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Surprise Signals in Anterior Cingulate Cortex: Neuronal
Encoding of Unsigned Reward Prediction Errors Driving
Adjustment in Behavior
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In attentional models of learning, associations between actions and subsequent rewards are stronger when outcomes are surprising,
regardless of their valence. Despite the behavioral evidence that surprising outcomes drive learning, neural correlates of unsigned reward
prediction errors remain elusive. Here we show that in a probabilistic choice task, trial-to-trial variations in preference track outcome
surprisingness. Concordant with this behavioral pattern, responses of neurons in macaque (Macaca mulatta) dorsal anterior cingulate
cortex (dACC) to both large and small rewards were enhanced when the outcome was surprising. Moreover, when, on some trials,
probabilities were hidden, neuronal responses to rewards were reduced, consistent with the idea that the absence of clear expectations
diminishes surprise. These patterns are inconsistent with the idea that dACC neurons track signed errors in reward prediction, as
dopamine neurons do. Our results also indicate that dACC neurons do not signal conflict. In the context of other studies of dACC function,
these results suggest a link between reward-related modulations in dACC activity and attention and motor control processes involved in
behavioral adjustment. More speculatively, these data point to a harmonious integration between reward and learning accounts of ACC
function on one hand, and attention and cognitive control accounts on the other.

Introduction
Learning theory seeks to describe how we and other animals form
associations between stimuli, actions, and their consequences for
reward or punishment. Reinforcement learning (RL) holds that
learning depends primarily on reward prediction errors (RPEs),
the difference between the reward expected and the reward re-
ceived (Rescorla and Wagner, 1972; Sutton and Barto, 1998). RL
accounts for a wide array of phenomena, including Pavlovian and
instrumental conditioning, and appears to be supported by
subcortical and cortical signaling systems including striatum,
midbrain, orbitofrontal cortex, and anterior cingulate cortex
(Lauwereyns et al., 2002; Barraclough et al., 2004; Samejima et
al., 2005; Schultz, 2006; Lee and Seo, 2007; Matsumoto and
Hikosaka, 2007; Rushworth et al., 2007).

Aside from the reward prediction error, which is a signed
quantity, behavior sometimes depends on the degree to which
outcomes are surprising, independent of their sign (Mackintosh,
1975; Hall and Pearce, 1979; Pearce and Hall, 1980; Courville et
al., 2006). Corresponding models include a term called surpris-
ingness or associability, which is a function of the absolute value
of the difference between observed and expected outcomes

(Mackintosh, 1975; Hall and Pearce, 1979; Pearce and Hall,
1980). These attentional models of learning posit that surprising
events marshal neural resources to enhance their processing,
thereby driving learning. Several experiments provide empirical
support for this idea (Kaye and Pearce, 1984; Swan and Pearce,
1988; Courville et al., 2006).

Much evidence links the amygdala and its target, the basal
forebrain, with surprise-based learning (Holland and Gallagher,
1999, 2006; Belova et al., 2007; Lin and Nicolelis, 2008). The
connections between the ACC and parts of the amygdala (More-
craft and Van Hoesen, 1993) invite the hypothesis that the ACC
plays a complementary role. The dorsal anterior cingulate cortex
(dACC) is a primary target of dopamine neurons (Paus, 2001),
tracks reward outcomes of choices (Procyk et al., 2000; Shidara
and Richmond, 2002; Williams et al., 2004; Amiez et al., 2006;
Quilodran et al., 2008), and is involved in action and outcome
monitoring (Shima and Tanji, 1998; Gehring and Willoughby,
2002; Holroyd and Coles, 2002; Matsumoto et al., 2007). How-
ever, the form of the reward outcome signal carried by dACC
neurons remains unknown.

Here we show that, in a probabilistic choice task (Hayden et
al., 2010), dACC neurons signal the surprisingness of reward
outcomes. On each trial of the task, monkeys chose between two
targets offering stochastic (large or small) juice rewards with
probabilities specified by symbolic cues. We thus obtained neural
responses to large and small rewards cued by a large range of
probabilities. On a subset of trials, we introduced an occluder
that obscured information about reward probabilities. These am-
biguous cues provide no cue to the likelihood of an outcome, so
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any particular reward can be considered unsurprising. We there-
fore predicted—and indeed observed—weaker modulation of
reward-related neuronal responses on ambiguous trials. These
observations endorse the idea that a population of neurons in the
dACC signal an unsigned error in reward prediction and are thus
consistent with the idea that dACC contributes to the attentional
component of learning.

Materials and Methods
Some of the behavioral data collected for this experiment have been
published previously (Hayden et al., 2010). However, all of the figures
and analyses presented here are new and the physiological data have not
been previously published.

Surgical procedures. All animal procedures were approved by the Duke
University Institutional Animal Care and Use Committee and were de-
signed and conducted in compliance with the Public Health Service’s
Guide for the Care and Use of Animals. Two male rhesus monkeys
(Macaca mulatta) served as subjects. A small prosthesis for holding the
head was used. Animals were habituated to laboratory conditions and
then trained to perform oculomotor tasks for liquid reward. A stainless
steel recording chamber (Crist Instruments) was placed over anterior
cingulate cortex and verified by MRI (Hayden et al., 2009). Animals
received appropriate analgesics and antibiotics after all procedures.
Throughout both behavioral and physiological recording sessions, the
chamber was kept sterile with regular antibiotic washes and sealed with
sterile caps.

