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Dynamics of Excitability over Extended Timescales in
Cultured Cortical Neurons
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Although neuronal excitability is well understood and accurately modeled over timescales of up to hundreds of milliseconds, it is
currently unclear whether extrapolating from this limited duration to longer behaviorally relevant timescales is appropriate. Here we
used an extracellular recording and stimulation paradigm that extends the duration of single-neuron electrophysiological experiments,
exposing the dynamics of excitability in individual cultured cortical neurons over timescales hitherto inaccessible. We show that the
long-term neuronal excitability dynamics is unstable and dominated by critical fluctuations, intermittency, scale-invariant rate statistics,
and long memory. These intrinsic dynamics bound the firing rate over extended timescales, contrasting observed short-term neuronal
response to stimulation onset. Furthermore, the activity of a neuron over extended timescales shows transitions between quasi-stable
modes, each characterized by a typical response pattern. Like in the case of rate statistics, the short-term onset response pattern that often
serves to functionally define a given neuron is not indicative of its long-term ongoing response. These observations question the validity
of describing neuronal excitability based on temporally restricted electrophysiological data, calling for in-depth exploration of activity
over wider temporal scales. Such extended experiments will probably entail a different kind of neuronal models, accounting for the

unbounded range, from milliseconds up.

Introduction

The traditional paradigm in neuroscience assumes that neuronal
threshold dynamics are local in time, that is, affected only by the
recent history of membrane voltage, maybe one or two orders of
magnitude longer than the timescale of a single action potential,
not more. Accordingly, present-day mathematical models of sin-
gle neurons account for spike times and spike rates over time-
scales that are up to hundreds of milliseconds (Hodgkin and
Huxley, 1952; Izhikevich, 2003, 2004; Golomb et al., 2006; Brette
et al., 2007; Badel et al., 2008; Jolivet et al., 2008; Gerstner and
Naud, 2009; Kobayashi et al., 2009 and references therein).
Longer temporal effects, according to the above paradigm,
should be explained by either emergent collective modes or
changes in connectivity at the neural population level.

However, as already pointed out almost a century ago in the
pioneering work of Adrian and Zotterman (1926), temporal
membrane dynamics extend far beyond hundreds of millisec-
onds, so much so that there is a considerable overlap between
timescales of brain-behavior dynamics and timescales of excit-
ability (Turrigiano et al., 1994; Desai et al., 1999). This is hardly

Received Sept. 16, 2010; accepted Sept. 24, 2010.

This work was partially funded by grants from the Israel Science Foundation (S.M.) and the Etai Sharon Rambam
Atidim Program for Excellence in Research (D.E.). We thank Erez Braun, Danni Dagan, Ron Meir, Daniel Soudry, and
Noam Ziv for helpful discussions and insightful input and Eleonora Lyakhov and Vladimir Lyakhov for technical
assistance in conducting the experiments.

Correspondence should be addressed to Asaf Gal, Network Biology Research Laboratories, Technion, Haifa 32000,
Israel. E-mail: asaf.gal@mail.huji.ac.il.

DOI:10.1523/JNEUR0SCI.4859-10.2010
Copyright © 2010 the authors ~ 0270-6474/10/3016332-11$15.00/0

surprising given the immensity of the involved cellular level pro-
cesses that culminate in modulation of membrane conductances
(Marom, 2010): large numbers and coupled heterogeneous col-
lections of ion conducting proteins, which are under heavy struc-
tural and functional modulations, arising from gene expression
regulation and intracellular activity-dependent signal transduc-
tion machineries. These processes, together with changes in cell
morphology, practically cover any observable cell-physiology
timescale.

What are the consequences of this immensity of cellular pro-
cesses on single-neuron excitability in general and threshold dy-
namics in particular? It turns out that even when a small subset of
these processes is numerically integrated in single neuron models
(Lowen et al., 1999; Gilboa et al., 2005), temporally complex
dynamics of spike time series are expected, including long-term
correlations, broad distributions of practically every statistic of
activity, and 1/fspectral behaviors. Presumably, attempts to inte-
grate more processes that modulate excitability will yield even
further complexity. Although this theoretical result is congruent
with measurement of long-term network-embedded single-
neuron activity in vivo (Teich, 1989; Lowen and Teich, 1992,
1996; Teich et al., 1997), the interpretation of such data is limited
by inherent inability to separate neuronal excitability from net-
work effects on the observed complex dynamics. Therefore, tem-
porally extended data from a single neuron that is isolated from
network effects is wanted; such data are especially called for in
light of recent interest in the functional and theoretical implica-
tions of wide temporal range dynamics at the single-neuron level
(Fairhall et al., 2001; Drew and Abbott, 2006; French and
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Figure1. The effect of synaptic blockers on the activity of cultured neurons. A, Overlaid
voltage traces recorded from a single electrode in response to 30 min of 1 Hz pulse
stimulation, before application of synaptic blockers. The shaded area marks the stimula-
tion period. The response contain both directly evoked spikes, as well as synaptically
mediated response. B, Responses from the same electrode, after the application of syn-
aptic blockers. All reverberating and synaptically mediated responses vanished, and only
the directly evoked spike is seen. C, The responses in A, shown as a color-coded image.
Each line represents a single voltage response after a stimulation. Responses are sequen-
tially ordered from top to bottom. D, The responses of B, shown as a color-coded image.
The latency and shape of the directly evoked spike are more stable after the application of
blockers.

Torkkeli, 2008; Lundstrom et al., 2008; Friedlander and Brenner,
2009; Marom, 2009, 2010). Here we present a series of experi-
ments that use the robustness of extracellular stimulation and
recording of neuronal responses in culture over a very long (prac-
tically unbounded) duration, thus generating millions-of-spikes-
long time series. Such data lend itself to analyses of long-term
statistics in temporal resolution ranging from milliseconds to
days. By conducting such long experiments on synaptically
isolated neurons, we show that excitability dynamics in itself is
intrinsically unstable, exhibiting intermittency, critical long-
range fluctuations, and broad distributions of both activity
patterns and activity statistics. Keeping in mind obvious con-
straints on our ability to extrapolate from the cultured re-
duced experimental system studied here, we argue that these
results question the usefulness and, indeed, the validity of
scaling standard models that are used to reconstruct short-
term membrane excitability dynamics, to extended temporal
and spatial regimens.

Materials and Methods

Culture preparation

Cortical neurons were obtained from newborn rats (Sprague Dawley)
within 24 h after birth using mechanical and enzymatic procedures de-
scribed in previous studies (Marom and Shahaf, 2002). The neurons were
plated directly onto substrate-integrated multielectrode arrays (MEAs)
and allowed to develop functionally and structurally mature networks
over a time period of 2-3 weeks. The number of neurons in a typical
network is on the order of 10,000. The preparations were bathed in
Minimal Essential Medium supplemented with heat-inactivated horse
serum (5%), glutamine (0.5 mm), glucose (20 mm), and gentamycin (10
g/ml) and maintained in an atmosphere of 37°C, 5% CO, and 95% air in
an incubator as well as during the recording phases. An array of Ti/Au/
TiN extracellular electrodes, 30 wm in diameter, and spaced either
500 or 200 wm from each other (Multi Channel Systems) were used.
The insulation layer (silicon nitride) was pretreated with polyethyl-
eneimine. Where indicated, synaptic transmission in the network was
completely blocked by adding 20 um amino-5-phosphonovaleric acid,
10 uM 6-cyano-7-nitroquinoxaline-2,3-dione, and 5 pum bicuculline-
methiodide to the bathing solution.
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Figure 2.  Responses of isolated neurons to sequences of stimulation pulses. A, An isolated
neuron is stimulated with short (400 s) electrical pulses. It responds by generating an action
potential, which is recorded a few milliseconds after the stimulation. Depicted are five overlaid
traces from a single neuron to pulses delivered at 1 Hz (interstimulus interval of 1s). Note the
high temporal precision of the response. Trace is colored by voltage. B, The same neuron is
stimulated for 600 s at 1 Hz, then 100 s at 20 Hz, and again 600 s at 1 Hz stimulation. Recorded
voltage traces, in response to each stimulation, are depicted using the voltage color-code
shown in A. The dashed lines mark points where stimulation rate is switched. Three response
phases are defined, as explained in Results. Under 1 Hz stimulation, the response is stable and
temporally precise. After the switch to 20 Hz, a transient phase ensues, characterized by a
gradual increase in spike latency. Beyond a critical latency value, the neuron enters an intermit-
tent phase, in which spike failures occur and latency fluctuates. When stimulation rate is
switched back to 1 Hz, the neuron returns to a stable response mode after a transient recovery
period. (—E, Enlargements of sections from the image in B; individual spikes can be identified.
Each panel is extracted from a different response phase. F, A plot of spike latency as a function of
stimulus time for the same data as in B. For visual clarity, only 60 s before the first switch and
120 s after the second switch are plotted.

