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Adult brain plasticity, although possible, remains more restricted in scope than during development. Here, we address conditions under
which circuit rewiring may be facilitated in the mature brain. At a cellular and molecular level, adult plasticity is actively limited. Some of
these “brakes” are structural, such as perineuronal nets or myelin, which inhibit neurite outgrowth. Others are functional, acting directly
upon excitatory-inhibitory balance within local circuits. Plasticity in adulthood can be induced either by lifting these brakes through
invasive interventions or by exploiting endogenous permissive factors, such as neuromodulators. Using the amblyopic visual system as
a model, we discuss genetic, pharmacological, and environmental removal of brakes to enable recovery of vision in adult rodents.
Although these mechanisms remain largely uncharted in the human, we consider how they may provide a biological foundation for the
remarkable increase in plasticity after action video game play by amblyopic subjects.

Introduction
Neural circuits are shaped by genes and environment during
early windows of brain development. Since the classic work of
Hubel and Wiesel (1970) on visually deprived cats, most cortical
systems are thought to be molded by experience during a “sensitive
period” in early life. Considerable evidence supports this view. For
example, abnormal visual input during infancy caused by mis-
aligned eyes or congenital cataracts produces a permanent deficit in
visual acuity, known as amblyopia (Lewis and Maurer, 2009). Un-
matched input from the two eyes early in life not only results in loss
of vision in the amblyopic eye but also disrupts the typical binocular
organization of thalamo-cortical afferents, also known as ocular
dominance columns. If the perturbation occurs later or in adult-
hood, the deficits are milder or nonexistent (Hubel and Wiesel,
1970). The notion of heightened periods of brain plasticity during
development is not limited to sensory systems, but also extends to
motor functions or cognition such as language acquisition (Newport
et al., 2001). Here, we focus on amblyopia (from the Greek, am-
blyos—blunt; opia—vision) as an example of enduring changes in
response to early experience (Ciuffreda et al., 1991).

Recent work has begun to unravel the cellular and molecular
constraints that limit recovery from amblyopia, identifying two
main classes of “brakes” that emerge with development (Fig. 1).

On the one hand, new structures established as the animal ma-
tures (e.g., myelin or perineuronal nets) drastically curtail neurite
outgrowth in the adult brain. On the other hand, functional
changes in the balance between excitation and inhibition (E/I)
directly regulate the plastic potential of the established neural
network. To date, this work has been predominantly performed
in animal models. Yet, in addition to its theoretical importance, it
is of high practical significance for humans, as it paves the way for
new approaches to functional rehabilitation following cortical
damage in adulthood and to promote learning by education and
in job training. A challenge is to translate the biological manipu-
lations shown to be effective in rodents into feasible and safe
interventions in humans. With this aim, we consider the impact
of perceptual learning and entertainment video games as tools
that may promote brain plasticity.

“Brakes” on plasticity and how to lift them
An emerging view is that the brain is intrinsically plastic, and one
of the outcomes of normal development is then to stabilize the
neural networks that are initially sculpted by experience during
the sensitive period. In the case of early vision, a key role of one
such period is for visual experience to consolidate spatial acuity
and to enforce the matching of orientation preference in binoc-
ular cells through the two eyes (Wang et al., 2010). More gener-
ally, a reduction in plasticity as development proceeds is likely to
allow greater adaptability of the organism to variable conditions
early in life, while ensuring an efficient neural architecture for
known conditions by adulthood.

Early in development, excitation appears to dominate cortical
circuits, but accumulating evidence supports a pivotal role for
late-developing E/I circuit balance in the initiation of sensitive
periods (Fig. 1). For example, the onset of visual cortical plasticity
is delayed by genetic disruption of GABA synthesis or a slowing
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down of the maturational state of perisomatic inhibition (Hensch,
2005). Conversely, the application of benzodiazepines or other treat-
ments that accelerate GABA circuit function triggers premature
plasticity (Di Cristo et al., 2007; Sugiyama et al., 2008). These manip-
ulations are so powerful that animals of identical chronological age
may be at the peak, before, or past their sensitive period, depending
on how the maturational state of their GABA circuitry has been
altered.

