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Noise, which is ubiquitous in the nervous system, causes trial-to-trial variability in the neural responses to stimuli. This neural variability
is in turn a likely source of behavioral variability. Using Hidden Markov modeling, a method of analysis that can make use of such
trial-to-trial response variability, we have uncovered sequences of discrete states of neural activity in gustatory cortex during taste
processing. Here, we advance our understanding of these patterns in two ways. First, we reproduce the experimental findings in a formal
model, describing a network that evinces sharp transitions between discrete states that are deterministically stable given sufficient noise
in the network; as in the empirical data, the transitions occur at variable times across trials, but the stimulus-specific sequence is itself
reliable. Second, we demonstrate that such noise-induced transitions between discrete states can be computationally advantageous in a
reduced, decision-making network. The reduced network produces binary outputs, which represent classification of ingested substances
as palatable or nonpalatable, and the corresponding behavioral responses of “spit” or “swallow”. We evaluate the performance of the
network by measuring how reliably its outputs follow small biases in the strengths of its inputs. We compare two modes of operation:
deterministic integration (“ramping”) versus stochastic decision-making (“jumping”), the latter of which relies on state-to-state transi-
tions. We find that the stochastic mode of operation can be optimal under typical levels of internal noise and that, within this mode,
addition of random noise to each input can improve optimal performance when decisions must be made in limited time.

Introduction
Trial-to-trial variability, considered ubiquitous in neuronal sys-
tems (Shadlen and Newsome, 1998), can obscure the nature of
the dynamics of a single-trial neural response to a sensory stim-
ulus (Durstewitz and Deco, 2008). In particular, if neural pro-
cessing involves sharp transitions between discrete states and if
the timing of the transitions varies from trial to trial, then these
transitions become broadened by analyses such as principal com-
ponent analysis (PCA) that first combine data across trials to form
peristimulus time histograms (PSTHs). Analyses such as Hidden
Markov modeling (HMM) (Abeles et al., 1995; Seidemann et al.,
1996; Jones et al., 2007), meanwhile, are not anchored to the time
point of stimulus delivery and so have no difficulty incorporating
such trial-to-trial variability. If state transitions are real proper-
ties of the data, HMM can use correlations in firing-rate changes
of multiple cells across transitions regardless of whether the tran-
sitions occur at identical poststimulus times in each trial; thus,
HMM extracts more information about such neuronal responses
than PSTH-based methods.

Recently, we documented the existence of just these kinds of
ensemble responses in gustatory cortex (GC) during taste pro-
cessing (Jones et al., 2007). HMM of ensemble neural data from

GC provided more information on taste identity than standard
ensemble PCA and other PSTH-based analyses. Such a result
suggests that each taste does in fact produce a reliable sequence of
relatively long-lived (200 –1000 ms) states with fast transitions
(averaging 60 ms) between them. Transition times vary from trial
to trial (by up to the mean lifetime of states) such that averaging
of firing rates across trials reveals only an artifactually smoothly
varying response.

Here we place these empirical findings in a solid computa-
tional framework, demonstrating that such neural activity can
arise from the timing of stochastically induced, rapid changes
between discrete, deterministically stable network states (Okamoto
et al., 2007; Miller and Wang, 2006; Deco et al., 2007b, 2009;
Gigante et al., 2009). Our attractor-based model network pos-
sesses the key features of neural activity observed during taste
processing (Jones et al., 2007). (1) Transitions between states
produce correlated, rapid changes in firing rates of multiple neu-
rons. (2) Transitions occur at discrete but unpredictable times in
individual trials. (3) Much slower variations of activity are ob-
served in PSTHs. (4) Individual stimuli bias the transitions
through reliable sequences of states.

To study the computational advantage of network dynamics
based on stochastic transitions between discrete states, we also
investigate a reduced network that performs winner-takes-all
decision-making (Wang, 2001), representing a categorical per-
ception of one taste over another (or the two-alternative forced
choice of “spit” vs “swallow”) evident in neural activity of GC as
a palatability response (Katz et al., 2001; Fontanini and Katz,
2006; Grossman et al., 2008). We modulate the excitability of the
network to change its operating mode from one of deterministic
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integration (“ramping”) to one in which the spontaneous state
remains stable and decisions are made by stochastic transition
(“jumping”). We measure how reliably the probabilistic binary
responses follow small input biases favoring one outcome over
another and demonstrate that the jumping mode is optimal un-
der many conditions.

Materials and Methods
Model network simulations: taste-processing network. Our model taste-
processing network (Fig. 1) is designed to mimic the cortical neural
responses observed during the processing of two tastes of opposite pal-
atability (such as sucrose and quinine): specifically, cell groups whose
activity increases in one of the three epochs of taste processing (Katz et al.,
2001; Fontanini and Katz, 2006), which we label “detection,” “identifi-
cation,” and “decision.” For the simplified model, one group of cells is
necessary for detection and two each for the identification and decision,
so our base network has five groups. Each group of cells comprises an
excitatory population and an inhibitory population in a 4 to 1 ratio in
correspondence with cortical data. Unless otherwise stated, a total of 100
cells per pool is used (80 excitatory and 20 inhibitory). Specific connec-

tion strengths are given in the supplemental data (available at www.
jneurosci.org as supplemental material).

We simulate taste delivery by adding Poisson spike trains to all excita-
tory cells in the taste-processing network, beginning at a time of 100 ms
after stimulus (representing the delay from taste delivery to neural re-
sponses in gustatory cortex). The two tastes were distinguished by the
cells in one of the two pools labeled “taste” in our model network (Fig.
1 A) receiving inputs at a 20% higher rate than the otherwise symmetric
pool. For additional details, see the supplemental data (available at www.
jneurosci.org as supplemental material).

Model network simulations: decision-making network. The decision-
making network is a subsection of the taste-processing network that is
designed to produce a palatability response upon receiving input from
cells with information pertaining to taste identity. That is, we designed
the subnetwork to analyze just one of the multiple transitions in the full
taste-processing network: the transition from “identity” to “palatability”.
A similar decision-making network could underlie the transition from
“detection” to “identity” in taste processing.

