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Waking and sleep data in adults show high heritability and trait-like characteristics in EEG spectra. This phenomenon has not been
examined in children and adolescents where brain development influences the EEG. The present study examines whether a trait-like sleep
EEG pattern is detectable across adolescent development. Two consecutive nights of standard sleep recordings were performed in 19
9-10-year-old children and 26 15-16-year-old teens, and were repeated 1.5-3 years later. EEG spectra averaged across the night for
non-rapid eye movement and rapid eye movement sleep separately were classified using hierarchical cluster analysis, which showed that
all 4 nights of a participant clustered together for a majority of participants. Intraclass correlation coefficients were also very high (>0.7)
across nights separated by several years, indicating a trait-like feature of the sleep EEG. In summary, our results, using two measures of
stability, indicate that a “trait-like” aspect can be detected in the sleep EEG across adolescent development despite considerable neuro-
developmental changes. This finding indicates that the brain oscillators responsible for generating the sleep EEG signal remain relatively

stable across adolescent development.

Introduction

The EEG power spectrum has been identified as being among the
most heritable traits in humans, and adding to the utility and
validity of this measure is that it is stable over time in adults. A
number of authors have reported test-retest reliability ranging
from 0.84 to 0.95 in both absolute and relative waking EEG power
for adults between sessions separated by several months up to ~3
years (Gasser et al., 1985; Stassen et al., 1987; Pollock et al., 1991;
Salinsky et al., 1991; Kondacs and Szab¢, 1999; Poulos et al., 2002;
Nipflin et al., 2007). The sleep EEGs of adults also show very high
levels of heritability (Ambrosius et al., 2008; De Gennaro et al.,
2008), stability within an individual across time, and interindi-
vidual variability (Feinberg et al., 1980; De Gennaro et al., 2005;
Buckelmiiller et al., 2006; Tucker et al., 2007). Buckelmiiller et al.
(2006), for example, used hierarchical cluster analysis to identify
individuals across 4 nights separated by as long as several weeks,
based on the sleep EEG spectra. The implications of this finding
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extend beyond the stability of an individual’s spectra over time,
indicating as well that an individual’s spectrum is discernable
from that of others. This finding implies that the brain oscillators
responsible for generating the power spectrum are distinct across
individuals and stable over recordings separated by as long as
several weeks.

The stability of waking and sleeping EEG in adults may
reflect underlying neuroanatomy and neural circuitry, which
are relatively stable in healthy middle-aged adults. During ad-
olescence, however, the brain undergoes major remodeling,
and the EEG signals reflect these developmental changes (Bu-
chmann etal., 2011). For example, a significant decline is seen
in the waking and sleep EEG amplitude starting in late child-
hood/early adolescence (Campbell and Feinberg, 2009; Kurth
et al., 2010a,b; Tarokh and Carskadon, 2010). This develop-
mental decline in amplitude parallels the extensive synaptic
pruning characteristic of the maturing human adolescent
(Huttenlocher, 1979; Feinberg, 1982).