Measurements and stimulation

A commercial amplifier (MEA-1060-inv-BC; Multi Channel Systems)
with frequency limits of 150—3000 Hz and a gain of 1024 X was used.
Rectangular 200 ws biphasic 20-50 wA current or 600—800 mV voltage
stimulation through extracellular electrodes was performed using a ded-
icated stimulus generator (Multi Channel Systems). In the context of this
study, no difference was observed in the behavior of neurons under
current or voltage stimulation. Data collected through the MEAs were
digitized to 16 bit using either a 5200a/526 analog-to-digital board (Mi-
crostar Laboratories) or a USB-ME256 system (Multi Channel Systems).
Each recorded channel was sampled at a frequency of 20-25 kHz. One
hour after the addition of synaptic blockers, the stimulation electrode
was selected as the one that evoked well isolated spikes, with high signal-
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to-noise ratio, in as many recording electrodes
as possible. A 25 ms voltage trace from those
channels was collected after each stimulation
pulse, and spike detection was performed oft-
line by a manual threshold-based procedure. A
3-ms-long spike shape were extracted for each
response for additional noise cleaning and
analysis.
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Performing long-term recordings

Whenever long-term experiments were con-
ducted, additional criteria were applied to val-
idate experimental stability, as discussed in the
main text. Excluding the first hour, thus allow-
ing for settling down of transient effects, spike
shapes were collected, and spike amplitude dis-
tribution is created. Neurons that demon-
strated SD beyond 20% of spike amplitude
were excluded from the dataset. Principle com-
ponent analysis (PCA) was performed on a
randomly selected set of spikes (because it is
impossible to perform PCA on the entire data-
set, which consists of millions of spikes), and all the spikes were projected
onto the first two components. The experiment was divided into three
equal length segments, and spikes belonging to each of the segments were
clustered together. Whenever the means of two of the three clusters were
separated by more than the sum of their widths, the neuron was excluded
from the dataset. Wherever more than one neuron was recorded in an
experiment, cross-correlations between firing rates of the neurons were
calculated. The cross-correlations were calculated by filtering the firing
rate with a temporal window centered in the desired timescale and with a
width equals 50% of the center value. In all the analyzed experiments,
correlations were significant but small in all timescales tested (values as
shown in Fig. 5 are typical).

Figure3.

Statistical analysis of long response sequences

For each experiment, the activity of the neuron was represented as a
single point process (the recorded spike train of the neuron, without
reference to stimulation time). Various statistical methods for identifi-
cation of scaling phenomena and estimation of the scaling exponent were
applied. Scaling exponents («ag, ap, ap, ) Were estimated using least-
squares power-law curve fit to the relevant segments of the data. Al-
though problematic in testing for power-law behavior (Clauset et al.,
2009), this gives a good estimate in cases in which the power-law
behavior is clear enough or when the aim is at approximating the
functional relation rather than setting its exact form. Generally speak-
ing, relations between exponent values estimated using different
methods can be theoretically derived, but because the values obtained
for empirical data are considerably biased, significant deviations from
these relations are expected.

Periodogram (Scharf et al., 1995). A periodogram is an empirical esti-
mator for the power spectral density of a process and is computed over
the count sequence of the spike train with bin size of 1 s. The scaling
exponent ag was estimated by fitting the low-frequency tail with a power-
law function.

Detrended fluctuation analysis (Peng et al., 1995). Detrended fluctua-
tion analysis (DFA) is a method designed to reveal and estimate the
scaling in empirical signals. It is applicable even if the signal is strictly
nonstationary. Briefly, the count sequence (with 1 s bins) is first inte-
grated. A piecewise linear curve, with segments of length T, is fit to the
data, and the mean square error (MSE) is calculated. The procedure is
repeated with various values of T to produce the MSE(T) curve. The
exponent of the behavior of MSE( T) is an indication of scale invariance
in the signal. The scaling exponent o, was estimated by fitting the large T'
tail with a power-law curve. An exponent value of 1 > «, > 0.5 indicates
the existence of long-range correlations, where in the limits a, = 0.5
indicates uncorrelated noise and «;, = 1 indicates 1/f noise.

Fano and Allan factors (Scharf et al., 1995; Lowen and Teich, 1996,
2005). A count sequence Z;(n) was calculated using logarithmically
spaced bin sizes. For each count sequence, the Fano factor (variance to
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Spike latency and spiking probability as probes of neuronal excitability. A, The effect of maximal sodium conductance
on spiking. The response of amembrane to short (400 ws) pulse stimulation was simulated using a simple Hodgkin—Huxley model.
The maximal sodium conductance (G,,) was multiplied by a factor between 0.5 and 1. As Gy, is decreased, the amplitude and
depolarization slope of the generated action potential are decreased, whereas the peak delay is increased. At a certain critically low
conductance, the evoked event can no longer be considered as a propagating action potential. The inset plots the peak delay of the
spike as a function of the Gy, factor. B, A scatter plot of the extracellular amplitude versus the extracellular spike latency from a
single recorded neuron. Data are collected from the transient phases of the response to many stimulation blocks at different rates.
A clear negative correlation exists between amplitude and latency.

var (Zr)
mean (Zr)
the bin size T. A variant of the Fano factor, the so-called Allan factor, is
mean (Z; (k) — Zy(k + 1))*
2 - mean (Zy)
scaling exponents a and a, were estimated by fitting the large T tails
with power-law curves.

mean ratio) is defined as F(T) = and plotted as a function of

defined as A(T) = . For both factors, the

Results

Spike latency and spiking probability as probes of

neuronal excitability

The main claims in this study concern the intrinsic dynamics of
excitability in individual neurons, independent of synaptic and
network effects. To achieve functional isolation, experiments
were conducted on cultured cortical neurons, functionally iso-
lated from their network by means of pharmacological block of
both glutamatergic and GABAergic synapses (see Materials and
Methods). Under these conditions, the spontaneous spiking of
neurons practically stops. For 79 neurons, recorded from five
different cultures, the spontaneous average spike rate was 1.12 *
0.87 Hz (mean = SD, median of 0.52 Hz) before blockers appli-
cations and 0.067 * 0.138 Hz (mean * SD, median of 0.0027 Hz)
after the application (rates were calculated over 30 min periods,
and only neurons with activity above 0.2 Hz before blocker ap-
plication were included). With no synaptic blockers applied, neu-
rons in the culture respond to pulse stimulation both directly and
indirectly by synaptic activation. In Figure 1, the responses of a
neuron to a low rate (1 Hz) sequence of short (400 ws) pulse
stimulation before and after application of blockers are com-
pared, showing that, after the application, each stimulation
evokes one spike only (presumably from a neuron that directly
senses the external current) (Tal et al., 2001; Marom and Shahaf,
2002; van Pelt et al., 2004; Bakkum et al., 2008; Shahaf et al., 2008;
present study), with no reverberating or synaptically mediated
responses present. We have also compared the correlation be-
tween the activity levels obtained from pairs of simultaneously
recorded neurons, before and after the application of synaptic
blockers, over 15 min at high rate (20 Hz) stimulation. We found
that blockers significantly reduce the correlation: for 18 such
pairs, the correlation coefficient (calculated over 5 s bins) is
0.31 = 0.1 (mean * SD absolute value), in which 11 of these 18
pairs of correlations are significant ( p < 0.05). After the applica-
tion of blockers, this correlation is reduced to 0.07 = 0.04, in
which none of the 18 pairs of correlation is significant. Overall,
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the lack of spontaneous activity, synaptically mediated responses,
and inter-neuron correlations in the presence of synaptic block-
ers reassured us that there are practically no functional connec-
tions between neurons (synaptically or gap junction mediated)
and that spiking activity of a given neuron reflects the interaction
between the externally applied stimulation and the neuronal in-
ternal state.