Once induced, synaptic rewiring appears to be executed by the
action of extracellular proteases (Mataga et al., 2002; Oray et al.,
2004), which induce dendritic spine motility and pruning before
regrowth. Notably, these effects proceed in a laminar sequence
(Oray et al., 2004) consistent with the progression of plasticity
through the thalamocortical circuit (Trachtenberg et al., 2000).
Likewise in barrel cortex, a brief sensitive period for whisker re-
ceptive field tuning emerges concurrent with an increase in
experience-dependent spine motility (Lendvai et al., 2000; Stern
et al., 2001). Such abrupt and transient circuit reconfiguration is
eventually recalibrated by homeostatic processes (Pozo and
Goda, 2010), involving cell-intrinsic transcription factors (Greer
and Greenberg, 2008; Chang et al., 2010) or surrounding glia-
derived factors such as tumor necrosis factor � or the comple-
ment cascade (Stevens et al., 2007; Kaneko et al., 2008). It is
notable in this context that one of the first successful approaches
to reintroduce juvenile plasticity in the adult visual cortex was
the direct transplantation of immature astrocytes (Müller and
Best, 1989).

In addition, GABA circuits themselves exhibit synaptic plas-
ticity that appears distinct from that of neighboring excitatory
neurons (Yazaki-Sugiyama et al., 2009; Kameyama et al., 2010;
Maffei et al., 2010). Whereas the classically studied pyramidal cell
gradually shifts its responsiveness away from a deprived input,

interneurons do so only later (Gandhi et
al., 2008), and in the case of fast-spiking
interneurons, after an initial shift toward
the deprived input (Yazaki-Sugiyama et
al., 2009). Remarkably, direct transplan-
tation of embryonic GABA precursor cells
in the postnatal brain also supports a sec-
ond sensitive period (Southwell et al.,
2010). Similar to normal development
(Sugiyama et al., 2008), the second wave
of plasticity only emerges once the trans-
plant matures to a critical stage of connec-
tivity, and not before or after.

Neural networks thus sculpted by early
experience ultimately become more hard-
wired (Shatz and Stryker, 1978; Knudsen,
2004; Feldman and Brecht, 2005). Plastic-
ity gradually winds down with a charac-
teristic duration proportional to a species’
lifespan (Berardi et al., 2000). Effects of
early experience are thus actively pre-
served throughout life as a consequence of
late-appearing molecular factors. The es-
tablishment of new connectivity may in
part be under the control of “structural”
factors that regulate axonal growth (Fig.
1), such as myelin-related proteins inhib-
iting axonal sprouting (NgR, PirB) (Mc-
Gee et al., 2005; Syken et al., 2006) or
chondroitin sulfate proteoglycans. The
latter may restrain synaptic inputs by

forming tight perineuronal nets (PNNs) (Pizzorusso et al., 2006;
Carulli et al., 2010) around the basket-type GABA cells which
normally initiate a sensitive period (above). Directly removing
such physical barriers to plasticity enables recovery from ambly-
opia (Table 1) (H. Morishita, M. Chung, H. Miyamoto, Z. He, M.
Fagiolini, and T. K. Hensch, unpublished observations).

Alternatively, the plastic potential of neural networks can be
engaged late in life by acutely regulating “functional” E/I trans-
mitter release. Manipulations that locally reduce inhibition in
adulthood have been found to restore a heightened visual plas-
ticity (He et al., 2007; Sugiyama et al., 2008; Harauzov et al., 2010)
(Fig. 1). One action of endogenous neuromodulator release such
as norepinephrine, acetylcholine, serotonin, or dopamine may be
to adjust a favorable E/I balance (Bear and Singer, 1986; Kasa-
matsu, 1991; Kilgard and Merzenich, 1998; Bao et al., 2001;
Weinberger, 2007; Maya Vetencourt et al., 2008; Goard and Dan,
2009). In a striking example, chronic treatment with the seroto-
nin reuptake inhibitor (SSRI) fluoxetine restores visual function
in amblyopic adult rats apparently by resetting E/I balance (Maya
Vetencourt et al., 2008). This neurochemical milieu can act in a
cell-specific manner during periods of heightened arousal or fo-
cal attention (McCormick, 1989; Gil et al., 1997; Kawaguchi,
1997; Kawaguchi and Shindou, 1998; Xiang et al., 1998; Hsieh et
al., 2000; Froemke et al., 2007). Neuromodulatory tone also un-
derlies sleep–wake state, fluctuating with a diurnal rhythm and
providing a potential link to the regulatory role of sleep on brain
plasticity (Frank et al., 2001; Steriade, 2004).