Behavioral techniques. Monkeys were placed on controlled access to
fluid outside of experimental sessions. Eye position was sampled at 1000
Hz by an infrared eye-monitoring camera system (SR Research). Stimuli
were controlled by a computer running Matlab (Mathworks) with Psy-

chtoolbox (Brainard, 1997) and Eyelink Tool-
box (Cornelissen et al., 2002). Visual stimuli
were colored rectangles on a computer moni-
tor placed directly in front of the animal and
centered on his eyes (Fig. 1). A standard sole-
noid valve controlled the duration of juice de-
livery. Reward volume was 67, 200, or 333 �l in
all cases. The accuracy and linearity of volume
as a function of time of the solenoid valve was
checked immediately before and after the
experiment.

Every trial began when two bars and one
occluder appeared (Fig. 1 A). The monkey
had one second to inspect these stimuli. Ca-
sual observation showed that monkeys reli-
ably looked at both bars during this period.
Next, a small yellow fixation point appeared
at the center of the monitor. Once fixation
was acquired (�0.5°), the monkey had to
maintain fixation for one second. Any failure
led to an “incorrect” sign (a large green square)
and a timeout period (3 s). The fixation point
was then extinguished, and two eccentric small
yellow squares appeared overlaid on the center
of the probability bars. The monkey then had
to select one of these bars by shifting gaze to the
square superimposed on the bar (�3°). Fol-
lowing the saccade, the gamble was immedi-
ately resolved by the computer and the
appropriate reward was provided. Then all
stimuli disappeared. No visual cue indicated
the reward outcome, nor were the reward
probabilities for the ambiguous stimuli ever
revealed.

On 10% of trials (chosen randomly), one of
the targets was safe and provided a determinis-
tic reward with 100% probability. On most tri-
als, both targets were risky (risky trials), and
both offered a gamble between a large (0.333

ml) and a small (0.067 ml) squirt of juice at a fixed, fully specified,
probability. On one-third of trials (ambiguous trials), one of the two
risky targets was occluded, rendering its reward probabilities uncertain,
or, formally speaking, ambiguous. These two stochastic processes were
independent, so that 1/30 trials pitted an ambiguous against a safe op-
tion. The number of safe trials was too low to fully analyze on a neuron by
neuron basis, and neural activity on these trials was not studied.

On all trials, a cyan occluder appeared somewhere on the screen. On
two-thirds of trials (risky trials), the occluder appeared at a random
location on the screen, and sometimes covered part of the bar but did not
obscure information about probabilities. On one-third of trials (ambig-
uous trials), the occluder overlapped the center of one of the bars. The
probability that the ambiguous option would provide a large reward was
drawn from a uniform distribution of the probabilities within the range
of those obscured by the occluder, and an outcome was chosen accord-
ingly. This is mathematically equivalent to a 50% probability of a large
reward on all ambiguous trials. On a small minority of risky trials, the
occluder covered only part of the bar; on all such trials, the border be-
tween the blue and red regions was visible, and these trials were consid-
ered risky (rather than ambiguous) in all analyses. Ambiguous stimuli
were equally likely to have small, medium, or large size (i.e., one-third
likelihood of each). There were too few trials of each size to detect firing
rate differences, so these three trial types were combined in all analyses.

The safe bar was colored gray. The risky and ambiguous bars were
divided into blue and red portions. The blue portion, always on top,
indicated the probability that choosing the bar would yield the large
reward. The red portion indicated the probability that choosing the bar
would yield the small reward. All probability bars were 80 pixels wide and
300 pixels tall. The occluder was 150, 225, or 300 pixels tall and always
200 pixels wide. The horizontal position of the occluder was randomly

Figure 1. Stimuli, task, and recording location. A, Task design (details in Materials and Methods). B, Gray bar, safe stimulus,
yields 200 �l of juice. C, Examples of risky bars. Blue/red bars yield either 333 or 67 �l of juice; p(Large) varied from 0 to 1. In this
example, p(Large) are 0.5, 0.88, and 0.17. D, Example of risky bar with a partially concealing occluder that did not render proba-
bilities uncertain. E, Ambiguous stimuli. The size of the occluder rendered the probability associated with the bar ambiguous (three
sizes or occluders were used; data were averaged over all three). F, Approximate recording site locations within the anterior
cingulate cortex shown on a coronal MRI section in the two subjects. Approximate rostrocaudal recording locations shown above;
approximate mediolateral and dorsoventral recording positions shown in pink.
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jittered so as to emphasize the idea that the bar just happened to be
covering the stimulus, and that the ambiguous was not a single distinct
stimulus; in all cases, information about probabilities was obscured. On
ambiguous trials, the vertical position of the occluder was always cen-
tered on the center of the bar.

Microelectrode recording techniques. We recorded action potentials
from single neurons in two monkeys during the performance of the task.
Single electrodes (Frederick Haer) were lowered with a hydraulic micro-
drive (Kopf) until the waveform of a single (1–3) neuron(s) was isolated.
Individual action potentials were identified by standard criteria and iso-
lated on a Plexon system. Neurons were selected for recording on the
basis of the quality of isolation only, and not on task-related response
properties.