The nature and extent of cortical changes during adolescence
call into question whether the sleeping EEG sustains consistent
morphological characteristics and remains stable across adoles-
cent development. If the sleep EEG represents a trait-like feature,
as has previously been suggested from work with adults (Buckel-
miiller etal., 2006), we would expect the shape of the spectrum to
remain stable over this period even in the face of the amplitude
decline. On the other hand, if the cortical changes during adoles-
cence underlie fundamental rewiring of the brain structures re-
sponsible for generating the sleep EEG, we would expect that the
morphology of the sleep EEG spectrum would not be stable
across adolescent development. We use two approaches—intra-
class correlation coefficients (ICCs) and hierarchical cluster anal-
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Table 1. Individual participant data
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Children Teens
L\lllzfxring I<‘:2II|EJ'\5/Lering Spindle - Spinde ?IEEthgring Icallfj'\slltering Spindle  Spinde
Age1 Age2 peak 1 peak 2 Age1  Age2 peak 1 peak 2
Sex PH (years) (years) Qa 02 @ 02 (Ho) (Hz) Sex PH (years)  (years) @3 02 @ 02 (H) (Hz)
1 F - 103 12.9 N N N X 12.2 12.8 F - 166 19.2 N X X X 133 13.8
2 M — 9.6 12 N Y X X 1.7 124 F - 166 19.2 Y Y Y Y 133 134
3M - 102 123 N X X X 1.6 12.6 F - 151 17.6 N N Y Y 13.1 13.6
4 M - 107 133 N N X X 12.5 13 F - 152 17.7 Y N N X 12.7 12.9
5 F — 9.4 1.9 Y Y Y X 1.9 1.9 M - 153 17.9 Y Y N X 129 129
6 M - 105 12.6 Y Y Y N 12.8 13 F — 154 18.8 N N Y X 12.9 13.9
7 M - 9.9 12 Y Y Y N 1.3 11 F — 154 17.5 N Y X Y 133 14.1
8 M — 9.9 12 Y Y Y Y 121 12.2 F - 156 17.7 Y Y N Y 133 133
9 M - 109 134 X Y 129 134 M - 156 18.1 Y Y X Y 13.1 13
07 M - 9.4 1n3 Y Y Y N 121 12 F - 156 18.1 N Y X N 12.6 12.9
mn F + 9.2 12,6 N X N N 12.8 134 F - 158 18.4 Y Y X X 134 134
2 M + 9.7 12.2 Y Y Y Y 1.6 1.9 M - 159 18 Y Y Y X n 12
13 F + 11 13.9 X X X Y 12.7 12.9 F - 162 18.9 X N X X 121 122
14 F + 102 12.8 N Y N Y 12.6 13 F - 162 18.8 X N X X 13.6 13
15 M + 102 1.2 Y Y Y Y 12.6 12.5 F - 164 19.1 N N Y X 13.6 14.2
16 F + 102 123 Y Y X Y 13.2 13.2 F + 152 17.6 N N Y Y 124 12.8
17 M + N 13.5 Y Y X X 124 1.6 M + 15 17.5 Y Y N N 124 13
18 M + 102 12.7 N X Y Y 12.6 13 F + 153 17.6 Y Y Y Y 14 14.1
9 M + 9.2 1.7 N N Y N 1.3 1.9 M + 153 17.8 Y Y N N 13.1 13.2
20 F + 16 17.9 Y Y Y Y 124 N
21 F + 156 17.6 Y N Y X 13.8 14
22 M + 159 17.7 Y Y X X 14 13.7
23 M + 156 16.6 Y Y N X 12.8 13.1
24 M + 16 18 Y Y N Y 12.6 12.8
25 F + 157 18.2 Y Y N N 123 12.8
26 M + 152 17.7 Y X N X 129 134
I 10.1 12.5 123 12.5 15.7 18.0 13.0 13.1
4 0.58 0.73 0.56 0.65 0.45 0.63 0.70 0.79

M, Male, F, female; Age 1, age atinitial assessment; Age 2, age at follow-up assessment; PH: —, Negative for parental history of alcohol abuse/dependence, -+, positive for parental history of alcohol abuse/dependence; X, consecutive nights
did not cluster; Y, clustering successful across 4 nights; N, clustering unsuccessful across 4 nights; 1, mean; o, standard deviation; Spindle peak 1, frequency of the peak in the sigma band on adaptation and baseline nights averaged together
for the initial session; Spindle peak 2, frequency of the peak in the sigma band on adaptation and baseline nights averaged together for the follow-up session.

ysis—to examine whether the sleep EEG is stable across early and
mid-adolescent development.

Materials and Methods

Participants were recruited using flyers, mailings to previous partici-
pants, and radio and newspaper advertisements. Individuals with a cur-
rent or chronic illness, evidence of learning disability, sleep disorder, or
personal or family history of psychopathology were excluded from the
study. Additional exclusion criteria included individuals with a pattern of
insufficient sleep or excessive daytime sleepiness, indicated by reports of
napping two or more times per week. Participants were medication free
for all study nights. Parental and participant consent were provided using
criteria of the Lifespan Institutional Review Board; families were com-
pensated for their time.

Data from two longitudinal cohorts are presented here. Our sample
included children and teens with a parental history of alcohol abuse
(PH+) and without such parental history (PH—). Parental alcohol his-
tory was assessed using Diagnostic and Statistical Manual of Mental Dis-
orders, fourth edition, criteria applied to structured interviews and is
reported in Table 1. We performed a x test to assess whether the rate of
successful clustering was different for PH+ and PH— individuals (2 X 2
contingency table with clustering and parental history as factors). We
found no significant differences between PH+ and PH— participants for
either cohort (children and teens) or in any sleep state [non-rapid eye
movement (NREM) and REM sleep] in the Yates corrected y? values
(Yates, 1934). Because we did not find significant differences between the
two groups on our independent variable (clustering), we include PH+
and PH— individuals in the same analysis. The first cohort, the children,
included 19 participants who were 9 or 10 years old at the time of the
initial recording session and 11-13 years old at the time of the follow-up

recording (Table 1). Tanner stage (Tanner, 1962), a measure of external
primary and secondary sex characteristics, was determined during a brief
physical examination at each assessment. Tanner stages range from Tan-
ner 1, characterized by child-like appearance, to Tanner 5, indicating
attainment of adult-like appearance. All children, with the exception of
one female who was Tanner 4, were either Tanner 1 or 2 at the time of the
initial recording session and had advanced at least one Tanner stage at the
follow-up session. The second cohort, teens, included 26 teens, ages 15
and 16 years, who were followed up 2-3 years later (Table 1). All partic-
ipants in the teen group were postpubertal (Tanner stage 5).

