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A number of studies have characterized the changes in variability of brain signals with brain maturation from the perspective of
considering the human brain as a complex system. Specifically, it has been shown that complexity of brain signals increases in
development. On one hand, such an increase in complexity can be attributed to more specialized and differentiated brain regions
able to express a higher repertoire of mental microstates. On the other hand, it can be explained by increased integration between
widely distributed neuronal populations and establishment of new connections. The goal of this study was to see which of these two
mechanisms is dominant, accounting for the previously observed increase in signal complexity. Using information-theoretic tools
based on scalp-recorded EEG measurements, we examined the trade-off between local and distributed variability of brain signals
in infants and children separated into age groups of 1–2, 2– 8, 9 –24, and 24 – 66 months old. We found that developmental changes
were characterized by a decrease in the amount of information processed locally, with a peak in alpha frequency range. This effect
was accompanied by an increase in the variability of brain signals processed as a distributed network. Complementary analysis of
phase locking revealed an age-related pattern of increased synchronization in the lower part of the spectrum, up to the alpha
rhythms. At the same time, we observed the desynchronization effects associated with brain development in the higher beta to
lower gamma range.

Introduction
Many theoretical aspects of brain function focus on a controversy
between localized and distributed properties of the structure and
dynamics of the large-scale neuronal networks supporting a spe-
cific cognitive or behavioral task (Cohen and Tong, 2001). Under
this account, two complementary principles are established in the
literature: functional segregation and integration (Friston, 1998).
Evidence in support of functionally segregated organization at
different levels of the hierarchy is extensive. In contrast to mod-
ular deployment of local specialization, neuronal groups are in-
terconnected between each other at many levels to support the
emergence of coherent cognitive and behavioral states (Church-
land and Sejnowski, 1988; Jirsa and McIntosh, 2007).

A number of studies have characterized changes in variability
of brain signals with brain maturation (e.g., McIntosh et al., 2008;
Lippe et al., 2009). These studies focused on using the concept of
complexity, a broadly defined property characterizing a highly
variable system with many parts whose behaviors strongly de-
pend on the behavior of other parts (Deisboeck and Kresh, 2006).
Meyer-Lindenberg (1996) analyzed the changes in resting electro-
encephalography (EEG) measurements from children during
normal brain development. McIntosh et al. (2008) measured the
complexity of EEG signals from children and young adults per-

forming a face memory task, accounting for the multiple time-
scale inherent in the electrode measurements with the multiscale
entropy (Costa et al., 2002). They found that brain signal vari-
ability increased with age, negatively correlating with variability
in reaction time and positively correlating with accuracy. Similar
results were reported by Lippé et al. (2009), who showed that EEG
signal complexity increased from 1 month old to 5 years in re-
sponse to auditory and visual stimuli.

Certain fundamental properties of anatomical and functional
organization of a network can affect the interplay between func-
tional segregation and integration. This may include either lo-
cally processed information or redirecting information flows to
an assembly of neuronal populations distributed across many
different regions of the brain. In other words, there are basically
two mechanisms available to respond to an increased demand for
computational load. On one hand, the observed increase in com-
plexity of the brain signals can be attributed to more specialized
and differentiated individual brain regions, which are able to
demonstrate a bigger repertoire of neural dynamics. On the other
hand, a higher level of integration between neuronal populations
and establishment of new connections can account for the in-
creased brain complexity in development (Tononi et al., 1994).

This paper studied the interplay between segregation and in-
tegration of information in brain development in terms of func-
tional variability of neurosignals. Methodologically, this study
was an attempt to decompose the total variability of the signals
associated with specific neuronal populations into local entropy,
attributed to their individual dynamics, and distributed entropy,
which characterizes their behavior affiliated with dynamics of
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other populations. The specific objective was to test which of
these two mechanisms, if either, was the dominant factor contrib-
uting to an increased complexity of brain signals associated with
brain development. Data-driven information-theoretic tools
were applied to estimate mutual information between interacting
brain areas and remaining uncertainty of individual modules of
the network. As the EEG patterns in the study may reflect not only
induced responses, but also evoked components, we also ana-
lyzed the changes in phase locking based on the concept of inter-
trial coherence (Tass et al., 1998).

Materials and Methods
EEG data acquisition. Forty infants and children (n � 40, 13 females, 1 of
gender unregistered) of age 27 d to 5 years 5 months were involved in this
study. Data from five participants were excluded from the analysis be-
cause of excessive movements artifacts or failure in attending to both the
visual and auditory stimuli. Infants and children were separated into four
age groups: 1–2 months (n � 7, 3 females), 2– 8 months (n � 11, 4
females), 9 –24 months (n � 6, 3 females), and 24 – 66 months (n � 11, 3
females, 1 of gender unregistered). The data we analyzed were previously
used by Lippé et al. (2007, 2009).

EEG data were acquired using the 128-channel Electrical Geodesics
Incorporated system. Impedances were kept below 40 k�. EEG data were
digitized at 250 Hz sampling rate and passed through a 0.01–100 Hz
bandpass filter. During the recording, all electrodes were referenced to
the vertex but were re-referenced to an average reference for further
analysis. More details on the acquisition protocol have been given by
Lippé et al. (2007).