We approached dACC through a standard recording grid. Dorsal ACC
was identified by structural MRI images taken before the experiment.
Neuroimaging was performed at the Center for Advanced Magnetic De-
velopment at Duke University Medical Center, on a 3T Siemens Medical
Systems Trio MR Imaging Instrument using 1 mm slices. We confirmed
that we were in dACC by using stereotactic measurements, as well as by
listening for characteristic sounds of white and gray matter during re-
cording. Our recordings likely came from area 24 and the dorsal and
ventral banks of the anterior cingulate sulcus. Before recording, we per-
formed several exploratory recording sessions to map out the physiolog-
ical response properties of the tissue accessible through our recording
chamber. We were able to distinguish white from gray matter by the
presence of neural activity and by the distinct sounds associated with gray
matter. During these mapping sessions, we were able to identify both the
dorsoventral and mediolateral extent of the cingulate sulcus.

Behavioral and neuronal analyses. Peristimulus time histograms
(PSTHs) were constructed by aligning spike rasters to trial events and
averaging firing rates across multiple trials. Firing rates were calculated in
1 ms bins. For display, PSTHs were Gaussian-smoothed (SD, 100 ms).
Data were aligned to the saccade that ended the trial (time 0 on plots).
Statistical comparisons were performed on binned, unsmoothed, firing
rates of single neurons in a 1 s postreward epoch beginning 0.5 s after the
end of the choice saccade (Student’s t test on individual trials counts). All
statistical tests were confirmed with nonparametric statistical tests, and
similar results were obtained in all cases.

Results
Monkeys are risk-seeking and avoid ambiguous options
We examined behavior of two monkeys in a probabilistic choice
task (Fig. 1A–E). As reported previously (Hayden et al., 2010),
when choosing between two risky options, monkeys reliably dis-
criminated bars that differed by as little as 0.04 in the probability
of a large reward (i.e., 12 pixels, p � 0.026 for 4%, p � 0.001 for
larger differences, binomial test). Previously published work us-
ing a variant of this task that included a gray bar to indicate
probability of medium sized rewards demonstrated that monkeys
make their choices by considering the size of both the red and
blue portions of the bar to compute the expected value of each
option (Hayden et al., 2010). In the standard variant of the task
considered here, both monkeys preferred risky options to safe
options with the same expected value ( p � 0.001 in both cases).
Each risky option can be defined by the probability it would
provide a large reward, and we will use the term p(Large) to
denote this quantity. As the p(Large), and thus the expected
value, of risky options fell, monkeys continued to prefer them
over safe options until p(Large) fell to �0.23. In terms of ex-
pected value, monkeys sacrificed up to 71 �l of juice (�7.4 SE) to
choose the risky option instead of the safe option.

Both monkeys preferred risky options to ambiguous options.
As the p(Large), and thus the expected value, of risky options fell,
monkeys continued to prefer them over ambiguous ones until
p(Large) fell to �0.30. In terms of expected value, monkeys sac-
rificed 53 �l of juice to choose the risky over the ambiguous

option. These data demonstrate that monkeys distinguish between
risky and ambiguous forms of uncertainty, and, like humans, are
reluctant to choose gambles with uncertain probabilities (Ellsberg,
1961; Fox and Tversky, 1995; Hsu et al., 2005; Huettel et al., 2006;
Hayden et al., 2010). Moreover, we found that ambiguity aversion
gradually disappeared during additional training periods that oc-
curred after physiological recordings were terminated (Hayden et
al., 2010). This slow learning effect demonstrates that monkeys grad-
ually learn to associate accurate expected values with ambiguous
options, and that ambiguity aversion reflects discomfort with unfa-
miliar stimuli.

Switching behavior reflects the surprisingness of rewards
When choosing between two risky options in this task, monkeys
should not, in principle, change their strategy as a function of the
outcome of the previous trial, since trials were independent. Typ-
ically, monkeys sensibly chose the option offering a higher prob-
ability of large reward (81.8% of trials). However, monkeys also
exhibited a weak but reliable increase in willingness to choose the
option with the lower p(Large) (the redder of the two targets)
following small rewards (Fig. 2). They also exhibited a weak but
reliable increase in willingness to choose the option with the
lower p(Large) following surprising (that is, statistically unlikely)
outcomes, regardless of the size of the outcome. This main effect
of reward size is unlikely to reflect trial-to-trial effects based on
the choices made, since reward was largely independent of choice
made: small rewards were almost as likely to come from choices
of the bluer option (79.0% of smaller rewards) as were larger
rewards (83.9% of larger rewards).

Improbable large rewards biased monkeys toward choosing
the less probable (i.e., redder) option on the next trial (regression
of switch likelihood against win probability, coefficient �
�0.0014, p � 0.001). Nearly identical results were observed for
both monkeys individually (coefficient � 0.0013 for monkey E
and 0.0015 for monkey O). One intuitive explanation for this
increased willingness to choose the suboptimal strategy is that a
surprising large reward (i.e., one obtained from a redder bar)
suggests, despite the monkey’s extensive experience, that some-
thing about the meaning of the stimulus has changed, and that
perhaps the redder bars are now more rewarding, so a change in
strategy could be worth trying. In contrast, an unsurprising large
reward indicates that the environment is predictable and that the

Figure 2. Likelihood of adjusting strategy depends on reward size and surprise. Plot of
probability that monkey chose inferior (i.e., option with lower probability of large reward)
option on next trial as a function of reward size (color) and its associated probability (abscissa)
on current trial. Likelihood of switching to this strategy was greatest following unexpected
small outcomes and smallest following expected large outcomes. Data for all sessions are com-
bined into single plot. ambig., Ambiguous.
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current strategy is working. In the framework of Bayesian rein-
forcement learning, increases in decisional uncertainty should
drive faster learning and more rapid changes in behavior and
exploration (Courville et al., 2006). In this vein, we suggest that
choosing the redder option may be a form of exploratory choice.