Within cohort, the protocol for recording sessions stayed the same,
including that participants spent at least 1 week on a stabilization sleep
schedule with fixed bedtimes and rise times before sleeping in the
laboratory. Participants in the children’s cohort had a schedule of at
least 10 h time in bed (TIB), while those in the teen cohort were
allotted at least 9 h TIB (Table 2). Compliance with the sleep sched-
ules was confirmed using sleep diaries, continuous wrist actigraphy,
and daily phone calls to the laboratory’s time-stamped answering
machine at rise times and bedtimes.

Participants spent 2 consecutive nights—adaptation and baseline—in
the laboratory for each assessment (initial and follow-up) with bedtimes
and rise times fixed by the at-home schedule. The prestudy sleep sched-
ules provided the opportunity for participants to be well slept on the
study nights. Participants slept in individual darkened bedrooms while
polysomnography (PSG) was recorded; the first recording nights in-
cluded screening for sleep-related breathing abnormalities and periodic
limb movements using oral/nasal thermocouples and leg electromyo-
gram (EMG), respectively. No sleep disorders were detected.

Right and left electro-oculogram, electromyogram (EMG; mentalis,
submentalis), and electrocardiogram along with a central (C3/A2) and
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Table 2. Sleep stage variables

Children Teens
Sleep variable (min) Initial Follow-up  Pvalue Initial Follow-up  pvalue
Stage 1 35(15)  35(15) NS 33(9) 43(14)  <<0.001
Stage 2 178(62) 229(34)  <<0.001 215(41) 254(29)  <<0.001
SWS 236 (64) 180 (47)  <<0.001 162 (42) 112(34)  <0.001
REM 103 (22) 108(22) NS 96(20) 101(22) NS.
WASO 31(30)  25(30) NS 19(18) 17(18)  NS.
Sleep latency 12(100  14(13) NS 8(5) 9(6) N.S.
Total sleep time 552(33) 552(30) N.S. 506 (4)  511(19)  NS.
Total recording time 600 (15) 599 (4) N.S 543 (10) 540 (7) N.S

Values are given as means (SDs) in minutes for stage 1, stage 2, slow-wave sleep (SWS) and REM sleep. WASO,
Minutes of waking after sleep onset, measured from first occurrence of 1.5 min of stage 1 or stage 2 to final
awakening; Sleep latency, time in minutes to the first 1.5 consecutive minutes of stage 1 or first stage 2; REM sleep
latency, time (in minutes) to the first REM sleep episode after sleep onset; Total sleep time, total time in minutes
spent in NREM and REM sleep; Total recording time, time from lights off to lights on. Statistical significance was
assessed using a paired ¢ test (p < 0.05).
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<16 Hz, which limits our ability to discern the contribution of higher
frequencies to clustering and ICC values.

Sleep data were visually scored in 30 s epochs according to the criteria
of Rechtschaffen and Kales (1968). Inter-rater and intrarater reliability
were at least 86%. Epochs with artifacts were rejected using a semiauto-
mated procedure based on power in the 0.6—4.6 and 20—40 Hz bands,
and confirmed by visual inspection (Buckelmiiller et al., 2006). Power
spectra were calculated for each 30 s epoch (Hanning window, average of
six 5 s epochs) using MATLAB (MathWorks). The frequency resolution
was 0.2 Hz, and frequencies between 0.6 and 16 Hz were included in the
analysis. All-night power spectra were calculated separately for NREM
and REM sleep for the left central (C3/A2) and right occipital (O2/A1)
derivations.

As outlined in the Introduction, sleep EEG spectral power declines
during adolescent development in most frequency bands for both REM
and NREM sleep (Jenni and Carskadon, 2004; Tarokh and Carskadon,
2010). This change is demonstrated in Figure 1, which shows the decline
in sleep EEG amplitude in exemplary early and
late adolescents for stages 2 and 4 NREM sleep,
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and REM sleep. To quantify the decline from
the initial to follow-up sessions, we integrated
sleep EEG power between 0.6 and 16 Hz, aver-
aged across adaptation and baseline nights,
calculated the decline in power within a partic-
ipant, and then averaged across participants. In
the children’s cohort for NREM sleep, we saw a
40% (SD = 28%) decline in power for C3/A2
and a48% (SD = 31%) decline for O2/A1 from
the initial to the follow-up assessment. Simi-
larly, power for REM sleep declined in the chil-
dren’s cohort by 47% (SD = 23%) for C3/A2,
and by 51% (SD = 25%) for O2/A1. In the teen
cohort, power declined between assessments
by 55% (SD = 17%) in C3/A2 and 59% (SD =
27%) in O2/Al for NREM sleep, and by 49%
(SD = 18%) in C3/A2 and 56% (SD = 30%) in
02/A1 for REM sleep.