Figure 2 show the dynamics of the evoked response of a single
isolated neuron to a series of pulse stimulation. In Figure 2 A, five
overlaid extracellularly recorded spikes are shown; the spikes are
practically identical in both shape and latency from stimulation.
Note that the latency from stimulus to response is in the order of
several milliseconds (van Pelt et al., 2004; Bakkum et al., 2008;
Shahaf et al., 2008); this delay reflects the time it takes for the
membrane to generate an action potential, as well as the conduc-
tance delay of the spike along the neurites, to the point at which it
may be sensed by the recording electrode. The voltage traces of
Figure 2 A are color coded, serving for the construction of Figure
2 B, in which responses of the same neuron evoked by along series
of stimuli are presented. Each horizontal line of Figure 2 B depicts
one response evoked by one stimulus; responses are ordered se-
quentially from top to bottom. The experiment begins with a 10
min low rate (1 Hz) stimulation; the response mode in this regi-
men is 1:1, i.e., the neuron responds to each and every stimulus
(high reliability), and the trial-to-trial variability of the latency
between the stimulus and the evoked spike is low (high preci-
sion). After 10 min, the stimulation rate is increased to 20 Hz;
after this change, the response latency gradually increases while
maintaining a 1:1 mode. Around a certain critical latency, the 1:1
response mode breaks down, and response failures appear in a
seemingly erratic manner. Enlargements of segments, one from
each phase, from the image of Figure 2B are shown in Figure
2C-E, allowing identification of individual spikes. Note that the
response latency beyond the critical point fluctuates around a
(more or less) constant value. After 100 s, the stimulation rate is
decreased back to 1 Hz, and both latency and response probabil-
ity gradually recover. Figure 2F shows the latency dynamics
throughout the experiment using a real-time (rather than stimu-
lus index) axis. The phenomena of latency increase and spike
failures are by themselves not new and have been observed intra-
cellularly in the cortical culture preparation used here (Tal et al.,
2001), as well as in several other preparations both extracellularly
and intracellularly (Spira et al., 1976; Grossman et al., 1979;
Aston-Jones et al., 1980; De Col et al., 2008; Scroggs, 2008; Ballo
and Bucher, 2009); as explained below, here we use these two
extracellularly obtained response features (latency and failure) as
probes in the study of neuronal excitability dynamics.

In general, neuronal excitability can be defined as the relation
between exciting and restoring forces; in the most simple neuro-
nal setting, this relation translates into the ratio between sodium
and potassium conductances, as in the canonic Hodgkin—Huxley
(HH) model. Figure 3A shows a simulated realization of an HH
model, in which the maximal sodium conductance, Gy, is sys-
tematically varied. A short (400 us) current pulse is applied to the
model membrane, generating an action potential. As Gy, is low-
ered, the recruitment time of the spike is substantially increased,
causing a delayed response (Fig. 3A, inset). This monotonic in-
verse relation between excitability and stimulus—spike delay is
further extended when the spike propagates along a neurite, i.e.,
propagation velocity decreases and delay is accumulated (De Col
etal., 2008), a likely explanation for the relatively high values and
wide range of delays evident in Figure 2. When excitability drops
below a certain critical level, the evoked response is expected to
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Figure 4.  The dependency of neuronal response on stimulation rate. A neuron was stimu-
lated atrates of 1,5, 10, 15, 20, 25, 30, 35, 40, and 45 Hz. Stimulation was delivered in blocks of
120 s duration. The neuron was allowed to recover for 5 min between each block. Blocks of
different rates were delivered randomly. Two blocks of each stimulation rate were delivered. 4,
Spike latency as a function of time from block onset. Each color designates a different stimula-
tion rate. Note that the higher the stimulation rate, the faster the approach to the critical
latency. B, The reciprocal of the timescale of the transient phase (defined as halftime to reach
the critical latency) is plotted as a function of stimulation rate. Two possible scenarios for
extrapolation tolow stimulation rates are considered, as explained in Results. The first, depicted
blue, is alinear back extrapolation to a critical stimulation rate below which intermittency is not
reached. The second back extrapolation, depicted green, allows for the possibility that transi-
tion to intermittency occurs, regardless of stimulation rate, given enough time. C, A plot of
mean spike rate estimated from the last 305 of each block, as a function of stimulation rate. Note
that firing rate remains more or less stable beyond ~10 Hz (albeit a minor drop at the very high
stimulation rates). D, A plot of latency in the last 30 s of each block (mean == SD) as a function
of stimulation rate. Latency seems to be unaffected by stimulation rate in the intermittent
phase. E, F, Two extracts, from a 15 Hz block (E) and a 20 Hz block (F), showing the complex
fluctuation of the spike latency around its mean. The lines connect consecutive responses (that
are not separated by failures).
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120s . B

aborted, thus setting an effective spike-
generation threshold on membrane excit-
ability under given stimulation amplitude.

Although in real neurons things can be
much more complicated because excit-
ability is affected by many membrane cur-
rents and cellular factors, it is reasonable
to assume that these affect spike latency
and spiking probability in a similar way.
Note that excitability substantially affects
not only the latency but also the slope (i.e.,
derivative) of the voltage at the depolar-
ization phase of the spike (Fig. 3A). Thus,
a correlation is expected to be found be-
tween extracellularly recorded spike am-
plitude and spike latency. Figure 3B shows Vi
a scatter of spike amplitudes versus spike
latencies, collected from a single neuron,
verifying this expectation in the extracel-
lular measurements. Finally, supplemen-
tal Figure S1 (available at www.jneurosci.
org as supplemental material) shows that
the above-mentioned increase of spike la-
tency and decrease of spike amplitude and
depolarization slope can be observed us-
ing intracellular voltage recording in re-
sponse to high rate sequence of stimuli.
Together, the above considerations and
observations strengthen our interpreta-
tion of extracellular measures of spike latency and spiking prob-
ability as indirect probes of neuronal excitability.

55 hr

Figure 5.

Neuronal response to ongoing stimulation is characterized by
distinct phases

We denote the different phases seen in Figure 2 B as stable, tran-
sient, and intermittent (depicted). To characterize the depen-
dence of the above phases on stimulation rate, we stimulated
neurons using blocks of different rates, each lasting 120 s. The
neuron was allowed to recover for 5 min between blocks. Blocks
of different stimulation rates were randomly ordered, and each
rate was repeated twice. Figure 4 A shows an example of such an
experiment in one neuron. In the 1 and 5 Hz blocks, after a
transient phase, the latency seems to stabilize below the critical
latency value (De Col et al., 2008), and the response mode is 1:1
throughout. Above 5 Hz, the critical latency is reached and the
neuron enters the intermittent phase. Note that repeats of the
same stimulation rate leads to highly similar trajectories in the
transient phase, as well as similar critical latencies.