Our network has the structure of previous model networks for
decision-making (Wang, 2002; Wong and Wang, 2006; Wong et al.,
2007): competing pools of excitatory neurons with strong self-excitation
and strong cross-inhibition. As with the full taste-processing network,
each excitatory pool of cells is coupled with one-fourth the number of
inhibitory cells (rather than a global inhibitory network as in some mod-
els). The self-excitation generates an attractor state of high activity for
each pool, such that with sufficient input they are excited from a stable
state of low firing-rate, spontaneous activity to the highly active state. The
cross-inhibition ensures that only one of the excitatory pools can be
active at a time (in the absence of overwhelming input). Details of the
specific connections are given in the supplemental data (available at
www.jneurosci.org as supplemental material).

We adjust the operational mode of the decision-making network,
from ramping to jumping, by reducing its overall excitability, to render
the spontaneous, low activity of each pool more stable. We achieve such
a reduction in excitability by either reducing overall excitatory input
during the stimulus or increasing the leak conductance of all excitatory
cells (equivalent to a uniform inhibitory input). For Figures 5 and 6, we
simultaneously altered several synaptic parameters (see Fig. 5 legend) to
generate a network in the ramping mode that had sufficiently slow inte-
gration of inputs to match the timescale of the jumping network.

Model network simulations: single-cell properties. Because HMM was
applied to neural spike train data by Jones et al. (2007), our level of
modeling is sufficiently realistic that neural spike trains are produced.
Beyond this, model specification is minimal, however: we do not assume
that any particular property of a single neuron is responsible for the
observed temporal dynamics. The multiple timescales of the system arise
from the interaction between network structure and rapid noise fluctu-
ations rather than from any specific property explicitly built into the
model. Thus, we chose the simplest possible model of a spiking neuron,
namely the leaky integrate-and-fire (LIF) model (Tuckwell, 1988). LIF
cells fire at a higher rate with increased excitatory input once a threshold
is reached and at a lower rate when inhibitory input is increased; they
produce spike trains with a coefficient of variation similar to that of a
Poisson process, assuming sufficiently noisy inputs. To ensure noisy
spike trains, beyond the input explicitly calculated from cells within the
network, we add a Poisson barrage of excitatory and inhibitory synaptic
inputs to represent activity of other connected cells not explicitly in-
cluded in our network.

The basic equation for the LIF neuron describes the temporal variation
of membrane potential, Vi, of cell i, when receiving total excitatory syn-
aptic conductance input gESi

E, and total inhibitory conductance input
gISi

I, according to the following:

Ci

dVi

dt
� gL�VL � Vi� � gESi

E�VE � Vi� � gISi
I�VI � Vi�,

where Ci is the membrane capacitance of the cell, gL is its leak conduc-
tance, VL is the leak membrane potential (respectively, the conductance
across the cell membrane and the resting potential of the cell in the

Figure 1. Architecture of model network for taste processing. A, The model network is based
on five pools of neurons, with each pool containing NE excitatory cells and NI � NE/4 inhibitory
cells (by default, NE � 80, NI � 20). Recurrent excitatory connections (data not shown) dom-
inate within a pool. Arrows indicate significant excitatory connections between pools, and balls
indicate the strong cross-inhibition between pools that produce one binary decision of palat-
ability. Other connections (data not shown) produce weak inhibition between all pools. Recur-
rent excitation is sufficient to maintain the activity of a pool, once a combination of inputs and
random fluctuations has driven the pool into an active state. The network progresses through
the three epochs of detection (somatosensory response), identification (chemosensory re-
sponse), and decision (palatability response) that are observed in gustatory cortex during taste
processing. Each successive epoch is driven by strong activity arising in a particular pool, which
through cross-connections alters the activity in all pools. B, C, Trial-averaged firing rates of four
cells in the model network, after a stimulus representing either taste 1 (B) or taste 2 (C). Color of
the trace indicates the pool from which the cell is taken. Note the gradual ramping of firing rates
that can take �1 s for some cells.
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absence of synaptic input and spiking activity), VE is the reversal poten-
tial of excitatory synaptic input, and VI is that of inhibitory synaptic
input. The scales of excitatory and inhibitory synaptic conductance are
set by gE and gI, respectively, with maximal conductance of a synapse
from neuron j to i given by gEWIi (if excitatory) or gIWIi (if inhibitory).
Total synaptic inputs Si

E and Si
I are given by summing over presynaptic

cells (over all excitatory cells to calculate Si
E and over all inhibitory cells to

calculate Si
I):

Si
E,I � �

j
WjiSj,

where sj is the fraction of receptors opened by the spikes of neuron j. We
determine sj from

dsj�t�

dt
� �

sj�t�

�s
� ��

n
�1 � sj�tj�

n �� ��t � tj
n�,

where �s is the synaptic time constant, tj
n is the time of the nth spike of

neuron j and tj�
n is the time just preceding that spike time. When the

membrane potential reaches a threshold, VTh, a spike is recorded and the
membrane potential is lowered to a reset value, VR, for a refractory pe-
riod, �ref. Equations were integrated using second-order Runge–Kutta
with a time step of 0.1 ms.

Parameters were chosen such that, in the absence of explicitly modeled
synaptic inputs, excitatory cells fired at under 3 Hz, whereas inhibitory
cells fired at �5 Hz. Their specific values are given in the supplemental
data (available at www.jneurosci.org as supplemental material).

Hidden Markov modeling. We used standard Matlab packages for Hid-
den Markov modeling, using as inputs 10 trials of spike trains of two
excitatory cells per pool (10 total) in the taste-processing network and
four excitatory cells per pool (8 total) in the decision-making network
(these numbers of trials and neurons are similar to those successfully
analyzed by Jones et al., 2007). We binned spike trains on a scale of 2 ms
and generated vectors containing the identity of a neuron that spiked in
each bin, with a “0” for no spike. (For the rare occurrence of a bin
containing spikes from more than one cell, neuron identity was chosen
randomly from the cells that spiked.) We iterated until convergence or
up to a maximum of 500 iterations, using the Baum–Welch algorithm,
which is guaranteed to approach a local optimum, using eight different
random starting models. The final model with maximum log likelihood
(calculated as the probability of producing the measured spike trains
given the particular model) was treated as the optimal characterization of
population activity in the network. Given the final model, we were able to
plot for each trial the probability as a function of time that the ensemble
of neuronal activity corresponds to a particular HMM state.