We found that unexpected small rewards promoted larger
willingness to choose the redder option than expected small re-
wards and all large rewards (regression of switch likelihood
against win probability, coefficient � �0.0019, p � 0.001).
Nearly identical results were observed for both monkeys individ-
ually (coefficient � 0.0021 for monkey E and 0.0018 for monkey
O). One intuitive explanation for this effect is that unexpected
small rewards imply that the meanings of the stimuli may have
changed, just as in the case of the surprising large reward, but that
the situation is more urgent because circumstances have become
less favorable, more forcefully calling for an adjustment of choice
strategy (cf. Courville et al., 2006; Yu and Dayan, 2005).

Monkeys were relatively unlikely to choose the less probable
redder option after they had chosen the ambiguous option, re-
gardless of the reward obtained ( p � 0.001 for monkey E and p �
0.01 for monkey O, binomial test) (Fig. 2, right). These effects are
consistent with the idea that, because ambiguous options do not
strongly predict either a large or a small reward, neither outcome
is particularly surprising. Since no prediction was made, no ex-
pectation was violated, and there is little reason to change strategy
following either reward from an ambiguous choice. These ideas
are distinct from the notion that ambiguous options are simply
valued less than risky options, or that they are perceived as having
a lower probability of reward— both of which would simply
cause them to be treated as low probability rewards (our inter-
pretation is also supported by the neural data; see below).

Monkeys’ increased willingness to choose the redder option
following surprising outcomes might reflect an increased sam-
pling of the alternative following an unexpected small reward.
Another possibility is that monkeys followed a strategy of ran-
dom guessing following an unexpectedly small reward and that
this led them to choose the less probable option more often. Either
way, the monkeys demonstrably responded to unexpected out-
comes, good or bad, by adjusting some aspect of their strategy. This
strategy-switching phenomenon is reminiscent of a win—stay/lose–
shift heuristic (Barraclough et al., 2004; Hayden et al., 2008), and also
has intuitive connections with an explore (as opposed to exploit)
strategy (Daw et al., 2006; Pearson et al., 2009).

We looked for other possible signatures of attentional effects
on neural responses. Such possible signatures include changes in
the likelihood of error commission, initiation time for the next
trial, and duration of cue sampling. The change in the likelihood
of loss of fixation was weak and not statistically significant (re-
gression coefficient � 0.001 following large rewards and 0.003
following small rewards, p � 0.05 in both cases). There was no
effect on trial initiation time (coefficient � 0.000 following large
rewards, and �0.001 following small rewards, p � 0.05 in both
cases). The duration of cue sampling also showed no effect (co-
efficient � 0.010 following large rewards, �0.002 following small
rewards, p � 0.05 in both cases). One reason these effects may be
elusive is that monkeys were so well trained in the task that per-
formance was virtually asymptotic.

Collectively, these data indicate that monkeys, like humans,
are sensitive not only to reward outcomes but how much these
outcomes deviate from expectations. The observed adjustments
follow two principles: first, that small rewards lead to greater
adjustments than large rewards; and second, that adjustment is
increased for surprising rewards, regardless of sign. This second
effect indicates that behavioral changes are influenced by the un-
signed reward prediction error of the outcome, similar to that
predicted in attentional theories of learning (Courville et al.,
2006; Lin and Nicolelis, 2008; Roesch et al., 2010). In such theo-
ries, the rate of learning is influenced by the amount of attention
elicited by the outcomes, which in turn depends on the absolute
value of the error of the prediction (Pearce and Hall, 1980). This
learning-related form of attention is distinguished from other
notions of attention that describe improvements in sensory de-
tection or discrimination performance associated with prior
knowledge or voluntary control (Desimone and Duncan, 1995;
Egeth and Yantis, 1997).

dACC neurons signal unsigned reward prediction errors
We recorded the activity of 92 dACC neurons (61 in monkey E
and 31 in monkey O) while monkeys performed the task (mini-
mum 600 trials per neuron, mean 871 trials per neuron). Activity
of an example neuron is shown in Figure 3A. This neuron had a
baseline firing rate of �20 spikes/s (sp/s) and showed clear en-
hancements around the time of the saccade that began the task
(�1.25 s before time 0) and the choice saccade (time 0). In the
epoch following the receipt of the reward, neuronal activity was
25.7% (0.9 sp/s) greater following small outcomes (red line) than