Because we were interested in changes to
the spectrum morphology rather than gross
changes in the signal amplitude, we normalized
each individual’s spectra by dividing the power
at each frequency bin by the total power from
0.6 to 16 Hz separately for each night and
NREM and REM sleep. We were concerned

Figure1.

an occipital (O2/A1) EEG derivation placed according to the interna-
tional 10-20 system (Jasper, 1958) were recorded on adaptation and
baseline nights. Due to equipment upgrades, the recordings were per-
formed on two separate systems. In 39 participants (15 children and 24
teens), the initial recordings were performed using the Albert Grass Her-
itage System (Astromed) with GAMMA software. The EEG signals were
digitized on-line (12 bit AD converter; Butterworth filter, —12 dB/oc-
tave; low-pass filter, —6 dB at 35 Hz; time constant 1.0 s) with a sampling
rate of either 100 or 128 Hz. Six participants’ (4 children and 2 teens)
initial recordings and all participants’ follow-up recordings were per-
formed on the TWin system (Astromed) using TWin AS40 bedside am-
plifiers (high-pass EEG filter, 0.3 Hz; low-pass filter, 35 Hz). These signals
were collected digitally (storage resolution, 400 Hz) and saved as EDF
files. Impedance values were =10 k(). A calibration signal was input to
both systems simultaneously to assess comparability between the two
systems. Signals from the systems were in good agreement in the fre-
quency range of 0.3-16 Hz; however, small discrepancies emerged at
higher frequencies. Therefore, the analysis was restricted to frequencies

Sample EEGsignalsin the time domain. Thirty-second EEG tracings in three sleep states: stage 2 and stage 4 NREM and
REM sleep. The top row is taken from a male in the children’s cohort who was 10.2 years of age at the time of the initial recording
and 12.3 years of age at follow-up. The bottom row shows the EEG of a female in the teen cohort who was 15.7 years of age at the
initial recording and 18.2 years of age at the follow-up session. The amplitude of the signal decreases with increasing age.

that the calculation of the EEG spectrum is af-
fected by the number of epochs used to com-
pute the average spectra and wished to ensure
that this phenomenon did not bias our estima-
tion of the spectra. Therefore, the number of
epochs sampled for each night was determined
by the lowest number of artifact-free NREM or
REM (computed separately) epochs for each
participant. We used two approaches that have been used previously in
the sleep EEG literature— hierarchical cluster analysis and ICC—to ex-
amine sleep EEG stability (Buckelmiiller et al., 2006; Tucker et al., 2007).

Cluster analysis. Stability of the spectra across recording sessions was
examined with hierarchical cluster analysis based on cosine distance us-
ing MATLAB functions PDIST and LINKAGE. Cosine distance is de-
fined as 1 minus the inner or “dot” product between the unit-length
spectral vectors normalized by the length of the vectors. The cluster
analysis for each night was performed on 77 dimensional vectors based
on log-transformed normalized EEG power spectra (0.6—16 Hzin 0.2 Hz
steps). The cluster analysis was performed for each cohort in two stages.
As a first step, cluster analyses were performed separately within the
initial and follow-up sessions using only the spectra from consecutive
adaptation and baseline nights. This procedure was performed for
NREM sleep and REM sleep to confirm successful clustering in the ab-
sence of developmental changes. Vectors were grouped according to the
distance between them and represented visually using a dendrogram
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Figure 2.

Sample dendrogram. Dendrogram of 4 nights for REM sleep in the children’s cohort. This analysis included data from the 13 participants whose consecutive nights clustered at both

sessions. In this plot, participant number is on the x-axis, and cosine distance on the y-axis. Clusters highlighted in blue depict those participants whose 4 nights cluster together, while green depicts
participants whose 4 nights do not cluster together. Note that even in those whom all 4 nights do not cluster together, consecutive nights are clustered.

(Fig. 2). A dendrogram is composed of upside-down U-shaped lines,
where the height of the U represents the distance between the connected
objects.

Next, participants whose consecutive nights clustered correctly at both
assessments were included in a cluster analysis with data from all 4 nights.
No a priori information was given to the clustering algorithm regarding
the number or the size of clusters for any of the analyses.

ICC analysis. To obtain another measure of sleep EEG stability, ICCs were
calculated at each frequency bin. ICCs were defined as the error-free
between-subject variance divided by the sum of the error-free between- and
within-subject variances. The unbiased estimator of the between-subject
variance is defined as the between-subject mean square minus the within-
subject mean square divided by the number of observations per participants
(in this case, 4 participants) (Fleiss, 1986). Thus, large ICC values (approach-
ing 1.0) arise when the between-subject variance is much larger than the
within-subject variance. For each cohort, we performed the ICC analysis in
the following two ways: (1) using data from consecutive nights at each ses-
sion (i.e., initial and follow-up sessions); and (2) using data from all four
sessions.

