenosinergic tone because of ADK overexpression may modu-
late the frequency and amplitude of theta oscillations during
REM sleep by changing the excitatory input from the brainstem
reticular formation to the septum (Vinogradova, 1995).

Conclusions

Our data suggest that ADK overexpression profoundly alters the
sleep phenotype, likely by lowering adenosine tone in the brain. It
is tempting to speculate that ADK, by controlling adenosine lev-
els and its receptor-mediated effects, may tune and integrate
other neurotransmitter pathways involved in sleep—wake regula-
tion and the generation of related EEG oscillations. Overall, our
results are in accordance with a global rather than a region-
specific role of adenosine in sleep regulation (Heller, 2006).
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