Figure 4 B shows the timescale of the transient phase leading to
the critical point, as a function of stimulation rate. This relation is
clearly monotonic and (by extrapolation) suggests the existence
of a critical stimulation rate, somewhere at ~5 Hz, below which
the neuron does not enter the intermittent phase (depicted by a
blue dashed line). In this scenario, the time it takes to reach the
critical latency diverges as the critical stimulation rate is ap-
proached. Of course, one cannot rule out, in a finite experimental
setting, the possibility that there might be an extremely slow tran-
sition to the intermittent phase even below 5 Hz (depicted with a
green dashed line). In 21 different neurons the mean extrapolated
critical stimulation rate was 7.92 = 4.7 Hz, with values ranging
from as low as ~2 Hz to as high as ~23 Hz. Unlike the timescale
of the transient phase, the value of the critical latency (estimated
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Performing long recordings from isolated neurons. A, A neuron was stimulated for 55 h with a continuous series of
pulses delivered at 25 Hz. Depicted is the binary response sequence (a white pixel represents a spiking response, and a black pixel
represents a non-spike response). The sequence is wrapped at 2 min duration (start of experiment is at top left corner). The most
prominent feature of the sequence is an apparent nonstationarity, with rate modulations at multiple timescales. B, The firing rate
of the neuron throughout the experiment, computed using bins of 5 min. , Spike shape stability throughout the experiment. Ten
spikes, randomly selected from the second hour of the experiment (blue), 10 spikes from the 25th hour (green), and 10 spikes from
the last hour (red). Spike groups are vertically shifted from each other by 0.05 mV for visual clarity. D, The firing rate of five
simultaneously recorded neurons from a 24 h experiment, under continuous 20 Hz stimulation. Rates computed using bins of 1h.
E, Cross-correlation between the firing rates from D, computed for different timescales (see Materials and Methods). The range
below each panel designate the full range of values for each matrix.

as the mean latency during the intermittent phase) is indepen-
dent of the stimulation rate. This is seen in Figure 4D for one
given neuron. The temporal structure of the fluctuation of spike
latency around the mean is not structureless (Fig. 4E,F) and
probably reflects the underlying complex processes. Similar re-
sults were obtained for the relation between stimulation rate and
firing rate (Fig. 4C), in which after the intermittent phase is
reached, no increase in firing rate (as estimated from the spike
count in the last 30 s of each block) is observed for higher
stimulation rates. The results of Figure 4 D imply an intrinsic
limit to the firing rate of neurons when averaged over a suffi-
ciently long time. Over 21 analyzed neurons, the thus defined
maximal rate was found to be 8.24 = 4.2 Hz.

Because the experiments reported here were conducted extra-
cellularly on synaptically blocked cultured neurons, it is fair to
ask the following: do the phenomena observed here reflect the
special conditions of the cultured preparation and the limitations
of the extracellular electrical interface? Supplemental Figure S1
(available at www.jneurosci.org as supplemental material) shows
that the three phases reported above (stable, transient, and inter-
mittent), as well as the existence of critical stimulation frequency,
can also be observed using intracellular recordings. Intracellular
methods, however, cannot provide the length of stable recordings
necessary for many of analyses performed above and those that
will follow.

In which of the three phases, depicted in Figure 2 B, resides a
cortical neuron during ongoing activity, in its natural setting?
The answer to this question has cardinal consequences in the
interpretation of activity fluctuation in vivo. There are many rea-
sons, experimental observations, and theoretical considerations
to believe that most neurons reside in the intermittent phase,
in which excitability fluctuates around a critical value for spike
generation. Taking into account cortical connectivity, typical fir-
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term statistics. We confine our analyses
of the intermittent phase to the neuro-
nal rate dynamics rather than spike la-
tency. Rate is a continuous process,
constructed from a point process, for
which analyses tools and methods are
abundant and thoroughly discussed in
the literature. We leave the analysis of
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Figure6. Therate dynamics in the intermittent phase is scale free. A, The firing rare fluctuations of the neuron from Figure 3.

Firing rate is estimated using bins of different sizes (10, 30, 100, 300, and 1000 s) and plotted on normalized time axis (units in
number of bins), after subtracting the mean of each series. Although the bin duration is increased by two orders of magnitude, the
overall variability in the rate does not reduce significantly. B, CV of the bin counts, as a function of bin size, plotted on a log-linear
axis. After an initial decrease in the CV, it is practically stabilized above 0.3. The CV of a signal with finite correlation length is
expected todecrease as T~ . €, Firing rate periodograms of nine neurons stimulated for 24 —96 h with stimulation rates of 20 25
Hz. Significant structure can be identified in the higher frequency regimen, but 1/f-type behavior is abundant in the low-frequency
tails for all the neurons. D, DFA for the same nine recorded neurons, showing power-law increase in root mean square (RMS) as T
increases. E, Fano factor (FF) curves for the nine recorded neurons. F, Allan factor (AF) curves for the nine recorded neurons. G,
Length distribution of spike—response sequences, on a half-logarithmic axes, demonstrating an exponential behavior. H, Length
distribution of no-spike-response sequences, on a double-logarithmic axes, demonstrating a power-law-like behavior.

ing rates, membrane time constant, and threshold potential
(Abeles, 1991), a conservative estimation of suprathreshold event
rate may be obtained; this estimate turns out to be >10 Hz,
exceeding the typical firing rate of a cortical neuron. Indeed,
intracellular measurements from cortical neurons conducted
over the past 40 years support this estimation, showing that the
rate at which neurons are excited “above threshold,” regardless of
how threshold is defined, can be up to an order of magnitude
larger than their actual firing rate (Elul and Adey, 1966; Heck et
al., 1993; Carandini, 2004). This gap is commonly explained by
considering a probabilistic threshold function, in which the like-
lihood for generating a spike is dependent on instantaneous
membrane potential and maybe on the elapsed time from the
last generated spike (the popular renewal process model).
However, experimental evidence suggest (Heck et al., 1993;
Carandini, 2004) that a significant contribution for the above
gap comes from membrane dynamics, reflecting slower modu-
lating processes.

In what follows, we focus on the dynamics within the in-
termittent phase, including its detailed patterns and long-

spike latency series, which is a more
T (s) generalized form of a time series (and
indeed more difficult to analyze), to fu-
ture investigation.

Resolving dynamical from
experimental instabilities in the
intermittent phase

Stimulating a neuron in a rate that exceeds
the critical value for long periods of time

(hours, days) enables exploration of neu-
T(s) ronal excitability dynamics over little-
studied, yet highly relevant, timescales.
Figure 5A shows an example for such a
temporally extended experiment: a neu-
ron was stimulated continuously for 55 h
at 25 Hz. The most prominent feature
seen in Figure 5A is the significant mod-
ulations in firing rate over many time-
scales (Fig. 5B), up to the timescale of
the experiment itself, in an apparently

nonstationary manner (i.e., rate statis-
tics such as the mean, variance, and au-
tocorrelation seem to change during the
experiment).

Analysis of slowly fluctuating re-
sponses in such long experiments calls for
careful measures to exclude sources of
variability that arise from experimental
instability. The primary measure we used
is the stability of spike shape and ampli-
tude throughout the experiment, both
sensitive to cell vitality as well as to the
relative position of the cell and recording
electrode. Only neurons that complied
with strict spike shape stability criteria (see Materials and Meth-
ods) were considered in the analyses that are presented below.
Figure 5C demonstrates the stability of spike shape and ampli-
tude during the experiment of Figure 5A. Stable spike shape,
however, is not sufficient to exclude external modulations of neu-
ronal activity arising from drifts and fluctuations in experimental
environment conditions (e.g., glucose concentration, pH, tem-
perature, electrode properties), which are more difficult to con-
trol and monitor. We therefore adopted a practical approach,
relying on an assumption that such global environmental factors
are likely to have a similar effect on all the neurons in the culture:
during an experiment performed on a given culture, we simulta-
neously recorded from a number of neurons that independently
respond to the same stimulus series (see Material and Methods).
Figure 5D shows examples of spike rate fluctuations in five neu-
rons that were recorded simultaneously over 24 h under contin-
uous stimulation at 20 Hz. The correlations between the activities
of these neurons can serve as a measure for instability of respon-
siveness attributable to unstable environmental (global) condi-
tions. To separate between contributing effects of different
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timescales, we filtered the firing rate with temporal windows of
various durations. Figure 5E shows an example for such an anal-
ysis, in which correlation coefficients between the activity of five
neurons, recorded from the same culture, are computed. These
correlations are relatively low (up to ~0.1) for all window dura-
tions (a slight increase in correlation is observed for the slower
timescales, which may result from the wider temporal window
used, allowing for more independent sources of variability; see
Materials and Methods). Moreover, the coefficients appear pair-
wise (rather than global), suggesting that they are not induced by
global experimental fluctuations. The uncorrelated variability,
together with the stable spike shape and spike amplitude, allowed
us to assume that the instability of neuronal responsiveness of the
kind seen in Figure 5A reflects dynamical instability that is intrin-
sic to the neuron itself. In this study, we summarize results from
nine neurons, recorded from three cultures; spike shape, spike
amplitude, and cross-correlation analyses were used to verify sta-
bility in all these experiments (see Materials and Methods).