We performed a bootstrap analysis to assess the statistical significance
of the observed ICCs. The principle underlying the bootstrap is to gen-
erate a random distribution of values by reshuffling (with replacement)
the observed pool of data. For the analysis of 4 nights, our pool of data
consisted of all 4 nights from all participants within a single cohort. Thus,
at each frequency bin our pool of data consisted of 76 power values (19
children, 4 nights/child) for the children’s cohort and 96 power values
(24 teens, 4 nights/teen) for the teen cohort. For each cohort and fre-
quency, we reshuffled the pool of data into a new matrix of n subjects (19
for the children and 26 for the teens) by 4 nights. We then calculated ICCs
on the new and randomly generated dataset. This procedure was re-
peated 1000 times, resulting in a distribution of randomly generated
ICCs. We take a conservative approach and assume that in biological data
ICC values are typically >0; therefore we use the absolute value of the
bootstrap distribution. The observed ICC value was then compared with
the absolute value of the bootstrap distribution, and when the observed
value was greater than the upper first percentile, it was considered statis-
tically significant. The same procedure was applied to the analysis of
consecutive nights, with the exception that instead of 4 nights, the above
analysis was performed on the 2 consecutive nights at each assessment.

Comparison of cluster analysis and ICCs. Cluster analysis and ICCs both
measure the stability of a variable, but each uses a different approach and
gives somewhat different information. The ICCs takes into account only
information at a given frequency bin and can reveal which features of the
spectrum are more “stable.” On the other hand, cluster analysis takes into
account the shape of the entire spectrum and therefore is based on more

information, providing enhanced validity. Cluster analysis is an objective
mathematical measure of similarity; however, it does not provide a tra-
ditional p value, as is found in ICC analysis. We highlight a key aspect of
our approach to the hierarchical cluster analysis: to wit, the number of
clusters formed was not determined a priori but was derived intrinsically
from the distances of the spectra from one another. Therefore, clusters
that included either all 4 nights of a participant or 2 consecutive nights
from a participant are noteworthy, as they were not forced through the
analytic strategy.

Results

Sleep stage variables

Four participants from the teen cohort were excluded from the
sleep stage analysis: three due to technical difficulties on one
recording night, and one due to an extended (114 min) bout of
wakefulness in the middle of 1 recording night. On the other
hand, these participants were included in the 4 night cluster anal-
ysis because they met our criteria of successful clustering on con-
secutive nights at both assessments. The distribution of sleep
stages changed between assessments for both cohorts, including
significant declines in duration of slow-wave sleep (stages 3 and 4
NREM sleep) and increases in stage 2 sleep duration (Table 2). In
addition, we found a significant increase in the number of min-
utes of stage 1 sleep across assessments in the teen cohort.

C3/A2 clustering: consecutive nights

Table 1 shows individual clustering data for NREM and REM
sleep for all participants (participants whose consecutive nights
did not cluster together are denoted with an “X” in the clustering
column). NREM sleep clustering of adaptation and baseline
nights at the initial session in the children was successful for 17 of
19 participants; clustering of consecutive nights for NREM sleep
in children was 100% successful at the final session. With regard
to clustering using REM sleep EEG spectra, 14 of 19 participants
clustered at the initial session, while 15 of 19 clustered in the
follow-up session.

For teens, 25 of 26 participants’ consecutive nights in the ini-
tial session and at the follow-up clustered for NREM sleep EEG
spectra, although the participants whose nights did not cluster
differed from initial to follow-up (Table 1). For REM sleep EEG
spectra, 7 of 26 participants clustered incorrectly at the initial
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Figure3. Correct clustering in children and teens. Normalized all-night NREM sleep spectra
of two representative participants in each cohort whose 4 nights clustered correctly. All 4 nights
from a participant are shown in one color, and spectra from different individuals are shown in
different colors. Children are depicted on the left (participant numbers: S10 and $16), and teens
on the right (participant numbers: S8 and S11). Power density is plotted on a logarithmic scale.

session, and all but 3 participants were correctly clustered at the
follow-up session.

02/A1 clustering: consecutive nights

For the children’s cohort, one participant (participant 9) was
excluded from the analysis of O2/A1 due to excessive artifacts at
this derivation, leaving 18 participants. For NREM sleep in the
children’s cohort, two participants did not cluster on consecutive
nights at the initial session, while two others did not cluster at the
follow-up session (Table 1). Looking at REM sleep, one partici-
pant did not cluster at either assessment. In addition, five partic-
ipants’ consecutive nights did not cluster at the initial session,
and one participant did not cluster at the follow-up session for
REM sleep. Thus, for the children’s cohort, 14 participants were
included in the analysis of NREM sleep, and 12 were included in
the analysis of REM sleep for derivation O2/A1.