For our baseline simulations we allowed six HMM states to be used in
the modeling. In typical simulations of the taste-processing network,
only four states were used in a trial, and, in the decision-making network,
only two states were used. That is, HMM defined the probability of being
in these extra states as 0 throughout trials. To test the importance of
model parameters, we also ran HMM starting with from 3 to 10 states and
with time bins varying from 1 to 25 ms. We calculated the overlap of these
model outputs with our original model in cases when equivalent states
could be observed. We defined the overlap, O(�) in each trial (�) as a
normalized dot product between the probabilities P and P� for the orig-
inal and new HMM by the following calculation:

O��� �
1

N�
i�1

N �
n

Pi
n��� P�i

n���

��
n

Pi
n��� Pi

n�����
n

P�i
n��� P�i

n���
,

where i is the index of the time bin (from 1 to N ) in the original model,
and the sum over n is the sum over states matched across models by their
order of appearance. Thus, P�i

n(�) is the probability in a comparison
model, being in state n in trial � at the time equal to the time of the ith bin
in the original model (the actual bin number may be different when
comparing models of different bin size). From the set of O(�) across
trials, we report the mean and SD in Results. Figures of example trials
with specific parameters and values for O(�) are provided in the supple-
mental data (available at www.jneurosci.org as supplemental material).

Performance of decision-making network. For each parameter set, we
simulated 100 random trials and defined performance as the number of
correct minus the number of incorrect responses. We defined a response
as the average firing rate of one pool exceeding that of the other pool by
�20 Hz and the response as “correct” when the pool with greater input
had the high firing rate.

Results
Stochastic transitions between discrete states
Our model network for taste processing produced a predictable
sequence of activity states given a specific set of inputs, with sharp
transitions between the states (Fig. 2A,B,D,E). Sequences were
stable, with all 10 trials of each particular set of inputs producing
an identical sequence (see also transition matrices in the supple-
mental data, available at www.jneurosci.org as supplemental ma-
terial). We simulated two types of input corresponding to two
different tastes, which produced two different sequences (al-
though with an identical initial state). Average state duration was
615 � 68 ms for taste 1 and 471 � 50 ms for taste 2, whereas
average transition time between states was smaller by more than
an order of magnitude (mean of 27 � 6 ms for taste 1 and mean
of 35 � 4 ms for taste 2).

The timing of individual transitions was highly variable across
trials, such that an abrupt change in the firing rates of cells appar-
ent on individual trials at a particular time were observed at a
different time in the successive trial. For example, the average
range of the time of second transition within a single set of trials
was 600 – 894 ms for taste 1 and 636 –1020 ms for taste 2. Thus,
much of the sharpness of the reliably observed firing rate changes
is lost in the trial-averaged activity, which are by their nature time
locked to the stimulus onset (Fig. 1B,C). This sharpness is recov-
ered in histograms keyed to state transitions rather than stimulus
delivery, as shown by the comparison of these two cases for indi-
vidual cells in each panel of Figure 3.

Similar results were observed across a broad region of parameter
space used for the HMM. Overlaps, O, of probabilities with a stan-
dard model that used six states and 2 ms time bins are given in Table
1. The final column is a control, comparing the original data with
trial indices randomly shuffled with the original HMM parameters.
In some other cases (e.g., using fewer than six states with a time bin of
above 20 ms or more than six states with a time bin of 	2 ms), no
reliable state sequences were produced. Figures showing these com-
parisons of HMM fits can be found in the supplemental data (avail-
able at www.jneurosci.org as supplemental material).

Because cells in a network are connected to each other, a sig-
nificant change in the firing of one group of cells leads to corre-
lated changes in firing rates of other cells as the state sequence
progresses. Thus, histograms of average firing rates as a function
of states in the sequence (Fig. 2C,F) demonstrate that our inter-
connected network gives rise to the features of distributed pro-
cessing apparent in the neural data: (1) individual cells fire spikes
in more than one state, (2) firing rates of some cells increase
whereas others decrease across state transitions, and (3) each
state contains activity of multiple cells at multiple rates.

Two modes of decision-making
To assess the computational value of a model with discrete states
and sharp, stochastic transitions between them, we analyzed the
subpart of our taste-processing network that produces a binary
choice, namely “palatable” versus “unpalatable”, to produce a
behavioral response of “spit” versus “swallow” (Fig. 4A). In gen-
eral, the relative strength of inputs (Fig. 4A, arrows) to the two
pools is history and learning dependent, as well as stimulus de-
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pendent. We do not consider the full interplay of past with
present stimuli here but assess how differences of input deter-
mine the basins of attraction for network activity and how likely
the network is to produce one decision or the other. We distin-
guish two modes of operation that can be instantiated within
such a decision-making network: a ramping mode produced by
deterministic integration of activity and a jumping mode that
relies on a stochastic transition from one deterministically stable
attractor state to another.

Attractor networks that can produce binary choices typically
possess three stable states (Brunel and Wang, 2001; Wang, 2002;

Wong and Wang, 2006; Wong et al., 2007): a state with no deci-
sion, and two decisive states, one for each of the binary choices, as
indicated schematically by the “pseudopotentials” in Figure 4, B
and C. A pseudopotential is defined to possess a slope propor-
tional to the deterministic rate of change of a variable, such as the
firing rate of a group of cells (Miller and Wang, 2006). Strictly it
requires the state of the system to depend only on that one vari-
able, but, in this case, we draw schematic figures to indicate the
deterministic tendency for the system to change as a function of
the difference in firing rates of the two populations. A pure ran-
dom walk process possesses a flat pseudopotential, because what-