Scale-invariant rate dynamics in the intermittent phase

The firing rate of the neuron in the experiment of Figure 5A,
plotted in Figure 5B, is highly variable and seems to fluctuate on
many timescales. To gain insight into the statistical nature of
these fluctuations, we compared the firing rate on multiple scales
by computing the rate using different bin sizes and plotting the
estimate on a normalized time axis (Fig. 6A). A signal with short
correlation length (e.g., low-pass filtered white noise or renewal
process with exponential decaying interval distributions) is ex-
pected to exhibit reduced rate variability with a larger bin; at the
limit of large time bins ( T), the SD (o) should decrease as the
inverse of the time bin used. In contrast, the plot of Figure 6 A
reveals scale invariance (or, more accurately, statistical self-sim-
ilarity): the rate seems to fluctuate to the same extent in all the
scales used and to follow similar statistics. This can be demon-
strated by plotting the coefficient of variation (CV = /) of the
spike count histogram as a function of the bin size (Fig. 6B):
although it does decrease for small T (up to a scale of seconds),
the decrease rate becomes extremely slow on larger T values and
seems to stabilize above ~0.3.

The scale invariance, or self-similarity, of a time series can be
analyzed using various measures and statistics, all intended at
estimation of a scaling exponent « (Bassingthwaighte et al., 1994;
Beran, 1994; Scharf et al., 1995; Robinson, 2003; Lowen and
Teich, 2005). The value of this exponent provides a measure of
the degree of irregularity of the sequence of spikes that is pre-
served (rather than averaged out) over different extended time-
scales. It can provide important information with regard to the
type of process or mechanism underlying the scale-invariant be-
havior. Choosing a proper estimation method for the scaling
exponent, however, is a delicate matter, requiring certain as-
sumptions to be made about the nature of the signal at hand
(Taqqu et al., 1995; Esposti et al., 2008). Here we used several
methods, all showing that scaling exists; however, we refrain from
basing specific claims on the actual values of the scaling exponent.
The most intuitive measure used here is the periodogram, an
empirical power spectrum density estimator. Figure 6C shows the
periodograms of nine recorded neurons on a double-logarithmic
axes, revealing a power-law-like behavior over a considerable
range. This 1/f-type power spectrum is a signature of self-similar
processes and can be used for the estimation of the scaling expo-
nent by fitting a power-law curve to the low-frequency tail
(Scharfet al., 1995; Lowen and Teich, 1996); the resulting values
obtained by such a fit are ag = 1.43 £ 0.35 (mean = SD) for all
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Figure7. Intermittency under stochastic stimulation. Neurons were stimulated with a Pois-

son stochastic stimulation sequence, created by drawing intervals from an exponential distri-
bution, and the scaling analysis of Figure 6 was repeated. A-D show, for seven neurons
stimulated at 20 Hz, that the periodogram DFA, Fano factor (FF), and Allan factor (AF) analyses
retain their characteristic power-law shape, similar to the ones obtained by constant inter-
stimulus intervals.

the recorded neurons. A related measure often used for the iden-
tification of scale invariance in time series is DFA, which is also
applicable in cases in which the time series is formally nonsta-
tionary (Peng et al., 1995). DFA curves for nine measured neu-
rons are plotted in Figure 6D, showing a power-law behavior
with a scaling exponent of o, = 0.94 = 0.28. Other measures and
methods for revealing scaling phenomena, such as Fano factor
and Allan factor (Scharf et al., 1995; Lowen and Teich, 1996,
2005), exhibit a similar relation (Fig. 6 E, F). Note that, although
the structure, evident in specific bands (for example, in the pe-
riodogram and Allan factor analyses of Fig. 6C,F), implies the
existence of underlying modulating processes with uniquely de-
fined timescales, the power-law behavior in the slow tail is ob-
served in practically all neurons. The analyzed neurons also differ
by a variety of multiplicative factors, expressing the vertical off-
sets observed in the periodogram (Fig. 6C), Fano factor (Fig. 6 E),
and Allan factor (Fig. 6 F). These multiplicative factors reflect the
total variability (or power) of the signal rather than its temporal
structure.

When experiments of limited duration are conducted, neuro-
nal responses to a stochastic input (usually white Gaussian noise)
are shown to be more precise and reliable then responses to con-
stant input (Mainen and Sejnowski, 1995). With this in mind, we
repeated the analyses of Figure 6 using a white stochastic input,
namely a Poisson process, yielding similar qualitative results (Fig.
7), indicating that, in contrast to responses of neurons in short-
term experiments, when long-term features are considered, the
variability in response to white noise is the same as the variability
in response to constant-frequency stimulation.

To gain additional insight into the features of the spike trains
underlying the scale-invariant behavior, we divided the response
time series to binary sequences of uninterrupted consecutive
spikes (“1”) and sequences of uninterrupted consecutive failures
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onset of a 20 Hz stimulation block.

“Classes” of response, thus viewed, include,
for example, stable response, irregular re-
sponse, regular-clustered responses, and
irregular-clustered responses and might
mirror neuronal classes as observed with
intracellular stimulation: regular and ir-

regular spiking, bursting, and stuttering

(more elaborate distinctions might be
possible with additional refined experi-
ments). Extending this analogy, the grad-
ual increase in spike latency observed in
the transient phases, as well as within un-
interrupted consecutive evoked spikes (as
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Figure8. Prototypiconset response patterns. A—F show the response of six different neurons to the onset of a 20 Hz stimulation

block. The top panels show the entire response to a 2 min stimulation block; the bottom panels show an enlargement of a segment
within the intermittent phase, allowing for identification of specific response patterns. All panels share the same color scale, as
presented in the colored spike (bottom left). 4, A highly reliable neuron, responding with a low-jettered latency. This neuron is well
below its critical stimulation even at 20 Hz stimulation rate. B, A reliably responding neuron: this neuron is stimulated just below
its critical stimulation rate. In this case, although the latency does fluctuate considerably, systematic failures do not appear, and the
neuron responds to practically all delivered stimuli. €, An irreqularly responding neuron; spikes and failures appear in a seemingly
random manner. D, Bursting-like neuron; spikes are clustered together in a highly ordered manner, with typical cluster size and
intercluster intervals. E, A neuron responding in a clustered manner, with irregular cluster sizes and intervals. F, A neuron respond-
ing with complex patterns of clusters and individual spikes. Latency tends to jump between two levels.

(“0”). Histograms of the lengths of these sequences are shown
in Figure 6, G and H, for the experiment of Figure 5A. Inter-
estingly, there is a considerable difference between the histo-
grams, in which the 1 sequence lengths (which can be thought
of as “burst lengths”) are distributed exponentially (Fig. 6G),
whereas the 0 sequence lengths (“interburst intervals”) are
power-law distributed (or, cautiously, heavy-tailed) (Clauset et
al., 2009). This means that the response is dominated by long
“breaks” in which the neuron is unresponsive. The qualitative
difference in the histograms implies that rate modulation is not
sufficient to explain the observed dynamics and additional struc-
ture exists in the response sequence. It should be noted, however,
that although power-law distributed intervals can lead to scale-
invariant behavior in the form of a fractal renewal process (Bara-
basi, 2005; Lowen and Teich, 2005), in this case the intervals are
not independent identically distributed, as can be demonstrated
for example by plotting the interval sequence correlogram (data
not shown) or by mere observation of repeatable patterns (see
next section). Thus, the resulting power-law distribution seems
to reflect the aggregation of many local exponential distributions
(i.e., estimating this distribution over short timescales will result
in an exponential-tailed distribution) rather than a stationary
power-law distribution (Marom, 2010).