For the teen cohort, all participants’ consecutive nights clus-
tered at the initial session and only two did not cluster at the
follow-up session for NREM sleep. With regard to REM sleep,
three participants did not cluster at the initial or follow-up ses-
sion. In addition, five participants did not cluster at either the
initial or follow-up sessions; however, the participants were dif-
ferent at each session. Therefore, a total of 24 participants were
included in the 4 night cluster analysis for NREM sleep, while
only 13 were included in the analysis of REM sleep.

C3/A2 clustering: across development

We then repeated the cluster analysis for each cohort with spec-
tral EEG distance of all 4 nights from participants whose consec-
utive nights were clustered together. Thus, the children’s NREM
sleep analysis at derivation C3/A2 included 17 participants and 13
participants for REM sleep; for teens, 24 were included in the
NREM sleep analysis, and 18 in the REM sleep analysis. All-night
NREM sleep EEG spectra from two representative children and
two representative teens whose 4 nights cluster together are
shown in Figure 3, while all-night NREM sleep EEG spectra from
one child and one teen whose 4 nights do not cluster are depicted
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Figure 4. A child and a teen who do not cluster. All-night NREM sleep spectra of 4 nights
from one child (participant number S1; dashed lines) and one teen (participant number S1; solid
lines) whose consecutive nights, but not all 4 nights, cluster. Note that the spectra on consecu-
tive nights for the child overlap for most frequencies. Power density is plotted on a logarithmic
scale.

in Figure 4. For the children’s cohort, all 4 nights of nine partic-
ipants clustered together for NREM sleep, a clustering rate of
53% (depicted in supplemental Fig. S1, available at www.
jneurosci.org as supplemental material). Seventeen participants
in the teen cohort clustered correctly, a success rate for NREM
sleep EEG spectra of 71% (dendrogram depicting this finding can
be found in supplemental Fig. S2, available at www.jneurosci.org
as supplemental material).

For REM sleep EEG, all 4 nights were correctly clustered in 10
of 13 children included in the analysis, resulting in a success rate
of ~77%. This finding is shown using a dendrogram in Figure 2,
where participants whose 4 nights cluster together are illustrated
in blue, while those who do not are in green. On the other hand,
only 9 of the 17 teens included in the analysis clustered correctly
for REM sleep spectra; a success rate of 53% (supplemental Fig.
S3, available at www.jneurosci.org as supplemental material).

02/A1 clustering: across development

For the children’s cohort, 11 of 14 participants clustered across all
4 nights, yielding a successful clustering rate of 78% for NREM
sleep. Of the 24 participants included in the analysis of NREM
sleep in the teen cohort, 16 clustered successfully, yielding a suc-
cess rate of 67%. For REM sleep, the success rate in children was
7 of 12 participants or 58%, while in teens it was 9 of 13 partici-
pants or 69%.

C3/A2 versus O2/A1 clustering: across development

We performed a x? test to assess whether the rate of successful
clustering differed between C3/A2 and O2/A1. The factors in our
contingency table were derivation (C3/A2 and O2/A1) and clus-
tering (yes or no), and a was set to 0.05. We found no statistically
significant differences in the unadjusted x> value between the
derivations for the children’s cohort during NREM (x*(1) =
2.20) or REM (x*(1) = 0.99) sleep. This was also true for the teen
cohort for NREM (x*(1) = 0.097) and REM (x*(1) = 1.15) sleep.
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Intraclass correlation coefficients
Landis and Koch (1977) have categorized
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frequency. As shown in Figure 5, ICC values Figure5.  ICCs for NREM sleep in children and teens at derivation (3/A2. ICCvalues across frequencies for consecutive nights at

appear to be slightly higher for consecutive
nights than for the analysis across all four
recordings (2 pairs of nights separated by
several years). ICC values were significant,
however, even across all four recordings. With regard to O2/A1 dur-
ing NREM sleep, all ICC values were statistically significant for both
cohorts and are depicted in supplemental Figure 4 (available at www.
jneurosci.org as supplemental material).

The results for REM sleep were similar to those obtained for
NREM sleep, with the majority of ICC values reaching statistical
significance across cohorts, derivations, and frequencies for the
consecutive night analysis and the analysis of all 4 nights. These
results are depicted in supplemental Figures 5 and 6 (available at
www.jneurosci.org as supplemental material).