Figure 2. Neural activity produces sharp transitions between discrete states, with trial-to-trial variability in transition times. A, Spike trains of 10 cells (2 from each pool) with the results of a
hidden Markov analysis of their activity after a stimulus representing taste 1. Bold solid lines over the solid color indicate the probability of the network being in a given state. The probability remains
close to 1, except for short intervals when the system transitions to a new state. B, A subsequent trial with the same inputs representing the same taste gives rise to an identical sequence of states
but with different transition times. C, Distribution of firing rates for each of the 10 cells in the four successive HMM states produced by taste 1. D, E, As in A but for the response of the same cells to
a stimulus representing taste 2. F, As in C but for the firing rates in the five successive HMM states produced by taste 2.
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ever the rates of cells, they have no tendency to drift in one
direction above another. Biased random walk models produce
pseudopotentials with constant slope downward in the direction
of bias. However, attractor models have local minima, such that
the firing rates return to a stable value after any small change.
Previous investigations (Brunel and Wang, 2001; Wang, 2002;
Wong and Wang, 2006; Wong et al., 2007) of such attractor-based
decision-making proposed that stimulus delivery renders the spon-
taneous activity state (representing no decision) deterministically
unstable, so that firing rates elevate, on average more for the state
with greater input. Once one group is sufficiently active to suppress
the other, fluctuations have little effect and one of the two attractors
representing a decision is reached. The attractors appear as local
minima of the pseudopotential in Figure 4, D and E.

However, the mode in which this network functions can be
changed with any one of a number of simple adjustments: if
either the total input is weaker or if the cells in the decision-
making network are less excitable, the spontaneous state can re-
main stable even in the presence of a stimulus (Fig. 4B,C). Small
fluctuations do not accumulate, because after small deviations,
the system returns to a stable state of low activity with no differ-
ence between the rates of cells in the two pools. Occasionally,
larger fluctuations can cause a significant change in the activity of
the network, sufficient to switch the system into a different stable
activity state, in which one of the pools is highly active and sup-
presses the other. Thus, the final state of the system after such a
fluctuation is qualitatively the same as that of models of decision-

making based on deterministic integra-
tion, but the dynamics of the change from
spontaneous to persistent states is signifi-
cantly different: in our terminology, a
jump rather than a ramp. In the following
section (Figs. 5, 6), we use two different
networks, one in ramping mode and one
in jumping mode, with parameters ad-
justed so the two networks take similar
mean times (1280 � 434 ms for jumping,
1640 � 260 ms for ramping) to reach an
active state after stimulus onset.

HMM analysis of spike trains from
eight representative cells selected in equal
numbers from each pool reveals the dif-
ference in the two modes of operation
(Fig. 5). Ramping produces slow transi-
tions (153 � 47 ms) between states and
an extra HMM state of intermediate activ-
ity between spontaneous and persistent
states (Fig. 5A,B). However, the jumping
mode produces just two stable states with
sharp transitions (mean of 19 � 5 ms)
between them, with highly variable timing
of those transitions (Fig. 5C,D) (mean
transition time of 1065 � 556 ms).

The advantage of computer simulation
is our ability to monitor every single neu-
ron in every trial. Thus, we can analyze the

fine temporal details of network activity on a trial-by-trial basis,
in a manner not possible in a biological network. In particular,
neurons that have similar responses (typically all 80 excitatory
neurons or all 20 inhibitory neurons of a specific population in
our simulations) can be binned together, reducing noise, and
allowing us to obtain the dynamics of each type of neuron during
each trial. To reduce measurement noise, the bins we use to cal-
culate mean population activity on a trial-by-trial basis are sig-
nificantly larger (200 ms) than the 2 ms bins used as input to the
HMM analysis.

Figure 6, A and C, shows the mean activity of the four types of
cell: excitatory in solid line, inhibitory in dashed lines, with the
pool receiving more input in green and the pool with less input in
red. The slower ramping on a single trial is apparent in Figure 6A,
with the network in ramping mode, compared with Figure 6C,
with the network in jumping mode. Activities of the excitatory
pools across 10 trials are shown in Figure 6, B and D, respectively,
for ramping and jumping modes of decision-making. These pan-
els each include an “error trial” (in red), during which the popu-
lation with less bias became the highly active one. Figure 6D
shows, in addition, a trial in which neither pool made the transi-
tion to the active state within the allocated 2 s of stimulus re-
sponse. Such trials, which we label as “undecided” and count as 1⁄2
for a correct trial and 1⁄2 for an error trial, disappear if response
time is drawn out far beyond 2 s. Although noise does lead to
variability across trials in neural responses in the ramping mode
(Fig. 6B), the latency variability is significantly greater in jumping
mode (Fig. 6D).

To quantify these differences in transition speeds, we defined
the onset time of a firing rate change as the point at which mean
population activity passed 5 Hz (a rate never produced in the
spontaneous state) and calculated how long it took increasing
firing rates to reach an arbitrary threshold of 40 Hz. In ramping
mode, firing rate changes commenced at 240 � 84 ms (mean �

Figure 3. Transition-triggered average reveals more rapid changes in firing rate than apparent in standard histograms. A, In
orange, we plot a histogram of firing rates of a cell, aligned to the end of the second HMM state of each trial. This transition-
triggered average (TTA) of firing rate reveals a rapid change in rate at the time of transition that are smoothed out in the standard
histogram (yellow line, which is cell 2, taste 1 from Fig. 1B,C shifted for comparison). B, Cell 8, taste 1. Blue indicates TTA. C, Cell 2,
taste 2. Orange indicates TTA. D, Cell 10, taste 2; maroon indicates TTA.

Table 1. Overlaps of probabilities

Maximum states 3 4 4 8 8 10 6*
Time bin 2 1 2 2 20 10 2*
Mean O 0.970 0.976 0.996 0.969 0.939 0.942 0.774
SD of O 0.023 0.030 0.006 0.017 0.037 0.050 0.17
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SD), whereas in jumping mode, firing rate
changes commenced at 820 � 416 ms
(mean � SD). This fivefold difference in
SDs reflects the fact that ramping begins at
approximately the same time on each
trial, whereas jump times evince trial-to-
trial variability. Mean time to reach 40 Hz
in ramping mode is 1400 ms, whereas in
jumping mode this change took only 460
ms; jumps were swift, whereas ramps were
slow. The variability in the rate of slow
deterministic ramping (Fig. 6B) is pri-
marily responsible for the trial-to-trial
variability in the time taken to reach 40 Hz
(SD of 246 ms) in ramping mode. How-
ever, in jumping mode, the SD of jump
onset time entirely accounts for the SD of
the time taken to reach 40 Hz (434 ms), a
fact that demonstrates that jumps were
also much more reliable in duration than
ramps.