Figure 3. dACC neurons signal reward (rwd) outcomes in probabilistic choice task. A, PSTH for a single dACC neuron showing average responses to large and small outcomes, aligned to end of
saccade and beginning of reward (time � 0). Responses were larger following small rewards than following large rewards. Epoch of analysis begins 0.5 s after reward and lasts 1 s (dark gray box).
Epoch used in the fixation period analysis (Table 1) is shown as well (light gray box). B, PSTH for another dACC neuron showing the opposite response pattern. C, Average difference in response to
large and small outcomes of all neurons during postreward epoch (dark gray regions). Responses were more often smaller following large rewards than following small rewards (left of zero).
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following large ones (blue line) ( p � 0.001, bootstrap t test on
raw firing rates). Another neuron is shown in Figure 3B. This
neuron showed a greater firing rate in response to large outcomes
than to small ones. The activity of 55% of neurons (n � 51/92, 35
in monkey E, 16 in monkey O) signaled the size of the reward
delivered following risky choices. The majority of significantly
modulated neurons (71%, n � 36/51) showed greater responses
to smaller rewards than to larger rewards (average modulation
2.2 sp/s) (Fig. 3C).

Neuronal activity on any given trial varied with reward size,
but it also depended on the prior probability associated with that
reward. For both the example neurons and the population, firing
rates in the postreward epoch were greater following highly im-
probable large rewards than following probable large rewards
(regression of firing rate against probability, coefficient 0.032 for
the neuron and 0.018 for the population, p � 0.02 in both cases)
(Fig. 4). Figure 4 shows the firing rate of a single neuron and the
population following large and small rewards (blue and red lines,
respectively), separated by the cued probability of those rewards
(separated into deciles for ease of viewing). Similarly, firing rates
were greater following improbable small rewards than following
probable ones (regression of firing rate against probability, coef-
ficient 0.022 for the neuron and 0.015 for the population, p �
0.02 in both cases). Thus, neuronal activity reflected the unsigned
difference between predicted reward size and observed reward
size. Interestingly, neuronal responses did not solely represent
unsigned reward prediction error. Instead, they were greater fol-
lowing small outcomes than following large outcomes, suggest-
ing that neural responses reflect the sum of reward size and
surprise. This pattern closely mirrors the pattern observed for the
likelihood of abandoning the optimal behavioral strategy and
instead choosing the suboptimal strategy on the next trial as a
function of the surprisingness of the reward (Fig. 2).

To estimate the prevalence of these effects across the popula-
tion, we performed regressions of firing rate against reward prob-
ability separately for large and small rewards for each neuron in
the population. We found a statistically significant regression
coefficient ( p � 0.05) following small rewards for 41% of neu-
rons (n � 38; 27 from monkey E, 11 from monkey O) and a
statistically significant coefficient following large rewards for
33% (n � 30; 21 from monkey E, 9 from monkey O) of neurons
in the population. Of the neurons with a significant effect follow-
ing large rewards, 83% (25/30) also showed a significant effect
following small rewards. These findings demonstrate a system-
atic, largely monotonic relationship between violation of expec-

tations and firing rate for a given reward size. Regression
coefficients were predominantly negative. For small rewards, regres-
sion coefficients were negative in 71% of significantly modulated
neurons (27/38); for large rewards, they were negative in 67% (20/
30). These frequencies are more than would be expected by chance
(binomial test, p � 0.01) and are consistent with the idea that dACC
neurons signal the surprisingness of reward outcomes.

One of the most intriguing and puzzling aspects of these data is
that firing rates associated with surprising large rewards and fully
expected small rewards were nearly identical. Indeed, a direct com-
parison of firing rates in the top quartile (i.e., most surprising) of
large reward trials and bottom quartile (least surprising) of small
responses revealed no statistical difference ( p � 0.5 for the single
neuron and for the population as a whole). Prima facie, this overlap
appears to pose a problem for the downstream decoding sys-
tem— how do readout neurons know whether a large or small
reward was obtained? We conjecture that dACC responses do not
need to be decoded, because it tracks outcome-related variables
related to the likelihood of altering behavior, regardless of the
cause (see Discussion, below) (Hayden et al., 2009). Consistent
with this idea, we found no evidence that likelihood of strategy
switching was different following the most surprising (top quar-
tile) large rewards and least surprising (bottom quartile) small
rewards ( p � 0.3).

Neuronal responses to ambiguous options reflect reduced
behavioral shifting
On one-third of trials, monkeys chose between a risky option and
an ambiguous option. Following ambiguous trials, monkeys were
less likely to follow the suboptimal strategy of choosing the redder
option than following risky trials (Fig. 2). This behavioral effect
suggests that learning is reduced on such trials, and this may be
because the ambiguous stimuli do not make a strong prediction
about a reward. We conjecture that because ambiguous options
do not provide explicit information about reward likelihood, any
outcome, large or small, may be treated as less surprising than the
same outcome predicted by an equivalent risky option, in which
reward probabilities are explicitly cued.

We thus predicted that neural responses to both large and
small rewards following ambiguous choices would be lower than
those following risky choices. This is indeed what we observed
(Fig. 4). Firing rates following small rewards on ambiguous trials
were significantly lower than those observed when p(Large) was
0.4 or higher, even though, in practice, all ambiguous options had
p(Large) of 0.5 ( p � 0.005 in each case, bootstrap t test). By the
same token, firing rates following large rewards when monkeys
chose the ambiguous option were significantly lower than those
observed when p(Large) was 0.5 or lower ( p � 0.01 in each case,
bootstrap t test). Although preference for the ambiguous option
gradually rose over the course of training (Hayden et al., 2010),
we were not able to detect a corresponding change in neural
modulation. It is difficult to draw any conclusions from this lack
of an observed effect, however, as the change in preference was
noisy, the neural effects were subtle, and the corresponding anal-
yses must be conducted on separate samples of neurons collected
on different days over the course of the study.