Discussion

In this study, we used two measures of stability, ICCs and cluster
analysis, to assess whether trait-like characteristics are preserved
over the span of several years during adolescent development.
Adolescence is a time of significant brain remodeling with de-
clines in cortical gray matter and EEG amplitude (Buchmann et
al., 2011) concurrent with increases in white matter and EEG
coherence (Tarokh et al., 2010). Using two EEG derivations,
C3/A2 and O2/A1, we found evidence that, despite the many
cortical changes, the morphology of the sleep EEG spectrum is
largely preserved across adolescent development.

ICCs

A recent study examined ICC values in children (ages 9—12 years)
using two sleep EEG recordings separated by 1 or 2 weeks (Geiger
et al., 2011). They found that ICC values for NREM sleep (elec-
trode C3/A2) were between 0.72 and 0.96, dependent on fre-
quency. Similarly, we found very high ICC values on consecutive
nights (Fig. 5) and extend the findings of Geiger et al. (2011) by
showing that high ICC values are maintained during adolescent
development in recordings separated by several years. Moreover,
the ICC values we obtained are comparable to those found in
adults over a much shorter time span. For example, Tucker et al.
(2007) using eight all-night PSG recordings (some of which fol-
lowed sleep deprivation) distributed over 11 d in young adults,

the initial and follow-up sessions and across all 4 nights (top line on each plot). All values shown here were statistically significant.
The lower line on each plot is the average of the ahsolute value of 1000 bootstrapped values at each frequency.

estimated the ICC value in the delta band (0.75-4.5 Hz) for EEG
derivation C3 referenced against A1/A2 during NREM sleep as
0.78. We found somewhat higher ICC values at the same elec-
trode during NREM sleep in the delta band (0.6—4.6 Hz) for
children (ICC, 0.83) and teens (ICC, 0.89) across two pairs of
recordings separated by several years. Therefore, despite the
many neurodevelopmental changes that occur in adolescence
(e.g., synaptic pruning and increasing myelination), ICCs remain
as high as those observed in adults, indicating that a trait-like
characteristic is preserved across adolescence over the entire fre-
quency range examined.

C3/A2 versus O2/A1 clustering

We examined the stability of the sleep EEG spectra at two deriva-
tions to assess whether clustering differed between these cortical
regions. A growing literature suggests that the age-related decline
in EEG power observed during adolescence initiates in posterior
lobes and proceeds anteriorly, with the frontal lobes as the last
place this decline begins and ends (e.g., Kurth et al., 2010a). The
decline in EEG power is thought to be due to the pruning of
underutilized synapses that occurs during this developmental
period (Feinberg, 1982). Thus, the implication of the regional
differences in EEG power decline is that cortical pruning com-
mences in the occipital lobes and moves toward the front of the
head. Indeed, we observed a greater decline in power in the oc-
cipital (O2/A1) compared with the central (C3/A2) lead. These
regional differences might reflect the developmental trajectory of
behavioral and cognitive performance. For example, perfor-
mance on tasks of visual acuity and global motion detection
reaches adult levels by late childhood (Lewis and Maurer, 2005),
whereas improvements on tasks requiring frontal lobe function
(e.g., working memory) continue well into late adolescence/early
adulthood (Kwon et al., 2002). Despite these regional develop-
mental differences, we did not find a significant difference in the
incidence of clustering between the anterior (central) and poste-
rior (occipital) derivations in either cohort of sleep state. Our
results suggest that the morphology of the sleep EEG spectrum,
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and thus trait-like characteristics, are equally well preserved in
C3/A2 and O2/A1 across adolescent development.

Clustering

A discussion of the cluster analysis requires more nuanced assess-
ment than for the ICCs analysis. Successful clustering depended
on state (NREM and REM sleep) and cohort (children and teens).
We suggest that the clustering analysis may be more sensitive to
developmental changes. The most direct comparison with adults
to our dataset is that of Buckelmiiller et al. (2006), who per-
formed the same cluster analysis on the sleep EEG spectrum of
adults. Successful clustering of 4 nights in the Buckelmiiller et al.
(2006) study was achieved for both NREM and REM sleep in all
eight adult participants, whereas we found 53-77% clustering
depending on sleep state (NREM and REM sleep) and cohort
(children and teen). Although 53% does not seem high, the prob-
ability of all 4 nights of even a single participant clustering by
chance is near zero. Though the absence of successful clustering
in certain participants may indicate developmental changes in
the morphology of the EEG spectrum, we cannot rule out other
explanations. For one, clustering becomes more difficult with
larger sample sizes due to the increased likelihood that individual
participants’ spectra will have a similar morphology. Our project
had twice as many participants in the children’s cohort and three
times as many in the teen cohort compared with the Buckelmiil-
ler et al. (2006) study. Furthermore, unlike our study, the spectral
data in the Buckelmiiller et al. (2006) study were not normalized,
which provided a further dimension to aid in clustering. We
were, however, unable to use non-normalized data for our anal-
ysis because using non-normalized data would highlight the large
reduction in power between the assessments rather than mor-
phological differences between individuals. Finally, the longest
duration between recordings in the Buckelmiiller et al. (2006)
study was 28 d, compared with study recordings separated by
several years in the current study. On the other hand, we conclude
that the reduced amount of successful clustering over time in
certain individuals in our cohorts was due to developmental
changes reflected in the EEG spectrum, since we included in our
analyses only participants whose consecutive nights clustered.