Interestingly, even these permissive factors are tightly regu-
lated throughout the lifespan. Intense stimulation of neuro-
modulatory systems during infancy leads to impaired ability to
augment learning later in life (Liang et al., 2006). In the mature
brain, brake-like molecules further limit the role of neuromodu-

Figure 1. Evolving plastic capacity across the lifespan (blue arrows) (E/I, Excitatory-inhibitory circuit balance) suggests possible
mechanisms for enhancing learning and recovery of function in adulthood (red). (1), Removing structural barriers to rewiring by
targeting, for example, perineuronal nets, myelin, or epigenetic status. While effective in resetting brain plasticity in animal
models (Table 1), their potential utility in humans remains elusive. (2), Resetting local E/I to a juvenile state where excitation
dominates can also effectively promote plasticity in adulthood (Table 1). Noninvasive manipulations, such as the immersive and
enriched conditions of video game play, may elicit various neuromodulatory responses, perhaps through feedback signals from
higher control centers, to engage brain plasticity and learning in adults.
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lators on brain plasticity. One such factor is the prototoxin Lynx1
acting on nicotinic receptors to dampen the response to acetyl-
choline. Removal of Lynx1 restores plasticity and allows recovery
from amblyopia in adulthood (Morishita et al., 2010). Plastic
changes induced in adulthood can be qualitatively different from
those of the juvenile (Frenkel and Bear, 2004; Sato and Stryker,
2008), and may not always be enduring or capable of fully over-
coming the structural limitations established earlier during sen-
sitive periods. Yet, under certain conditions, they are adequate to
restore enough plasticity to reverse amblyopia (Table 1).

Lessons for brain plasticity in adult humans
There is no doubt that humans demonstrate marked learning as a
result of practice even in adulthood; yet when compared with
children, adult learning appears qualitatively and quantitatively
different. It is effortful, often quite narrow in its scope, and most
of the time incomplete compared with the learning children may
exhibit (Newport et al., 2001). Recent animal studies focused on
augmenting plasticity in the visual cortex have identified means
to recapitulate juvenile forms of learning in adulthood (Table 1).
Achieving the same in humans would be a significant clinical
advance as amblyopia is not always reversed when treated early in
development, and conventional strategies (patching and penal-
ization) are generally not undertaken in older children and
adults. Here, we ask how the brakes identified in animal research
might be lifted in humans, keeping in mind the possible costs of
inducing exuberant plasticity in a mature nervous system.

One rather drastic example of adult plasticity in the case of
amblyopia comes from “experiments of nature” whereby ambly-
opic patients have lost vision in the “good” eye. Under these condi-
tions, visual acuity in the amblyopic eye sometimes spontaneously
improves (Vereecken and Brabant, 1984; El Mallah et al., 2000; Rahi

et al., 2002). These few reports are consistent with the notion that the
connections from the amblyopic eye may be weakened, inhibited, or
unattended, rather than destroyed. Loss of the fellow eye would al-
low these existing connections to be reactivated. This could be the result
of unmasking (Restani et al., 2009) or higher brain areas learning to
attend to the previously inhibited signals from the amblyopic eye.

While direct pharmacological manipulations in humans are
theoretically appealing, indiscriminately tampering with brakes
on plasticity throughout the brain may cause more harm than
good (see Pascual-Leone et al., 2005 for the two sides of plastic-
ity). Interfering with brain chemistry, as in most animal studies,
raises significant ethical and safety concerns. At the same time,
many FDA-approved drugs are already administered with poten-
tially informative side effects. This is the case, for example, of
valproic acid and benzodiazepines. Recovery from stroke is en-
hanced by factors hypothesized to promote brain plasticity (Mos-
kowitz et al., 2010), and could therefore potentially benefit from
such a pharmacological approach.