Note that the transitions in jumping
mode of our model were much slower
than transition times found by HMM
analysis of the same data for two reasons.
First, population activity is binned at 200
ms, limiting our ability to resolve rate of
change, whereas HMM analysis can use 2
ms bins. Second, in our sparse random
networks, neurons within a population
differ in their inputs and excitability, so
the times for the average rate of 80 cells to
increase is much longer than the times for
the rate of individual cells to change.

To further analyze the behavior of our model network, we
switch between modes of decision-making by adjusting, in a sin-
gle network, the stability of the spontaneous state of activity of the
two excitatory populations when an input is present. In the jump-
ing mode, the spontaneous state is stable, either because both
populations receive relatively little total input (Fig. 7A) or be-
cause we globally increase the leak conductance of all cells (Fig.
7B) to represent a constant inhibitory drive. Figure 7A shows the
results of a speed–accuracy tradeoff within the jumping mode. As
we enhance the stability of the spontaneous state (i.e., reducing
the total applied current and moving along the x-axis to the left),
the probability increases that the decision-making network re-
sponse will follow input bias. Thus, performance improves with
increased stability of the spontaneous state. However, in the case
of highest stability and best performance, the time taken to pro-
duce a decision was frequently �10 s, far longer than of behav-
ioral relevance for taste processing. That is, in the jumping mode,
any increase in performance comes at the cost of increased
decision-making time (see Analyses in the supplemental data,
available at www.jneurosci.org as supplemental material). In the
ramping mode at larger applied currents, meanwhile, choice
probability is approximately constant, such that there is no ben-
efit of increasing integration time.

We define performance as the difference between percentage
of “correct” trials and “incorrect” trials, so that chance response
corresponds to zero performance. Our definition of performance
penalizes those undecided trials in the jumping mode when no
transition away from spontaneous activity was made during
stimulus presentation, by assuming no better than chance re-

sponses on such trials, thus neglecting any information from the
inputs that could affect any forced response. Such undecided
trials, when all cells remained at or near spontaneous activity
levels, never occur in the ramping mode: in all ramping trials, at
least one population reached activity at least 20 Hz higher than
the other for two consecutive 200 ms time bins (our criterion to
select the “winning” population) so a binary response could be
determined even if the attractor state was not yet reached.

When we restricted the duration of stimulus processing to 2 s
[a typical time for a taste to remain on the tongue before swal-
lowing (Travers and Norgren, 1986)], performance was best (Fig.
7B) when the spontaneous activity is stabilized by an increase of
inhibitory current to all excitatory cells in the network. The peak
in performance occurs, furthermore, when this inhibitory cur-
rent drives the network into the jumping mode of decision-
making. At even higher levels of inhibition, the network more
frequently remains in the spontaneous state, producing no deci-
sion within the stimulus duration of 2 s, and thus overall perfor-
mance declines. Such a peak in performance, in which the
timescale for a noise-dependent state transition approaches but
does not exceed the timescale of the input (in our case the dura-
tion of the input), is an indication that our system undergoes
stochastic resonance (McDonnell and Abbott, 2009).

Addition of noise to the stimulus, produced when inputs are
simulated as Poisson spike trains rather than as constant currents,
has little effect in the ramping mode, because the difference in the
two inputs producing a bias for deterministic integration is of a
far greater magnitude than the fluctuations in the inputs. Such
inclusion of input noise allows the network to operate farther

Figure 4. Detailed architecture of the decision-making part of the network, used alone for additional analysis, with its two
modes of operation. A, All of the types of connection within and between pools are represented in the figure, with arrows indicating
excitatory connections and balls indicating inhibitory connections. Size of each pool ranges from 20 excitatory and 5 inhibitory cells
to 80 excitatory and 20 inhibitory cells. As shown, the inputs to the network produce a bias toward swallow (3 arrows vs 2, indicates
a stronger input; in practice, the stronger input is just 10% higher, unless otherwise stated). B, C, Pseudopotentials indicating the
jumping mode of decision-making, which arises with reduced total input, or by increasing the inhibitory conductance, without a
bias (B) and with a bias toward swallow (C). Initial state is deterministically stable, so fluctuations are required to produce a
decision. D, E, Pseudopotentials indicating the ramping mode of decision-making with sufficient external input or without inhib-
itory current, without a bias (D) and with a bias toward swallow (E).

2564 • J. Neurosci., February 17, 2010 • 30(7):2559 –2570 Miller and Katz • Stochastic Decision-Making in Taste Processing



into the region of stochastic transitions in its jumping mode,
however, specifically because increased noise increases the likeli-
hood of a state transition before 2 s (Fig. 7B). Thus, although
stimulus noise inevitably reduces the reliability of the difference
between two stimuli, it paradoxically leads to better perfor-
mance in the jumping mode by accelerating the decision-
making process.

The benefit of the jumping mode for decision-making—an
improved ability to produce a binary output that follows a small
bias—arises because the decision-making network has its own
internal noise. To explore the extent of the advantage of the
jumping mode over the ramping mode, we can reduce the effect
of internal noise simply by increasing the number of neurons in
each network pool (and simultaneously scaling down individual
synaptic strengths); this reduces noise because the noise is in-
jected into each neuron independently. Performance of the
jumping mode peaks at a level of 50 independent cells (Fig. 7C):
increasing noise heightens the probability of errors, whereas re-
ducing noise lessens the ability of the network to respond in the
stimulus window. However, the advantage over the ramping
mode remains across a realistic range of levels of network noise
[up to a noise level corresponding to 100 independent neurons,
beyond which in vivo correlations render any additional averag-
ing out of noise impossible (Zohary et al., 1994)]. Ultimately,
deterministic integration in the ramping mode performs better
only under conditions in which internal noise levels are reduced
further (as they can be in computer simulations, in contrast to in
vivo): a jumping network performing stochastic transitions un-
der low-noise conditions ultimately reaches zero performance,

because no transitions occur in the absence of noise, whereas
such noise is only a detriment to the performance of a ramping
network performing deterministic integration.