The morphology of the NREM and REM sleep EEG spectra
are distinct in a number of ways that may also affect clustering.
For one, the presence of distinct spectral peaks can aid clustering.
All participants had a distinct spectral peak in the 11-16 Hz range
in the NREM sleep spectra. On the other hand, only a subset of
participants showed a spectral peak in their REM sleep spectra,
some for the theta and others for the alpha band. It is therefore
unsurprising that clustering was more successful for NREM than
REM sleep. Furthermore, REM sleep clustering across assess-
ments was more successful in the children’s cohort than the teen
cohort. Although we cannot be certain why this is so, we speculate
that it may be due in part to the presence of peaks in the REM
sleep EEG spectra in more children than teens. Another differ-
ence between the NREM and REM sleep EEG spectra is that
average NREM sleep spectra included a larger number of epochs
and therefore represents a more reliable measure.

One prominent subject-specific feature of the NREM sleep
EEG spectra is the morphology and frequency of the peak in the
spindle band. The frequency of this spectral peak increased be-
tween assessments in a majority of participants in both groups
(Table 1). Nunez (2000) has suggested that increased myelination
produces faster EEG frequencies. Therefore, the maturational in-
crease in spindle peak frequency may result from the myelination
of the cortex known to occur over this developmental period (for
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review, see Paus et al., 2001). We tested for a significant difference
between those who did and did not cluster with respect to the
change in the frequency of their spindle peak between assess-
ments [ANOVA with factors time (initial vs follow-up) and clus-
tering (successful vs unsuccessful)]. This analysis showed no
main effect of clustering or any interaction with time, indicating
that clustering depends only in part on the spindle peak. Another
factor, for example, is the slope of the power law decline ( f~ ) of
the spectra, which may change as a function of development and
impact clustering.

A larger percentage of participants clustered for NREM sleep
spectra in the teen cohort than the children’s cohort. One expla-
nation for this finding may be differential maturational changes
in neural plasticity (i.e., the brain’s ability to respond to new
experiences by modifying the structural and functional proper-
ties of synapses). Although plasticity is never lost, it is reduced
over the lifespan (Huttenlocher, 2002), leading us to expect
greater plasticity in the brains of children compared with teens.
Accordingly, if the neural circuitry responsible for generating the
EEG spectrum had undergone greater change in the children’s
cohort than the teen cohort, we would expect to see more devel-
opmental changes to the morphology of the EEG spectrum in the
children and, consequently, less clustering. Therefore, the differ-
ential changes in neural plasticity may underlie greater stability in
the NREM sleep spectrum of the older cohort (teens).

Plasticity may also account for successful clustering within a
cohort. Garlick (2002) has speculated that some brains are better
able to adapt their neural circuitry to environmental stimulation:
in other words, their brains are more plastic. This theory suggests
that over time in some individuals, due to interaction with the
environment, the structures responsible for generating the EEG
spectrum are altered in a manner significant enough to prevent
successful clustering. Garlick (2002) has postulated further that
brain plasticity has a genetic basis and is the foundation of intel-
lectual ability (e.g., those with more plastic brains are more able
to adapt to environmental demands). Support for this theory
comes from a structural magnetic resonance imaging study
showing that after the age of 11 years, adolescents of superior
intelligence [intelligence quotient (IQ) range, 121-149] showed a
greater decline in cortical thinning than adolescents of high (IQ
range, 109-120) or average (IQ range, 83-108) intelligence
(Shaw et al., 2006). If we accept the conjecture of Garlick (2002),
perhaps the individuals in both cohorts who do not cluster across
the span of several years have more plastic brains that are more
considerably modified through interaction with their environ-
ment. Thus, successful clustering may indicate less plasticity.

In summary, our data indicate that— despite many neurode-
velopmental changes—trait-like characteristics can be detected
in the sleep EEG across adolescent development. This finding
suggests that the brain oscillators responsible for generating the
sleep EEG signal remain relatively stable across this period. Bio-
logical endophenotypes are closer to gene function than behav-
ioral measures. We show that the sleep EEG shows a high degree
of interindividual variability, and intraindividual stability across
several years, and as such represents a reliable biological endo-
phenotype during adolescent development.
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