Drugs that alter the “epigenome” also hold promise given
recent discoveries of how environmental changes alter brain
chromatin status (Zhang and Meaney, 2010). Epigenetic modifi-
cations, such as the acetylation of histones, are a common target
of cancer biology (Stimson et al., 2009), and may have profound
impact on the regulation of behavior. Histone deacetylase inhib-
itors promote synaptic plasticity (Levenson and Sweatt, 2006),
reactivate critical periods, and rescue amblyopia in adult rodents
(Putignano et al., 2007; Silingardi et al., 2010). More generally,
the use of drugs that specifically target transcriptional regulatory
processes known to be altered in neurodevelopmental disorders,
such as Down’s syndrome, fragile X, or Rett’s syndrome, to cite a
few, has proven strikingly efficient at alleviating cognitive deficits
even when administered in adulthood (Chahrour and Zoghbi,

Table 1. Summary of invasive and noninvasive interventions that either induce ocular dominance shifts in adults with normal vision (“Adult ODP”) or restore visual acuity
in adulthood (“Recovery”)

Intervention Mechanism Adult ODP Recovery Species References

Invasive
Astrocyte transplant Structural � n.t. Cat Müller and Best (1989)
NGF infusion Structural � n.t. Cat Gu et al. (1994); Galuske et al. (2000)
chABC Structural � � Rat Pizzorusso et al. (2002, 2006)
Crtl1 KO Structural � n.t. Mouse Carulli et al. (2010)
NgR KO Structural � � Mouse McGee et al. (2005); H. Morishita, M. Chung, H. Miyamoto, Z. He, M. Fagiolini,

and T. K. Hensch (unpublished observations)
PirB KO Structural � n.t. Mouse Syken et al. (2006)
dnNgR Structural � n.t. Mouse H. Morishita, M. Chung, H. Miyamoto, Z. He, M. Fagiolini,

and T. K. Hensch (unpublished observations)
Focal demyelination Structural � � Mouse H. Morishita, M. Chung, H. Miyamoto, Z. He, M. Fagiolini,

and T. K. Hensch (unpublished observations)
Locus ceruleus stimulation E/I � n.t. Cat Kasamatsu et al. (1985)
cAMP activation E/I � n.t. Cat Imamura et al. (1999)
MGE transplant E/I � n.t. Mouse Southwell et al. (2010)
Lynx1 KO E/I � � Mouse Morishita et al. (2010)

Noninvasive
Valproic acid/TSA Structural � � Rat/mouse Putignano et al. (2007); Silingardi et al. (2010)
AChase inhibitor E/I � � Mouse Morishita et al. (2010)
Fluoxetine E/I � � Rat Maya Vetencourt et al. (2008)
L-threo-DOPS E/I � n.t. Cat Mataga et al. (1992)
Dark exposure E/I � � Rat He et al. (2007)
Enrichment E/I � � Rat Sale et al. (2007)
Perceptual learning E/I n.t. � Human Levi and Li (2009b)
Video games E/I n.t. � Human Li et al. (2010)
TMS E/I n.t. � Human Thompson et al. (2008)

Proposed mechanism is categorized as disruption of structural or functional brakes. n.t., Not tested; chABC, chondroitinase ABC; NGF, nerve growth factor; L-threo-DOPS, L-threo-dihydroxyphenylserine; KO, knockout; Crtl1, cartilage link
protein; NgR, Nogo receptor; PirB, paired immunoglobulin-like receptor B; dnNgR, dominant-negative NgR; MGE, medial ganglionic eminence; TSA, trichostatin A; AChase, acetyl-cholinesterase; TMS, transcranial magnetic stimulation.
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2007; Ehninger et al., 2008; Greer and Greenberg, 2008). Consis-
tent with the theme developed here (Morishita and Hensch,
2008), one purported mechanism of action of these drugs may be
to restore a more normal E/I balance (which is commonly im-
paired in such disorders) (Rubenstein and Merzenich, 2003; Pol-
leux and Lauder, 2004; Gogolla et al., 2009).