The intermittent phase is characterized by quasi-stable
pattern modes

Neurons are often classified by the activity patterns they exhibit
in response to input (Markram et al., 2004). In most of these
classification studies, the neuron is stimulated intracellularly by a
current step after a “reset” period in which no input is applied. In
analogy to these patterns, we identify prototypical behaviors in
the response of isolated neurons to a series of high rate extracel-
lular pulse sequences. Figure 8 A—D shows four examples for re-
sponse patterns exhibited by different neurons in response to the

can be seen, for example, in Figs. 4E,
8D, F) resembles spike rate adaptation; in
the latter, the decrease in excitability is man-
ifested by increased interspike intervals
rather than by an increase in stimulus—spike
latency. The different stimulation protocols
render different response dynamics, thus
making mapping of concepts difficult.
However, it is reasonable to hypothesize
that the mechanisms underlying the pat-
terns produced by these different protocols
are related to each other. The response pat-
tern of a given neuron to the onset of a stim-
ulation block can be dependent on the
stimulation rate applied but remains robust
over repetitions of blocks with the same stimulation rate (Fig. 9).

However, are these patterns and classes stable throughout? If
not, their usefulness for functional classification of neurons
might be limited. When the fine structure of long spike trains that
are evoked as described in the previous section is carefully exam-
ined, distinct modes of activity are identified, each characterized
by a typical pattern. Figure 10 shows several examples for such
modes, extracted from the intermittent response of a single neu-
ron to a long series of a constant-frequency stimulation. Al-
though such a mode is typically stable for minutes and more,
when observed over extended duration, the response of the neu-
ron undergoes transitions between these quasi-stable modes in
an unpredictable and nonstationary manner. These transitions
between modes can be sharp and instantaneous or sometimes
gradual. In fact, the range of different patterns exhibited by a
given neuron can be sometimes as wide as the range of patterns
exhibited by the entire neuronal population over a temporally
bounded observation window. This observation casts doubt on
the validity of extrapolating from the behavior of a neuron in one
given timescale to its continuous, long-term behavior.

Discussion

We studied here the dynamics of neuronal excitability over an
extremely wide range of timescales (milliseconds to days) in cul-
tured cortical neurons, using extracellular electrophysiological
means, applying long series of stimulation pulses within a phys-
iologically relevant range of rates. We identified three distinct
phases of neuronal responses to such stimulation: a stable phase,
usually observed under low stimulation rates (below ~5 Hz), in
which response is reliable and its latency is precise; a transient
phase, observed after a switch in stimulation rate, in which re-
sponse reliability and latency undergo a gradual change; and an
intermittent phase, observed under high stimulation rates, in
which response failures appear in a seemingly erratic manner and
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Figure9.  Therepeatability of isolated neurons response patterns. Neurons are stimulated for 1h
with a series of 20 Hz stimulation blocks, each lasting 2 min and separated by 3 min from the previous
block. The responses of three neurons (A—() to four of the stimulation blocks are shown. Panels share
the color scale of Figure 8. Although repetitions might defer in the fine details (e.g., oscillation phase),
the response pattern types exhibited by the neurons are stable throughout the experiment.

Figure10.  Quasi-stable pattern modes in the intermittent phase. Many of the recorded neurons
undergo transitions between response pattern modes during the intermittent phase, on top of rate
modulations.A—Dshow examples for such modes, in one given neuron, recorded over a long period of
time under 25 Hz stimulation. All panels show data segments of 5 s (125 responses) and share the
same color scale of Figure 8. Typically, a quasi-stable mode lasts for several minutes. A, An irreqular
mode, in which spikes and failures appear in a disordered manner, and latency fluctuates consider-
ably. B, Short bursting mode, in which spikes appear in small clusters. Cluster sizes and the intervals
between them are relatively variable, and spike latency is relatively stable. €, Long bursting mode, in
which cluster sizes are significantly larger. Cluster sizes and interclusterintervals are relatively stable (a
feature that cannot be detected in this figure because of presented short duration). Note latency
dynamics within each cluster. D, A long response mode, in which consecutive spiking occur over few
tens of seconds. More often than not, such a mode is seen after a relatively long break. E, F, Examples
of binary response matrices, asin Figure 34, of the response around mode transitions. E begins with a
mode in which clusters of spikes, each of which slowly decays into complete quiescence, abruptly
change to a mode in which clusters end sharply. F shows a more gradual transition between two
modes of responses, from a clustered response mode, through an intermediate region, to an irreqular
response mode.

latency fluctuates around a constant value. Our data indicates
that the transition to intermittency is characterized by a critical
latency (hence a critically low excitability) that, whenever
reached, is followed by large fluctuations in both latency and
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responsiveness. Our data also imply an existence of a critical
stimulation rate beyond which a transition to the intermittent
phase will occur. Once intermittency is reached, response failures
maintain the mean firing rate ~7-10 Hz, independent of stimu-
lation rate, reflecting a possible intrinsic limit to the firing rate of
neurons when estimated over long periods. It is important to
note that usually the bounded firing rate of cortical neurons in
vivo is attributed to network effects (e.g., balanced inhibition);
our results point to an “intrinsic” limit to firing rate. Likewise, the
stimulus—response latency during the intermittent phase fluctu-
ates around a mean value that is independent of stimulation rate,
possibly indicating that neuronal excitability is fluctuating
around the critical spiking threshold.

We have shown that, within the intermittent phase, the re-
sponse of isolated neurons follow complex dynamics. The statis-
tics of this response point to underlying processes that are
practically timescale invariant, i.e., not characterized by a discrete
and finite set of time constants; rather, there seems to be a con-
tinuum that covers any observable scale. We demonstrated this
point by various statistical measures, such as the periodogram
(Scharf et al., 1995; Lowen and Teich, 1996), detrended fluctuation
analysis (Peng et al., 1995), and Fano and Allan factors (Lowen and
Teich, 1996, 2005). Moreover, durations of nonresponsiveness
follow a power-low distribution, whereas durations of consecu-
tive responses are exponentially distributed, suggesting that the
nature of the underlying forces differ; interestingly, an analogous
asymmetry is found in the behavior of the voltage-dependent
sodium channels, one of the principle determinants of excitabil-
ity in these neurons (Marom, 2009; Soudry and Meir, 2010).
Altogether, these analyses reveal the long-range interdependen-
cies and slow modulations that characterize neuronal activity
when observed over extended durations.

An important implication of the above results is that the gap
between input and output rates seen in our data, as well as in data
obtained in vivo, is not describable in terms of renewal process
models, in which the likelihood of spike generation is a function
of instantaneous membrane potential and the time elapsed from
the last spike. Rather, the temporal distribution of spike failures
seems to reflect complex underlying dynamics of membrane ex-
citability and spiking threshold.

We have also demonstrated how the classes and types of neu-
ronal electrophysiological activity, as often identified by intracel-
lular current injection and measurements (Markram et al., 2004),
are mirrored in our extracellular paradigm. Furthermore, we
have shown that, when observed continuously, the response of
neurons is characterized by quasi-stable modes, each identified
with a typical response pattern. A single neuron, when observed
over long enough duration, can exhibit a rich repertoire of re-
sponse patterns; furthermore, the response to the onset of stim-
ulation cannot be taken as an indicator of the ongoing response.

The set of observations reported here at the single-neuron
level were obtained using stimulation parameters that are not
much different from what a cortical neuron experiences in vivo.
Our results show that, under these conditions, neuronal excit-
ability resides near a critical point, characterized by intermit-
tency, critical correlated fluctuations, and quasi-stable pattern
modes, maintained by underlying activity-dependent processes.
There are reasons to believe that this might also be the situation in
vivo (Elul and Adey, 1966; Heck et al., 1993; Carandini, 2004).
The immensity of the cellular processes involved in modulating
excitability over long timescales suggests that a high-dimensional
or stochastic model (Englitz et al., 2008) is required to capture the
observed complexity. However, it is tempting to speculate that
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the long-term neuronal behavior is describable in terms of a low
dimensional nonlinear dynamical process (Selz and Mandell,
1992). Hopefully, future experiments and analyses might distin-
guish between possible generative models that are capable of repro-
ducing the observed set of phenomena, leading to a construction of
amathematical object that faithfully represents neuronal excitability
over long timescales.