To explore the generality of these findings, in Figure 8 we
present the results of parameter exploration in which, compared
with Figure 7B, the signal is stronger, because the input rates are
either doubled (Fig. 8A–C) or quintupled (Fig. 8D–F). The net-
work is slightly altered from that of Figure 7 in an attempt to
optimize the ramping mode; we reduced the recurrent excitation
within a pool to reduce the speed of deterministic transitions. In
all figures, the transition from ramping to jumping arises as we
increase leak conductance to stabilize the spontaneous state; the
stabilization requires higher leak conductance with greater exter-
nal inputs. The transition is obtained by monitoring the SD of
transition times as the network size is increased to reduce internal
noise. In the ramping mode, the reduction of noise reduces SD of
transition times, but in the jumping mode the opposite occurs
(i.e., because of the increase in mean transition time, a reduction
in noise increases absolute temporal variability).

In Figure 8A–C, we see for all three population sizes (50, 100,
and 200) and for all three stimulus durations (1, 2, and 5 s) that
optimal performance occurs with sufficient leak conductance
that the system operates in jumping mode. However, a dramatic
drop off in performance occurs when the leak conductance is
increased beyond that needed for optimal performance, because
the response time rises extremely rapidly (supplemental data,
available at www.jneurosci.org as supplemental material) with
additional stabilization of the spontaneous state. A fivefold in-
crease of the inputs from our base conditions produces a different

Figure 5. Hidden Markov analysis of decision-making network in two modes of operation. All figures include the spike trains of eight selected cells (4 from each decision-making pool) on a
particular trial, combined with the HMM output of probability for each state as a function of time (solid curves with color below curve). A, B, Two separate trials for a network in ramping mode. Note
the relatively slow transitions between states in the HMM output. C, D, Two separate trials from a network in jumping mode. Transitions are much sharper. Networks were matched for similar
average temporal behavior but with different parameters. Ramping mode (A, B): gL � 18 nS, WEE � 5, WEI � 10, WIE � 6, � � 0.25 (performance of 37 with N � 50). Jumping mode (C, D):
gL � 22 nS, WEE � 5, WEI � 30, WIE � 8, WII � 3, � � 0.5 (performance of 41 with N � 50). These different parameters account for differences in behavior: stimuli are identical.
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story (Fig. 8D–F). In all cases but one,
optimal performance arises either in the
ramping mode or on the boundary of
ramping and jumping modes. Only in the
system with highest internal noise (50
cells with independent noise, per group)
and longest stimulus duration (5 s) is the
jumping mode still optimal. Thus, in gen-
eral, we find that a strong signal (here an
average of an extra 50 spikes/s through 5
nS AMPA receptor-mediated synapses to
each excitatory cell of the biased popula-
tion) favors the deterministic ramping
mode, whereas high internal noise (equiv-
alent to 100 or fewer cells with indepen-
dent Poisson-like firing per population)
combined with a long allowed response
time favors the jumping mode.

One factor that can have a deleterious
effect on the response is variability in the
network preceding stimulus onset. In fact,
even if the spontaneous state is determin-
istically stable, in principle, spontaneous
transitions can produce a random re-
sponse (Miller and Wang, 2006). In Fig-
ure 9 we assess, using a firing rate model
and nullcline analysis, how variation in
starting conditions can produce differing
responses once the stimulus is present.
The nullclines (Fig. 9, S-shaped curves)
indicate the values at which the rate of
change of one variable is 0 given a fixed
value of a second variable. In this case, the
two variables are the synaptic outputs of the two excitatory pop-
ulations, which are monotonic functions of the firing rate of each
population. The green curve shows where dS2/dt � 0 at fixed S1,
and the red curve shows where dS1/dt � 0 at fixed S2. The
S-shape to each curve indicates that one population is bistable
(can have both a stable low firing rate and a stable high firing rate)
for a small range of activity of the other population. Intersections
of the two nullclines indicate fixed points of the system, which we
mark by filled circles for stable states and open circles for unstable
states.

In Figure 9A–C, we increase the input strengths multiplica-
tively, thus increasing the signal, to switch from jumping mode
(Fig. 9A) to a slow ramping mode via 25% increase of inputs (Fig.
9B) and a strongly ramping mode with fivefold increase of inputs
(Fig. 9C). The 10% bias of inputs favors the fixed point (filled
circle) with high S2 and low S1. In the absence of noise, all trajec-
tories (blue) in the jumping mode (Fig. 9A) terminate in the
symmetric state with low S1 and low S2, whereas in the determin-
istic ramping mode (Fig. 9B), 10 of 11 trajectories (orange) ter-
minate in the state with high S2 (near perfect performance).
However, with even stronger signal (Fig. 9C), a large number of
errors occur, because many initial conditions produce a trajec-
tory (in magenta) that terminates with large S1 and low S2 (only
8 of 13 trajectories follow the input bias).

Figure 9D–F shows the same nullclines as Figure 9A–C, with
the same set of initial conditions but with a small amount of noise
added to the trajectories. The noise enables the jumping mode to
produce responses (Fig. 9D) so that 10 trajectories terminate at
high S2 versus one at high S1 (and 2 at low S1, low S2). The noise
produces more errors in the slow ramping mode so that eight

trajectories terminate at high S2 and 5 at high S1, whereas trajec-
tories in the strong, fast ramping mode are little affected by the
additional noise (Fig. 9F).