We considered the possibility that monkeys were simply pes-
simistic about ambiguous outcomes, and treated them as if they
had a low probability of providing a large reward. However, our
data provide two pieces of evidence against this interpretation.
First, at a behavioral level, switching likelihood following ambig-
uous outcomes is significantly lower than following even the
most likely small outcome trials (Student’s t test, p � 0.001 in for

Figure 4. dACC neurons signal unsigned reward (rwd) prediction errors. A, Average firing
rate of a single neuron during postreward epoch (Fig. 3A, dark gray box) separated by outcome
(large or small reward, blue and red lines) and reward likelihood (divided into 10 equal bins,
abscissa). Responses following ambiguous (ambig.) choices are shown to the right. Firing rates
following large and small rewards are larger when they are unexpected. B, Average response of
population of neurons, normalized to global average firing rate for the neuron during 0.5 s
pretrial epoch.
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both large and small ambiguous outcomes) (Fig. 2). Second, if
monkeys treated ambiguous outcomes as having a low probabil-
ity, then large outcomes would be surprising and would evoke a
correspondingly high firing rate response. However, neural re-
sponses to large rewards from ambiguous trials were among the
lowest observed, and significantly lower than those obtained
from the five least likely deciles of large rewards for risky rewards
(Fig. 4). Therefore, these data are inconsistent with the idea that
monkeys were simply pessimistic about ambiguous options, and
assigned them a lower expected value than they deserved. Our
results are more consistent with the idea that monkeys treat am-
biguous options as providing less information about outcomes
than with the idea that they mistakenly assign them a lower
probability.

Surprisingness uniquely accounts for these data
Collectively, these results demonstrate that the firing rates of neu-
rons in dACC are influenced by both the size of the most recent
reward and the cued probability that that reward would be deliv-
ered. This finding is inconsistent with the idea that dACC neu-
rons encode either a pure value signal or a signed reward
prediction error (i.e., the signed difference between expected and
received rewards, RPE) (Fig. 5A). These results are also inconsis-
tent with a simple transform of RPE, such as a negative RPE or a
rectified RPE (Fig. 5B,C). They are also inconsistent with the idea
that dACC signals the difference between the expected value of
the outcome and the obtained outcome (Fig. 5D). In contrast,
firing rates in dACC closely mirror outcome surprisingness (i.e.,
an unsigned prediction error) (Fig. 5E), combined with a con-
stant offset for losses relative to gains (Fig. 5F). This pattern of
firing rates is closely correlated with the observed effect of re-
wards on changes in behavior in our task, consistent with the idea
that firing rates track the likelihood of changing behavior (Fig. 2).

If neurons reflect probability during the fixation period, then

these effects may influence outcome signals in the reward epoch.
Another possibility is that neurons encode informational en-
tropy, a measure which is maximal when probability is 0.5 and
minimal when probabilities are 0 and 1. To test for these con-
founds, we examined, for each neuron in our sample, the corre-
lation between firing rate in the fixation period (the 1 s period
beginning with the acquisition of fixation and the extinction of
the fixation spot) and these variables to determine how many
neurons exhibited significant correlations. (Because firing rate
may be anticorrelated with any of these variables, the test was
two-tailed.) We tested the probability and entropy on the left, the
right, and on the chosen target. The table below shows the pro-
portion of neurons with significant modulation during the fixa-
tion period ( p � 0.05) (Table 1). Given this significance cutoff,
the proportion of neurons expected to exhibit each correlation by
chance is 0.05 (4.6/92). These data indicate that dACC neurons
do not encode reward probability during the fixation period, and
only weakly encode entropy, if at all.

Conflict does not explain dACC neuron activity in this task
Several fMRI studies have implicated dACC in signaling response
conflict (Carter et al., 2000; Botvinick et al., 2001; van Veen et al.,

Figure 5. Schematic plots of behavior and neuronal responses expected from various learning models. A, A reward prediction error. B–D, The negative reward prediction error (B), a measure of
expected value (EV) alone (C), and a negative expected value minus the reward (D) are other plausible models that fail to predict behavior in this task. E, F, Instead, behavior appears to match the
surprisingness of the outcome (E) plus a constant term that is larger for negative than for positive outcomes (F ).