All of the observations in this study were drawn from experi-
ments on isolated neurons, thus exposing intrinsic excitability
dynamics. It is clear, however, that in natural settings, in both
culture and the brain, these dynamical properties are coupled to
(and modulated by) other processes, at different levels of organi-
zation. These can include synaptic dynamics, neuromodulation,
population dynamics, and many more. Nevertheless, whenever
long-enough experiments are performed and intertrial dynamics
are analyzed, temporal complexity appears independent of the
level of organization and the measured signal (for a recent review,
see Marom, 2010). This is the case in psychophysical, behavioral,
and cognitive experiments (Anderson, 1982; Rose and Lowe,
1982; Magnussen and Greenlee, 1985; Greenlee and Magnussen,
1987; Logan, 1988; Chen et al., 1997; Gilden, 2001; Newell et al.,
2001; Monto et al., 2008), as well as in measurements obtained
using functional magnetic resonance imaging, magnetoencepha-
lography, electroencephalogram, local field potential, and spike
trains recorded from network-embedded neurons in vivo and in
vitro (Teich, 1989; Teich et al.,, 1997; Lowen et al., 1997;
Linkenkaer-Hansen et al., 2001, 2005; Buzsaki, 2006; Nir et al.,
2007, 2008; Monto et al., 2008; Wink et al., 2008; Esposti et al.,
2009; Freyer et al., 2009). Complexity is preserved even at the
level of single functional proteins, the ionic channels underlying
the phenomenon of excitability, including scale-free dynamics
bounded only by experimental limitations (Liebovitch et al.,
1987; Toib et al., 1998; Ellerkmann et al., 2001). Moreover, many
of the complex features described here are not unique to neural
excitability and are observed in other biological excitable systems
as well (Soen and Braun, 2000).

This being the case, it is difficult to turn a blind eye at the
opportunistic choices made by us, physiologists, and our fellow
theorists as to what should or should not be included in neural
models in general and models of neuronal excitability in partic-
ular. We do have a tendency, when analyzing a given level of
organization, to attribute the observed complexity to extended
spatial constraints at that given level; complexities at the levels
below are assumed to average out or to be negligible. However,
when complexity goes all the way down to the molecular level, we
can no longer allow ourselves to construct models of brain func-
tion using arbitrary cutoffs that are based on a temporal hierar-
chy: brain phenomena extend throughout the range of
milliseconds, seconds, to days, and beyond; single neurons also
have, in principle, the arsenal of machineries to contribute and
modulate their electrical activity over milliseconds, seconds, to
days, and beyond. Hence, models of excitability should account
for that extended range and must be considered when modeling
brain processes. Otherwise, imparting “slow” brain dynamics to
(for instance) changes in connectivity, rather than to (for in-
stance) changes in spike threshold, becomes an arbitrary choice.
It is not at all clear, at this stage, what kinds of models can do
justice to the complex dynamics of single neurons unfolded in
this study. Initial attempts in that direction have been made,
linking the complexity of ionic channel proteins to the level of
neuronal excitability (Lowen et al., 1999; Marom, 2009; Soudry
and Meir, 2010) but are very far from being satisfactory (Marom,
2010).

J. Neurosci., December 1,2010 - 30(48):16332-16342 + 16341

References

Abeles M (1991) Corticonics: neural circuits of the cerebral cortex. Cam-
bridge, UK: Cambridge UP.

Adrian ED, Zotterman Y (1926) The impulses produced by sensory nerve
endings. 3. Impulses set up by touch and pressure. ] Physiol 61:465—-483.

Anderson ] (1982) Acquisition of cognitive skill. Psychol Rev 89:369—406.

Aston-Jones G, Segal M, Bloom FE (1980) Brain aminergic axons exhibit
marked variability in conduction velocity. Brain Res 195:215-222.

Badel L, Lefort S, Brette R, Petersen CC, Gerstner W, Richardson MJ (2008)
Dynamic i-v curves are reliable predictors of naturalistic pyramidal-
neuron voltage traces. ] Neurophysiol 99:656—666.

Bakkum DJ, Chao ZC, Potter SM (2008) Long-term activity-dependent
plasticity of action potential propagation delay and amplitude in cortical
networks. PLoS One 3:2088.

Ballo AW, Bucher D (2009) Complex intrinsic membrane properties and
dopamine shape spiking activity in a motor axon. ] Neurosci
29:5062-5074.

Barabasi AL (2005) The origin of bursts and heavy tails in human dynamics.
Nature 435:207-211.

Bassingthwaighte J, Liebovitch L, West B (1994) Fractal physiology. An
American Physiological Society Book. New York: Oxford UP.

Beran] (1994) Statistics for long-memory processes. Boca Raton, FL: Chap-
man and Hall/CRC.

Brette R, Rudolph M, Carnevale T, Hines M, Beeman D, Bower JM, Dies-
mann M, Morrison A, Goodman PH, Harris FC Jr, Zirpe M, Natschlager
T, Pecevski D, Ermentrout B, Djurfeldt M, Lansner A, Rochel O, Vieville
T, Muller E, Davison AP, El Boustani S, Destexhe A (2007) Simulation
of networks of spiking neurons: a review of tools and strategies. ] Comput
Neurosci 23:349-398.

Buzsaki G (2006) Rhythms of the brain. New York: Oxford UP.

Carandini M (2004) Amplification of trial-to-trial response variability by
neurons in visual cortex. PLoS Biol 2:E264.

ChenY, DingM, KelsoJ (1997) Longmemory processes (1/ftype) in human
coordination. Phys Rev Lett 79:4501-4504.

Clauset A, Shalizi CR, Newman ME (2009) Power-law distributions in em-
pirical data. SIAM Rev 51:661-703.

De Col R, Messlinger K, Carr RW (2008) Conduction velocity is regulated
by sodium channel inactivation in unmyelinated axons innervating the
rat cranial meninges. J Physiol 586:1089-1103.

Desai NS, Rutherford LC, Turrigiano GG (1999) Plasticity in the intrinsic
excitability of cortical pyramidal neurons. Nat Neurosci 2:515-520.

Drew PJ, Abbott LF (2006) Models and properties of power-law adaptation
in neural systems. ] Neurophysiol 96:826—833.

Ellerkmann RK, Riazanski V, Elger CE, Urban BW, Beck H (2001) Slow
recovery from inactivation regulates the availability of voltage-dependent
sodium channels in hippocampal granule cells, hilar neurons and basket
cells. J Physiol 532:385-397.

Elul R, Adey W (1966) Instability of firing threshold and “remote” activa-
tion in cortical neurones. Nature 212:1424—1425.

Englitz B, Stiefel KM, Sejnowski T] (2008) Irregular firing of isolated corti-
cal interneurons in vitro driven by intrinsic stochastic mechanisms. Neu-
ral Comput 20:44 —64.

Esposti F, Ferrario M, Signorini MG (2008) A blind method for the estima-
tion of the hurst exponent in time series: theory and application. Chaos
18:033126.

Esposti F, Signorini MG, Potter SM, Cerutti S (2009) Statistical long-term
correlations in dissociated cortical neuron recordings. IEEE Trans Neural
Syst Rehabil Eng 17:364-369.

Fairhall AL, Lewen GD, Bialek W, de Ruyter Van Steveninck RR (2001)
Efficiency and ambiguity in an adaptive neural code. Nature 412:787-792.

French AS, Torkkeli PH (2008) The power law of sensory adaptation: sim-
ulation by a model of excitability in spider mechanoreceptor neurons.
Ann Biomed Eng 36:153-161.

Freyer F, Aquino K, Robinson PA, Ritter P, Breakspear M (2009) Bistability
and non-Gaussian fluctuations in spontaneous cortical activity. ] Neuro-
sci 29:8512—-8524.

Friedlander T, Brenner N (2009) Adaptive response by state-dependent in-
activation. Proc Natl Acad Sci U S A 106:22558-22563.

Gerstner W, Naud R (2009) How good are neuron models? Science 326:
379-380.

Gilboa G, Chen R, Brenner N (2005) History-dependent multiple-time-
scale dynamics in a single-neuron model. ] Neurosci 25:6479—6489.



16342 - J. Neurosci., December 1,2010 - 30(48):16332-16342

Gilden DL (2001) Cognitive emissions of 1/f noise. Psychol Rev 108:33-56.

Golomb D, Yue C, Yaari Y (2006) Contribution of persistent Na * current
and M-type K™ current to somatic bursting in cal pyramidal cells: com-
bined experimental and modeling study. ] Neurophysiol 96:1912-1926.