The benefit of a high threshold in the jumping mode for sto-
chastic decision-making can be appreciated by considering two
Gaussian distributions of instantaneous input current, with a
difference in means, D, and SDs, �. Rather than integrating the
instantaneous current over time to distinguish the two distribu-
tions, one could set a threshold current, T, and ask the following:
what is the probability that one distribution of inputs might pro-
duce an instantaneous current above that threshold compared
with the other distribution? That is, we assume that a super-
threshold instantaneous current is sufficient to cause a jump to
one of the two decision states. Measuring T with respect to the
mean current of the two distributions, we thus compare the ratio

of �
T
D/2

�

exp�� x2

2�2�dx for the distribution with lower mean

to �
T�D/2

�

exp�� x2

2�2�dx for the distribution with larger mean. The

resulting ratio of complementary error functions increases with

threshold, T, asymptotically reaching exp�TD

�2 � for large T (see

Analysis 1 in the supplemental data, available at www.jneurosci.
org as supplemental material). Thus, the greater the threshold,
the more likely an instantaneous current from the distribution
with greater mean is observed above threshold before a current
from the distribution with lower mean. A similar result is found
via analysis of the system as barrier hopping in an asymmetric
potential in which an increase in threshold corresponds to a

Figure 6. Decision-making network produces a winner-takes-all response to a small bias in input. A, B, Network in ramping
integration mode (parameters of Fig. 5 A, B). A, In a single trial, solid curves indicate activity of each excitatory population, and
dashed curves indicate activity the inhibitory population of the corresponding color. B, Activity of the two excitatory populations
across 10 trials, given a small bias current to the “choose swallow” population (green) over the “choose spit” population (red). An
error trial is visible when the red curve reaches high activity. C, D, Network operating in jumping mode (parameters of Fig. 5C,D).
C, A single trial with average activity of excitatory populations solid and their corresponding inhibitory population in the same color
dashed. D, Ten trials of activity of the two excitatory populations given a small bias to the swallow population (green). An error trial
is visible when the choose spit population (red) achieves high activity. On one trial, neither population reaches high activity,
representing an undecided state.
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deepening of the initial potential well (see Analysis 2 in supple-
mental data, available at www.jneurosci.org as supplemental
material).

In summary, a small increase in the stability of the initial state
beyond its optimum can easily lead to a network with prohibi-
tively high response times. However, maintaining stability of the
initial state on stimulus onset has clear advantages (Fig. 9). To-

gether, these two results lend theoretical support to the concept
of an urgency signal (Cisek et al., 2009)—in our case, a gradual
ramping up of global excitation or ramping down of global inhi-
bition—to optimize decision-making within the jumping mode.

Discussion
The variability and apparent unreliability of individual neural
spikes, particularly notable in awake animals (Shadlen and New-
some, 1994, 1998; Zohary et al., 1994), long ago led researchers to
begin averaging neural spike trains across multiple trials to obtain
reliable data. This practice is now ubiquitous, although we have
entered an era when multiple cells are recorded simultaneously
on a regular basis, making such across-trial averaging less essen-
tial. However, in the absence of a good reason to suppose that
across-trial averaging is missing any important aspect of the data,
such traditional methods, being easy to use and explain, will con-
tinue to be the norm. In this paper, we describe a jumping mode
of network operation that is obscured by across-trial averaging
but that matches the trial-to-trial variability in cortical neural
activity during sensory processing observed through Hidden
Markov modeling (Abeles et al., 1995; Seidemann et al., 1996;
Jones et al., 2007). Furthermore, we reveal a useful computational
aspect of this mode of operation in decision-making, expanding
theoretical work by others in this area (Deco and Romo, 2008;
Mart í et al., 2008; Deco et al., 2009).

We do not attempt here to reproduce all the specific details of
neuronal responses during taste processing (nor do we reproduce
the entire system responsible for such responses). We do, how-
ever, show how some important key response features arise, fea-
tures that may also be important in other functions of cortical
activity. First, we demonstrate how neurons possessing only fast
time constants (the slowest time constant in our simulations is
that of NMDA receptor activation, lasting 100 ms) can produce
time structure that is an order of magnitude longer, even in the
presence of a constant, time-invariant stimulus. The ability to
remain in one constant state for this long allows completion of
one stage of processing (such as taste identification) before the
next stage (deciding on a behavioral response) commences. This
“slowing” of cortical processing suggests a mechanism that can
explain a wide range of behavioral responses, some with relatively
slow reaction times, in a unified manner (Halpern, 2005).

Second, we show that stable states of activity can transition
rapidly to other states, at latencies that vary from trial to trial. The
trial-to-trial variability of transition times is produced because of
the inherent noise in the network. Others (Moreno-Bote et al.,
2007) have considered similar state transitions as the basis for
binocular rivalry in visual perception and have shown that the
distribution of times between transitions can be used to elucidate
more detailed biophysical properties of the cells and network
connections. This analysis has the potential to explain both the
reliability and “trial-to-trial” variability of perceptual judgments
(Deco et al., 2007a,b, 2009; Deco and Romo, 2008), again within
a single unified framework: that is, the same mechanism that
drives the system through states is responsible for the “random”
variability in response speed. Our framework may also be appli-
cable to other systems in which sequences of activity states have
been observed, such as during songbird singing (Fee et al., 2004;
Hampton et al., 2009) and insect olfaction (Laurent et al., 2001).

Previous models of decision-making have assumed the exis-
tence of a perfect integrator, so that integration of evidence fol-
lows a biased random walk (Ratcliff et al., 1999, 2007; Smith and
Ratcliff, 2004; Ratcliff and McKoon, 2008). In these models, a
constant bias in the inputs produces a constant ramping up of

Figure 7. Benefits and limits of noise and the stochastic, jumping mode of decision-making
in a fixed time interval. A, Total applied current is varied to shift the network from the ramping
mode (high total applied current) to the jumping mode of decision-making (low total applied
current) while maintaining a fixed bias (difference between the currents to the two populations
is held fixed). Proportion of trials in which the winning pool is the one with greater input,
maximized when the system is in jumping mode. B, With constant inputs for a limited, 2 s
decision-making period, inhibitory conductance is increased to shift the network to jumping
mode. Optimal performance occurs in the parameter region of the jumping mode. Bottom
curve, Inputs are fixed currents. Top curve, Inputs are Poisson spike trains with the same mean
current as the bottom curve. Note that performance is better when inputs are noisy. C, Perfor-
mance varies with size of network, always improving with network size (which reduces internal
noise) for deterministic integration in the ramping mode but having an optimal level for the
jumping mode. Note that noise is uncorrelated across cells in these simulations, so unrealisti-
cally low levels of internal variability could be reached with large network size.
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activity of an appropriate set of cells as a
function of time; trial-to-trial fluctua-
tions represent random noise distributed
about a mean ramping rate. Other mod-
els, based on the properties of connected
groups of neurons, have shown that such
gradual ramping and accumulation of ev-
idence can arise in an attractor model
(Wang, 2002; Wong and Wang, 2006;
Wong et al., 2007; Wong and Huk, 2008),
without the need for a perfect integrator.
However, all models that produce a slow
time constant for deterministic integra-
tion require a level of fine tuning (Seung,
1996; Aksay et al., 2000; Seung et al.,
2000a,b) that may be difficult to realize
biologically.