Table 1. dACC neurons do not encode expected value or informational uncertainty
(H) during the fixation period

% Correlated % Anticorrelated Total p Value, uncorrected

Probability left 3.26 3.26 6.52 0.799
Probability right 4.35 0 4.35 0.169
Probability of chosen 4.34 1.09 5.44 0.369
H left 2.17 6.52 8.69 0.047
H right 2.17 1.09 3.26 0.669
H chosen 3.26 2.17 5.44 0.881

We correlated firing rate with six parameters related to the bars on the screen. Firing rates of ACC neurons did not
track five of these six values, and just barely tracked the sixth (H left). None of these values is significant when
corrected for multiple comparisons. Significance tests were performed using a �2.
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2001; Weissman et al., 2003; Kerns et al., 2004). Thus, the task-
dependent changes in firing rate we observed may be a conse-
quence of the different levels of response conflict associated with
various options. We performed a control analysis to examine this
question, reasoning that conflict would covary with the similarity
of the two risky options. We compared firing rates on trials when
two risky options had similar p(Large) (�0.05 difference) to
those on trials when the p(Large) of the two risky options differed
substantially (�0.10 difference). Supporting this categorization,
reaction time (rt) on high conflict trials (rt � 236.3 ms) was
significantly slower than on low conflict trials (rt � 211.7 ms, p �
0.001, Student’s t test). Of the 92 neurons in our sample, reward-
related responses of only five (5.4%) were modulated by conflict
(Fig. 6)—no different from what would be expected by chance
( p � 0.848, binomial test). We repeated these analyses with sev-
eral other probability cutoffs instead of 0.05 and 0.1, and ob-
tained virtually identical results.

Discussion
The relationship between stimuli, actions, and reward outcomes
drives associative learning. Although many previous studies have
emphasized the importance of reward prediction errors in asso-
ciative learning (Montague et al., 1995, 1996; Schultz et al., 1997;
Fiorillo et al., 2003; Bayer and Glimcher, 2005; Schultz, 2006;
Matsumoto and Hikosaka, 2007, 2009), the absolute value of the
reward prediction error, known as either surprisingness or asso-
ciability, drives learning in many situations (Mackintosh, 1975;
Hall and Pearce, 1979; Pearce and Hall, 1980; Courville et al.,
2006). Here we show that this variable is explicitly calculated by
the brain and represented in modulations of the firing rates of
single neurons in the dACC in a probabilistically rewarded choice
task. Although the magnitudes of these neural effects was small,
they correspond to the similarly small effect of rewards on behav-
ior in our task. These effects are inconsistent with the idea that
dACC neurons solely carry a signed reward prediction error sig-
nal, as might be inferred based on the strong dopamine projec-
tions to ACC. Given the existence of a robust network specialized
for computing and broadcasting RPE signals (i.e., the dopamine
system), our data endorse the notion that the brain uses multiple
complementary learning systems to guide behavior (White and
McDonald, 2002; Poldrack and Packard, 2003; Courville et al.,
2006; Yin and Knowlton, 2006).

More generally, these results strongly suggest that reward cod-
ing in dACC is not of a labeled line type, but is highly context-
dependent (Adrian and Matthews, 1927; Barlow, 1972). This idea
is consistent with the notion that dACC is positioned late in the
sequence of processes that serves to convert sensory information
to motor plans. If the goal of the brain is to use information
arriving from the environment to make adaptive decisions, then
one would expect neurons positioned late in the processing
stream to represent decision variables, like whether a switch is
needed, but not to represent constituent information relating to
that decision—such as probability and reward size. Thus, we con-
jecture that the overlap in neural responses for unexpected large
rewards and expected small rewards (Fig. 4) does not pose a
decoding problem, because the only information that needs to be
decoded is the need to alter behavior—which is matched in the
two conditions.

Although we find here that firing rates are, on average, nega-
tively correlated with reward value, we previously reported that
dACC responses were positively correlated with reward value—
both experienced and observed—in a different task (Hayden et
al., 2009). Because this study and the previous one were per-
formed on the same two animals using the same grid positions
within a 6-month period, we believe this difference reflects task
demands rather than nonoverlapping sets of neurons. Although
there are many differences between the risky choice task used in
this study and the fictive learning task used in the previous study,
one difference looms largest. In the present study, strategic ad-
justments in behavior were promoted by both small rewards and
by surprising ones (Fig. 2); in the prior study, strategic adjust-
ments were promoted by large rewards, both fictive and experi-
enced. Because the two tasks are quite different, we are necessarily
defining strategic adjustments somewhat differently in the two
tasks, so the comparison is imperfect. If the comparison can still
be made, however, then it appears that firing rates in dACC vary
more closely with likelihood of behavioral adjustment than with
any specific aspect of reward per se. Instead, these two datasets,
together, are consistent with our hypothesis that dACC neurons
do not universally transmit a labeled line representation of re-
ward size, or RPE, or even unsigned RPE. Instead, dACC neurons
seem to carry a signal specifying the need to adjust behavior adap-
tively. Consequently, we conjecture that the role of dACC in
learning is distinct from that of more central reward areas, such as
the dopamine system, and that it occupies a later, more output-
centric stage in the network that transforms values into actions.

The results we present here are consistent with a growing body
of literature linking ACC in general and dACC in particular with
associating actions and their reward outcomes (Procyk et al.,
2000; Shidara and Richmond, 2002; Williams et al., 2004; Amiez
et al., 2005; Sallet et al., 2007; Seo and Lee, 2007; Kennerley et al.,
2009; Quilodran et al., 2008; Kennerley and Wallis, 2009). Neu-
ronal activity in dACC varies with expected value (Amiez et al.,
2005; Seo and Lee, 2007; Kennerley and Wallis, 2009), is normal-
ized to global reward context (Sallet et al., 2007), and provides
signals useful for learning (Procyk et al., 2000; Matsumoto et al.,
2007) and behavioral adjustments (Shima and Tanji, 1998; Ken-
nerley et al., 2006; Quilodran et al., 2008). Our results go beyond
these earlier ones by parametrically manipulating expectation so
as to fully characterize its effects on neuronal activity.