Greenlee MW, Magnussen S (1987) Saturation of the tilt aftereffect. Vis Res
27:1041-1043.

Grossman Y, Parnas I, Spira ME (1979) Mechanisms involved in differential
conduction of potentials at high frequency in a branching axon. J Physiol
295:307-322.

Heck D, Rotter S, Aertsen A (1993) Spike generation in cortical neurons:
probabilistic threshold function shows intrinsic long-lasting dynamics
brain theory: spatio-temporal aspects of brain function. New York:
Elsevier Science.

Hodgkin AL, Huxley AF (1952) A quantitative description of membrane
current and its application to conduction and excitation in nerve.
J Physiol 117:500—544.

Izhikevich EM (2003) Simple model of spiking neurons. IEEE Trans Neural
Netw 14:1569-1572.

Izhikevich EM (2004) Which model to use for cortical spiking neurons?
IEEE Trans Neural Netw 15:1063-1070.

Jolivet R, Kobayashi R, Rauch A, Naud R, Shinomoto S, Gerstner W (2008)
A benchmark test for a quantitative assessment of simple neuron models.
J Neurosci Methods 169:417—424.

Kobayashi R, Tsubo Y, Shinomoto S (2009) Made-to-order spiking neuron
model equipped with a multi-timescale adaptive threshold. Front Com-
put Neurosci 3:9.

Liebovitch LS, Fischbarg ], Koniarek JP, Todorova I, WangM (1987) Fractal
model of ion-channel kinetics. Biochim Biophys Acta 896:173-180.

Linkenkaer-Hansen K, Nikouline VV, Palva JM, Ilmoniemi RJ (2001)
Long-range temporal correlations and scaling behavior in human brain
oscillations. ] Neurosci 21:1370-1377.

Linkenkaer-Hansen K, Monto S, Rytsdld H, Suominen K, Isometsi E, Kih-
kénen S (2005) Breakdown oflong-range temporal correlations in theta
oscillations in patients with major depressive disorder. J Neurosci
25:10131-10137.

Logan G (1988) Toward an instance theory of automatization. Psychol Rev
95:492-527.

Lowen SB, Teich MC (1992) Auditory-nerve action potentials form a non-
renewal point process over short as well as long time scales. ] Acoust Soc
Am 92:803-806.

Lowen SB, Teich MC (1996) The periodogram and allan variance reveal
fractal exponents greater than unity in auditory-nerve spike trains. J
Acoust Soc Am 99:3585-3591.

Lowen SB, Teich MC (2005) Fractal-based point processes. Hoboken, NJ:
Wiley-Blackwell.

Lowen SB, Cash SS, Poo M, Teich MC (1997) Quantal neurotransmitter
secretion rate exhibits fractal behavior. ] Neurosci 17:5666 -5677.

Lowen S, Liebovitch L, White ] (1999) Fractal ion-channel behavior gener-
ates fractal firing patterns in neuronal models. Phys Rev E 59:5970-5980.

Lundstrom BN, Higgs MH, Spain WJ, Fairhall AL (2008) Fractional differ-
entiation by neocortical pyramidal neurons. Nat Neurosci 11:1335-1342.

Magnussen S, Greenlee MW (1985) Marathon adaptation to spatial con-
trast: saturation in sight. Vis Res 25:1409-1411.

Mainen ZF, Sejnowski TJ (1995) Reliability of spike timing in neocortical
neurons. Science 268:1503-1506.

Markram H, Toledo-Rodriguez M, Wang Y, Gupta A, Silberberg G, Wu C
(2004) Interneurons of the neocortical inhibitory system. Nat Rev Neu-
rosci 5:793-807.

Marom S (2009) Adaptive transition rates in excitable membranes. Front
Comput Neurosci 3:2.

Marom S (2010) Neural timescales or lack thereof. Prog Neurobiol
90:16-28.

Gal et al. @ Dynamics of Excitability in Cultured Cortical Neurons

Marom S, Shahaf G (2002) Development, learning and memory in large
random networks of cortical neurons: lessons beyond anatomy. Q Rev
Biophys 35:63—87.

Monto S, Palva S, Voipio J, Palva JM (2008) Very slow EEG fluctuations
predict the dynamics of stimulus detection and oscillation amplitudes in
humans. ] Neurosci 28:8268—8272.

Newell KM, Liu YT, Mayer-Kress G (2001) Time scales in motor learning
and development. Psychol Rev 108:57—82.

Nir Y, Fisch L, Mukamel R, Gelbard-Sagiv H, Arieli A, Fried I, Malach R
(2007) Coupling between neuronal firing rate, gamma LFP, and BOLD
fMRI is related to interneuronal correlations. Curr Biol 17:1275-1285.

Nir Y, Mukamel R, Dinstein I, Privman E, Harel M, Fisch L, Gelbard-Sagiv H,
Kipervasser S, Andelman F, Neufeld MY, Kramer U, Arieli A, Fried I,
Malach R (2008) Interhemispheric correlations of slow spontaneous
neuronal fluctuations revealed in human sensory cortex. Nat Neurosci
11:1100-1108.

Peng CK, Havlin S, Stanley HE, Goldberger AL (1995) Quantification of
scaling exponents and crossover phenomena in nonstationary heartbeat
time series. Chaos 5:82—87.

Robinson PM (2003) Time series with long memory. New York: Oxford UP.

Rose D, Lowe I (1982) Dynamics of adaptation to contrast. Perception
11:505-528.

Scharf R, Meesmann M, Boese J, Chialvo DR, Kniffki KD (1995) General
relation between variance-time curve and power spectral density for point
processes exhibiting 1/f beta-fluctuations, with special reference to heart
rate variability. Biol Cybern 73:255-263.

Scroggs RS (2008) Evidence of a physiological role for use-dependent inac-
tivation of nav1.8 sodium channels. ] Physiol 586:923.

Selz K, Mandell A (1992) Critical coherence and characteristic times in
brain stem neuronal discharge patterns. Single neuron computation. San
Diego: Academic.

Shahaf G, Eytan D, Gal A, Kermany E, Lyakhov V, Zrenner C, Marom S
(2008) Order-based representation in random networks of cortical neu-
rons. PLoS Comput Biol 4:21000228.

Soen Y, Braun E (2000) Scale-invariant fluctuations at different levels of
organization in developing heart cell networks. Phys Rev E Stat Phys
Plasmas Fluids Relat Interdiscip Topics 61:R2216—-R2219.

Soudry D, MeirR (2010) History dependent dynamics in a generic model of
ion channels-an analytic study. Front Comput Neurosci 4:3.

Spira ME, Yarom Y, Parnas I (1976) Modulation of spike frequency by re-
gions of special axonal geometry and by synaptic inputs. ] Neurophysiol
39:882—-899.

Tal D, Jacobson E, Lyakhov V, Marom S (2001) Frequency tuning of input-
output relation in a rat cortical neuron in-vitro. Neurosci Lett 300:21-24.

Taqqu M, Teverovsky V, Willinger W (1995) Estimators for long range de-
pendence. Fractals 3:785-798.

Teich MC (1989) Fractal character of the auditory neural spike train. IEEE
Trans Biomed Eng 36:150-160.

Teich MC, Heneghan C, Lowen SB, Ozaki T, Kaplan E (1997) Fractal char-
acter of the neural spike train in the visual system of the cat. ] Opt Soc Am
A Opt Image Sci Vis 14:529-546.

Toib A, Lyakhov V, Marom S (1998) Interaction between duration of activ-
ity and time course of recovery from slow inactivation in mammalian
brain Na " channels. ] Neurosci 18:1893—1903.

Turrigiano G, Abbott LF, Marder E (1994) Activity-dependent changes in
the intrinsic properties of cultured neurons. Science 264:974-977.

van Pelt J, Wolters PS, Corner MA, Rutten WL, Ramakers GJ (2004) Long-
term characterization of firing dynamics of spontaneous bursts in cul-
tured neural networks. IEEE Trans Biomed Eng 51:2051-2062.

Wink AM, Bullmore E, Barnes A, Bernard F, Suckling ] (2008) Monofractal
and multifractal dynamics of low frequency endogenous brain oscilla-
tions in functional mri. Hum Brain Mapp 29:791-801.