Results from animal studies reviewed in Table 1 further sug-
gest a need to systematically document psychotropic medications
(e.g., SSRI antidepressants). In a close parallel with the animal
literature, clinical trials to treat amblyopia with fluoxetine are
underway in Finland, India, and New Zealand (L. Maffei, per-
sonal communication). Likewise, direct enhancement of cortical
processing by cholinesterase inhibitors (Silver et al., 2008), such
as those prescribed for Alzheimer’s disease, offers another oppor-
tunity. Yet, it would be ideal to endogenously recapitulate brain
states conducive to plasticity in a noninvasive but targeted man-
ner. One potential route is through the endogenous release of
permissive factors in response to altered environments.

The proposal that brain plasticity and learning are fostered by
environmental factors is far from new (Greenough et al., 1987).
As early as the 1960s, Bennett et al. (1964) had noted that adult
rats housed in enriched cages had a greater cortical weight than
those housed in individual, standard laboratory cages. Two seem-
ingly opposite manipulations in adult rats illustrate the power of
environment. Oddly, amblyopic rats subjected to complete visual
deprivation by dark exposure for 10 d recover significant vision
once allowed to see binocularly (He et al., 2007). Translation of
this treatment to humans is questionable as the proportional
length of dark exposure required is likely to be on the order of
months rather than days, which may be too disruptive for most.

Arguably, a second, more promising approach for humans is
environmental enrichment. Rats forced to use their amblyopic
eye after reverse suture benefit from an exercise wheel, larger
social groups, daily repositioning of food hoppers and various
objects, and weekly cage changing (Sale et al., 2007). In both
cases, a common mechanism is implicated—a change in E/I bal-
ance through reduced GABAergic inhibition in the visual cortex.
In a parallel to these findings, recent work in humans has identi-
fied behavioral interventions that may heighten brain plasticity,
above and beyond that observed under a normal lifestyle.

One such environment is aerobic exercise. The positive effects
of aerobic exercise are particularly well known in the field of
aging, with individuals who normally exercise outperforming
those who do not on tasks as varied as dual-task performance,
executive attention, or distractor rejection (for recent reviews, see
Colcombe and Kramer, 2003; Kramer and Erickson, 2007; Hill-
man et al., 2008). In addition to its well documented impact on
neurogenesis in animal models (Kempermann et al., 2000; Ni-
thianantharajah and Hannan, 2006), aerobic fitness also leads
to neuroanatomical and neurophysiological changes in older
adults, including increased gray matter volume in the prefrontal
and temporal areas (Colcombe and Kramer, 2003) and func-
tional brain activity in a variety of areas such as superior parietal
areas and the anterior cingulate cortex (Colcombe et al., 2004).
Whether aerobic exercise can enhance brain plasticity in healthy,
young adults unfortunately remains undocumented.

Another type of enriched environment extensively studied in
humans, especially in the case of vision, is perceptual learning
and, more recently, immersion in video games. During percep-
tual learning using only their amblyopic eye, patients are required
to practice a variety of visual tasks. A review of the extant studies
(almost 200 amblyopic subjects distributed over 14 papers) re-
veals that such practice results in a long-lasting improvement in

performance in amblyopic eyes (Levi and Li, 2009a). It is gener-
ally strongest for the trained eye, task, stimulus, and orientation,
but appears to improve over a broader spatial frequency band-
width than in normal vision, indicating some level of transfer
(Huang et al., 2008). So far, perceptual learning has had limited
impact on clinical practice, however, because of its limited transfer
and the rather dull nature of the training, leading to compliance
issues. Yet, the mechanisms by which it operates—a reduction of
internal neural noise and/or more efficient use of the stimulus
information by retuning the weighting of the information—are
central to changing information processing in the visual cortex
(Li et al., 2008; Levi and Li, 2009a).