Our model is a variant of such an at-
tractor model, operating in a regimen in
which deterministic integration is impos-
sible, so fluctuations are key (Deco et al.,
2007b). In such a regimen, fine tuning is
not as necessary (Koulakov et al., 2002;
Goldman et al., 2003; Okamoto and Fukai,
2003). The discrete jumps in activity that
occur in any individual trial resemble a
gradual ramping of activity when neural
data is averaged across trials (Okamoto
and Fukai, 2001), but in our model, this
ramp is artifactual. In particular, trial-to-
trial variability in timing of sharp transi-
tions, and a gradual ramping of activity on
each trial, will look similar in any analyses
that average across trials (cf. Deco et al.,
2005).

Such an effect has been observed in a
number of systems (Abeles et al., 1995;
Seidemann et al., 1996; Jones et al., 2007)
and has been suggested, following single-
unit analysis, to characterize cortical activity
during delay-period “ramping activity” in
the anterior cingulate cortex of monkeys
(Okamoto et al., 2007). In most cases, rec-
ognition of such a process requires the use
of HMM (or similar analyses) brought to
bear on simultaneously recorded multi-
electrode data, although not necessarily
dense multi-electrode data: both times
HMM have been applied successfully to
neural data (Seidemann et al., 1996; Jones
et al., 2007), a handful (6 –12) of neurons
have been enough to allow reliable detec-
tion of states. The use of more neurons
might reveal greater complexity (subsets
of neurons performing independent se-
quences of states, for instance), but it is
clear that these dynamical processes are not sparse: whereas many
neurons work together during stimulus processing, the patterns
that reflect this processing can be observed in �50% of the neu-
rons (Jones et al., 2007) and thus in relatively small recorded
ensembles.

A significant theoretical difference between the two modes of
operation of an attractor-based decision-making network has to

do with the fact that, in the jumping mode, the initial, spontane-
ous state of activity is deterministically stable even while the in-
puts are present. Maintaining the deterministic stability of the
initial activity state can allow the network to more reliably follow
a small bias of the inputs than is possible in a ramping mode when
the initial state is unstable and a response is deterministically
“forced”. This benefit is apparent when a major cause of errors in

Figure 8. Optimal mode for decision-making shifts to ramping with strong external signal, low internal noise, and short
duration of stimuli. A–C, Response of the network with a doubling of both inputs used in Figure 7, B and C. Network size increases
from left to right panels: A, n � 50; B, n � 100; C, n � 200. D–F, Response of the network with a factor of 5 increase in both inputs
of Figure 7, B and C. Network size increases from left to right panels: A, n � 50; B, n � 100; C, n � 200. In A–F, input durations are
1 s (red), 2 s (green), or 5 s (blue). The transition between jumping and ramping modes is determined by a switch from increasing
to decreasing variance of response times with reduced internal noise (larger networks).

Figure 9. Nullcline analysis reveals how the jumping mode reduces response variability arising from non-identical initial
conditions. Nullclines in the synaptic variables indicate the steady states of the system. Green lines indicate dS1/dt � 0 for a given
S2; red lines indicate dS2/dt �0 for a given S1. Filled circles are stable fixed points of the system, and open circles are unstable fixed
points. Trajectories for the system with inputs biased by 10% in favor of S2 from a symmetric range of starting points are presented
without noise (A–C) and with noise (D–F ). Orange trajectories result in a correct response with high S2, low S1; magenta
trajectories show an incorrect response with low S2, high S1; blue trajectories result in a lack of response with low S1 and S2. A–D,
With inputs of 0.0040 and 0.0044, the low activity state is stable; B–E, with inputs of 0.0050 and 0.0055, the low activity state is
just unstable and noise generates many errors; C–F, with inputs of 0.0200 and 0.0220, the low activity state is highly unstable and
asymmetry in the initial state of the system produces multiple errors.
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the ramping mode of decision-making arises from variability in
network activity before and up to the moment of stimulus onset.
Such variability in initial conditions has less effect when the spon-
taneous state remains stable, and thus a source of error is greatly
reduced (Fig. 9).

Of course, the higher the threshold for a decision, the more
stable is the initial state and the longer it takes to generate a
response; this produces the well known tradeoff between re-
sponse speed and accuracy (Ratcliff, 1985; Ratcliff and Smith,
2004; Smith and Ratcliff, 2004; Shea-Brown et al., 2008; Eckhoff
et al., 2009) (also see the analyses in the supplemental data, avail-
able at www.jneurosci.org as supplemental material). If a finite
decision time is needed, such a tradeoff leads to an optimal level
of stability for the initial state. Similarly, for a fixed network with
a stable initial state, an optimal level of noise is needed to balance
the desire for a timely transition during the response time with
the need to keep any input bias from being hidden in the variabil-
ity. Such a matching, of the timescale of transitions produced by
noise to the timescale of a stimulus to produce optimal perfor-
mance, is a hallmark of stochastic resonance (Gammaitoni et al.,
1998; McDonnell and Abbott, 2009).

Because the addition of noise can increase the speed with
which a network jumping mode processes input, we find our
simulation capable of performing an unlikely feat: the addition of
a certain amount of noise to the inputs of the network allows the
network to more reliably detect a difference between the inputs.
The optimal level of stimulus noise will depend on the level of
internal network noise (and vice versa). In the brain, inputs to
one region from another contain inherent variability and fluctu-
ations but so too do environmental stimuli. The improved per-
formance of our network with stochastic inputs leads to the
suggestion that the brain can use environmental fluctuations to
enhance its function (Deco et al., 2009).
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