The dACC is unlikely to be the only brain area that signals
outcome surprisingness. Our findings are consistent with a
broader picture of the amygdala—which is directly connected to
the ACC (Morecraft and Van Hoesen, 1993; Paus, 2001)—play-
ing a fundamental role in the attentional component of learning

Figure 6. Conflict does not explain firing rate modulations of dACC neurons in this task. Bar
histogram indicating average size of modulation of firing rates associated with conflict in dACC
neurons. Horizontal axis indicates difference in firing rate during fixation epoch of task on
high-conflict trials (in which targets were nearly indistinguishable and preferences were close
to neutral) and low-conflict trials (in which targets were readily distinguishable). Very few
neurons exhibited any significant modulation, and those that did (black bars) had greater
activation on low-conflict trials (left side of graph). signif, Significant; n.s., not significant.
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(Holland and Gallagher, 1999, 2006; Holland et al., 2000; Mc-
Gaugh, 2004; Belova et al., 2007). Similar motivational salience
signals have been observed in the basal forebrain, a major target
of the amygdala (Lin and Nicolelis, 2008). Norepinephrine (NE)
neurons also signal unexpected and attentionally salient events
(Aston-Jones et al., 1986, 1994, 1997; Aston-Jones and Cohen,
2005). NE neurons project strongly to the ACC and to the poste-
rior cingulate cortex, a major input to ACC. Thus, ACC may
convolve reward signals derived from dopamine neurons with
attentional signals emanating from the locus ceruleus and/or the
amygdala. Notably, the area of our recordings, area 24, does not,
to our knowledge, connect directly to the central amygdala. This
suggests that the linkage between our recordings and results
found in central amygdala do not reflect direct, monosynaptic
connections.

The present results complement those from a previous study
from our laboratory investigating firing rates of neurons in the
posterior cingulate cortex (CGp) (Hayden et al., 2008). In that
study, we found that neuronal activity was larger for small
rewards than for large rewards obtained from simple 50/50
gambles, and that these responses were influenced by rewards
obtained from the most recent few trials. Whereas the effects we
observed in dACC lasted only 500 ms after the reward was given,
the effects we observed in CGp persisted for several seconds and
extended across trials. These results suggest that dACC and CGp
may play complementary roles in learning, with dACC generat-
ing an immediate surprise signal, and CGp maintaining that in-
formation in a working memory buffer.

One limitation of the present study is that the task we use
here was not designed to test learning, and, indeed, punishes
learning on risky trials. Any learning therefore occurs despite
its associated costliness. Consequently, it is unsurprising that
the learning effects— both behavioral and neural—we ob-
served were weak. In any case, it will be important to confirm
these ideas in the context of a task that more strongly drives
learning. Indeed, a critical question is whether surprise signals
will be observed in tasks where learning itself is rewarded or
whether such unsigned reward prediction error signals in ACC
are specific to probabilistic choice tasks. Another limitation is
that we cannot determine whether the surprisingness of an
outcome immediately influenced the neural response to the
cue that had predicted that outcome because, in our task, cues
disappeared before the outcome was given and were not im-
mediately repeated.

Notably, our study failed to find any evidence that response
conflict drives modulation of neuronal activity in dACC. Al-
though conflict signals are robustly observed in neuroimaging
studies, three previous electrophysiological studies of single
neuron activity in dACC showed no effect of conflict (Ito et al.,
2003; Nakamura et al., 2005; Amiez et al., 2006; for a broader
discussion of some of the discrepancies in the ACC conflict
literature, see Rushworth et al., 2005). We note that the form
of conflict analyzed in our study is closely related to selection
difficulty, and may be different from response conflict associ-
ated with multiple possible actions assessed in previous stud-
ies (Ito et al., 2003; Nakamura et al., 2005; Amiez et al., 2006).
If so, our data contribute to and extend previous results show-
ing that dACC neurons do not signal conflict or task difficulty;
at least, not in the monkey. These results suggest that the
conflict signals observed in human ACC may come from dif-
ferent anatomical regions (Stuphorn et al., 2000; Ito et al.,
2003; Rushworth et al., 2005), may be a consequence of differ-
ences between BOLD signal and single unit activity (Naka-

mura et al., 2005), or may reflect species differences in
information processing in ACC between monkeys and
humans.

The surprise signal we observed is consistent with one pos-
tulated in so-called attentional theories of learning (Mackin-
tosh, 1975; Hall and Pearce, 1979; Pearce and Hall, 1980;
Courville et al., 2006). The term “attentional” is apt—these
theories posit that surprising rewards, whatever their valence,
recruit neural resources, and that attention itself promotes
learning. The idea that dACC generates an attention-related sig-
nal is consistent with a large literature showing a role for ACC in
attention and cognitive control (Mesulam, 1981, 1999; Posner
and Petersen, 1990; Badgaiyan and Posner, 1998; Davis et al.,
2000; Mesulam et al., 2001; Weissman et al., 2003; Kondo et al.,
2004). Indeed, it often seems as if the attentional and reward-
centric accounts of ACC function are working in parallel, with
little or no overlap. The present results therefore point to a pos-
sible linkage between these otherwise disjoint literatures.
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