Similarly, recent studies indicate that enhancements after ac-
tion video game play are also due to observers being better able to
select and use the most reliable information for the task (Li et al.,
2009a). Yet, unlike perceptual learning, whereby the observer
typically learns the best template just for the trained task, this
work suggests that action gamers learn to find the best template
on the fly as they are faced with new visual stimuli and new
environments (Green et al., 2010b). Accordingly, fast-paced,
action-packed games have already been documented to have po-
tent positive impact on an array of skills, including perception,
visuo-motor coordination, spatial cognition, attention, and de-
cision making to cite a few, illustrating the powerful effect of
action game play in reshaping the adult brain (Gagnon, 1985;
Dorval and Pépin, 1986; Greenfield et al., 1994; De Lisi and Wol-
ford, 2002; Green and Bavelier, 2006; Quaiser-Pohl et al., 2006;
Greenfield, 2009; Li et al., 2009b).

Having access to a training regimen that naturally leads to
improvements across many different visual tasks would be highly
beneficial, as amblyopes suffer not only from low-level vision
losses, but also from higher-level vision losses (for review, see
Kiorpes, 2006; Levi, 2006). With an eye toward these mecha-
nisms, adults with amblyopia were recently asked to play an off-
the-shelf action video game (Medal of Honor: Pacific Assault)
with their fellow eye patched (Li et al., 2010). This resulted in a
substantial improvement in a wide range of fundamental visual
functions, from low-level to high-level, including visual acuity,
positional acuity, visual attention, and stereopsis.

Interestingly, improvement in amblyopic vision was also
noted after playing non-action video games such as SimCity,
which are not efficient in boosting normal vision (Li et al.,
2009b). This observation is consistent with a primary principle in
the field of learning wherein the learner should be faced with the
“just-right” challenge to produce the greatest benefits. While the
high demands of action games may be needed to push the limits
of normal vision, less visually intense games may be a sufficient
challenge to enhance amblyopic vision (see, for example, Vy-
gotsky’s (1978) Zone of Proximal Development). Consistent with
this, normal rats do not improve their vision further in the same
enriched cages that adequately restore acuity to their amblyopic
siblings (Sale et al., 2007), and may rather require more extreme
enrichment. The possibility of immersing rats into virtual envi-
ronments should open the door to such studies (Harvey et al.,
2009).

Action video game play may therefore improve the efficiency
of probabilistic inference in neural circuits, which in turn would
provide a mechanistic explanation for the broad transfer such
training engenders (Green et al., 2010b). These plastic changes
have been shown to be long-lasting, with beneficial effects noted
6 months to 2 years after the end of intervention (Feng et al.,
2007; Li et al., 2009b). As with enriched cages, the factors that
conspire to induce brain plasticity within the action game expe-
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rience remain to be systematically assessed. As a training para-
digm, gaming differs from more standard methods on several
dimensions. First, gaming tends to be more varied in the skills it
requires than standard training, which typically focuses on just
one aspect of performance, as exemplified in the field of percep-
tual learning. Such variation during training enhances transfer
across tasks (Schmidt and Bjork, 1992; Kornell and Bjork, 2008).
Second, unlike standard training paradigms, gaming is an activity
that is highly engrossing and also extremely rewarding. Reward,
and the drive to perform as many correct responses per unit of
time (Dye et al., 2009a), is likely to engage dopamine and possibly
opiates and other neuromodulators. The relationship between
game play and the reward system remains, however, an under-
studied domain. An early PET study indicated a large release of
striatal dopamine during the play of a toy video game (Koepp et
al., 1998), but significant experimental bias can affect the esti-
mated size of the effect, calling for further replications (Egerton et
al., 2009). Third, action games constantly require divided atten-
tion and its efficient reallocation as task demands change, most
likely engaging neuromodulatory systems such as acetylcholine
and dopamine (Rueda et al., 2005; Dye et al., 2009b), which are
also known to enhance sensory processing and brain plasticity
(Kilgard and Merzenich, 1998; Bao et al., 2001; Goard and Dan,
2009).

Finally, gaming is also associated with “flow” or the sense
that one is able to meet the challenges of one’s environment
with appropriate skills (Csikszentimihalyi, 1990). Flow is also
characterized by a deep sense of enjoyment which goes beyond
satisfying a need, and rather occurs when a person achieves
something unexpected that has a sense of novelty. Playing
entertainment video games is likely to increase flow. Accord-
ingly, older adult stroke survivors report that participating in
a virtual reality rehabilitation program leads to increased in-
volvement, enjoyment, and sense of control over the environ-
ment (Farrow and Reid, 2004). The physiological bases of flow
remain largely unknown, yet it would seem key for further
studies to understand how it engages neuromodulatory sys-
tems as well as the regulation of the autonomous nervous
system (Tang et al., 2007; Lutz et al., 2008).

Concluding remarks and future directions
Biology of the brain is heavily invested in the optimal timing and
duration of plasticity, having evolved numerous molecular
checks and balances to ensure an adaptable yet efficient organ-
ism. As we gain better knowledge of these mechanisms, we can
assess the extent to which a sensitive period can be safely and
noninvasively recapitulated by behavioral training such as
perceptual learning (Levi and Li, 2009b), video game play
(Green et al., 2010a), targeted pharmacological manipulation
(Fluoxetine), or even brain stimulation to alter E/I balance
directly (Fregni and Pascual-Leone, 2007; Thompson et al.,
2008). A main challenge will be the ability to foster plasticity and
relearning in one domain, while leaving unaltered cortical functions
in other domains.

Physically constraining neuronal networks in a “sea” of mo-
lecular brakes after an early sensitive period may ensure that the
widespread functional tuning driven by experience during devel-
opment is maintained. Yet, the nervous system retains the ability
to further retune its functional specificity even in adulthood, al-
beit in a more local and specific manner, through permissive,
feedback factors such as neuromodulators (Fig. 1). Higher-level
brain circuits involved in attention, executive function, and be-
havior regulation may play a pivotal role in adult plasticity by

their ability to modulate the coding efficiency of lower-order
networks.

For instance, endogenous GABA circuits in superficial cortical
layers seem to retain a latent plasticity throughout life (Lee et al.,
2008; Kameyama et al., 2010). These may be poised to tap top-
down feedback from higher cortical areas to sensory-motor
structures such as during attentional tasks (Chen et al., 2008).
Similarly, cholinergic projections from the basal forebrain to the
neocortex, which have been shown to enhance the efficiency of
sensory coding (Goard and Dan, 2009), may act by selectively
modulating different GABAergic subtypes (Kawaguchi, 1997;
Xiang et al., 1998; Kruglikov and Rudy, 2008). Such top-down
control of adult plasticity would allow for fine-tuning of network
connectivity as experience and demands from the environment
varies, while still maintaining the overall circuit stability that typ-
ically follows the sensitive period.

The widespread learning and plasticity observed in response
to action video games may provide a shared model system with
which to study adult plasticity in animals and humans. A viable
working hypothesis is that action game play primarily impacts
top-down, attentional systems (Hubert-Wallander et al., 2010),
possibly altering the E/I balance to allow heightened plasticity.
Simulations of artificial networks of spiking neurons accordingly
indicate that the efficiency of neural coding is enhanced thanks to
changes in synaptic weights (Green et al., 2010b). It will be essen-
tial to learn, however, whether video games are engaging a top-
down unmasking (Yang and Maunsell, 2004; Wandell and
Smirnakis, 2009), perhaps variably effective depending on the
circuitry established by each individual’s past experience, or in
fact truly allow for plastic reorganization. In particular, whether
structural brakes (gray matter myelin, PNNs) are lifted by video
game training, enabling the physical pruning and growth of new
axons in V1, remains uncertain and will require the improved
resolution of imaging techniques (Karaarslan and Arslan, 2003;
Thomas et al., 2008; Bock et al., 2009).

The links between action video game play and the molecular
and cellular factors that control plasticity in animal models are
quite preliminary. Human studies of learning and brain plasticity
typically focus on changes in information processing and its effi-
ciency, whereas animal studies characterize the molecular and
cellular mechanisms that allow changes in connectivity. A more
complete understanding of brain plasticity calls for bringing to-
gether these two levels of investigation within the same model
system. These should be fruitful steps to further our understand-
ing of the physiological states that promote brain plasticity and
learning.
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