The study applied two type of stimuli: auditory and visual. The audi-
tory stimulus was a 50 ms broadband noise with the intensity of 70 dB,
presented in free-field binaurally in a soundproof room. The noise was
delivered with an Optimus a XTS 24 system located at a distance of 30 cm
from each of the subject’s ears. The visual stimulus was a black-and-white
checkerboard presented binocularly for 500 ms at a distance of 70 cm
from the subject’s eyes with a luminance of 40 cd/m 2. Each square of
the checkerboards delimited a visual angle of 2 � 2°, whereas the
checkerboards themselves subtended 38 � 38° of visual angle. The
E-Prime 2000 software (Psychology Software Tools) was used to gen-
erate all the stimuli.

Local and distributed entropy. Information theory provides important
tools and a unified framework for studying complex systems. Such meth-
ods found wide applicability in neuroscience (Baddeley et al., 2000).
Entropy and mutual information are two basic concepts of the informa-
tion theory (Shannon, 1949). Entropy H( X) is a measure of uncertainty
associated with a single random variable X. It is possible to define condi-
tional entropy H(X � Y ), which is the entropy of a random variable, pro-
vided that the knowledge about another random variable is excluded.
The reduction in uncertainty due to another variable is called mutual
information. Specifically, the mutual information between two random
variables is as follows:

I�X;Y� � H�X� � H�X � Y�. (1)

The mutual information is a measure of affiliation between two variables.
By construction, it is non-negative. Zero values of I(X;Y ) mean indepen-
dence between X and Y. The higher the values of I(X;Y ), the higher the
degree of affiliation between X and Y.

In addition, mutual information is a symmetric measure. Specifically,

I�X;Y� � I�Y;X� � H�Y� � H�Y � X�, (2)

where H( Y) is the entropy of the variable Y, and H(Y � X ) is the condi-
tional entropy of Y, given the uncertainty contained in X.

Note that the mutual information of a random variable with itself is
equal to the entropy of this variable:

I�X;X� � H�X� � H�X � X� � H�X�, (3)

which gives the idea why the entropy might be referred to as expected
self-information.

The joint entropy H(X, Y ), which represents the uncertainty of a pair
of random variables (X, Y ), can be partitioned into the conditional
(pure) entropies of the variables X and Y, and the mutual information
between them. Specifically,

H�X,Y� � H�X � Y� � H�Y � X� � I�X;Y�. (4)

Suppose that a network is identified and consists of M nodes (electrodes
in our case), interacting with each other. Next, consider a pair of nodes, i
and j, represented by two variables, Xi and Xj, where i � [1, M], j � [1,
M], and i � j. In the context of pairwise connections, the information
contained in a node i can be partitioned into the local entropy associated
only with the complexity of the node i and the distributed entropy that is
shared between i and j. The local entropy corresponds to the conditional
entropy H(Xi � Xj), whereas the distributed entropy Edistrib(i, j) is repre-
sented by the mutual information:

Edistrib�i, j� � I�Xi; Xj�. (5)

In turn, local entropy Elocal(i) is associated with conditional entropy. In
this study, for a given node i, the local entropy will be averaged over the
rest of the nodes from the network. Specifically,

E local�i� �
1

M � 1�j�1
j�i

M

H�Xi � Xj�. (6)

Entropy estimation. Until now, we described the theoretical aspects of
partitioning the total entropy of a given signal into the two components,
local and distributed. Still, estimating entropy based on finite noisy time
series may be of crucial importance. Methods developed under the
framework of nonlinear dynamical systems may give more accurate es-
timates of the entropies than the standard approaches such as box-
counting techniques (Prichard and Theiler, 1995).

Specifically, entropies can be quantified in terms of nonlinear dynam-
ics. The rationale for such an approach is that many complex biophysi-
ological phenomena are due to nonlinear effects. Recently there has been
an increasing interest in studying complex neural networks in the brain,
applying concepts and time series analysis techniques derived from non-
linear dynamics (Stam, 2005). Under this context, we assume that the
dynamics of the underlying multidimensional system can be recon-
structed from the observed time series. This can be achieved by a tech-
nique called time delay embedding, in which the underlying process is
represented by the same versions of the original signal shifted in time.
The underlying dynamics is associated with a sequence of points in a
multidimensional space with the coordinates obtained by taking the am-
plitude values of the original time series at several consecutive times,
separated by a time lag (usually measured in data points).

Let xt
(i) be realizations of the variable Xi observed as measurements

from the ith electrode, where i � 1, . . . , M. Then, xt
(i) denotes the delay

vector at the time t, describing the recent history of the process Xi as
follows:

xt
�i� � �xt

�i�, xt��i

�i� , . . ., xt��i �di�1�
�i� �T, (7)

where di is the embedding dimension, and �i is the embedding delay
measured in multiples of the sampling interval. The sign T stands for
transpose.

In general, time delay embedding is a crucial and nontrivial step. There
are many competing approaches proposed in the literature, and all of
them are heuristic and somewhat mutually exclusive. A number of stud-
ies have proposed different information-theoretic criteria for selecting
the embedding parameters optimally. In this study, we followed Small
and Tse (2004), who proposed a robust criterion for reconstructing the
underlying dynamics from a finite time series in the presence of noise.
Their conclusion was that only the embedding window di � �i is signif-
icant, whereas the lag �i is model dependent. Their method proved to be
robust and consistent, and worked for relatively short or noisy time
series. In our study, most of the time series for all the participants in both
conditions, with a few exceptions, were characterized by the embedding
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window estimated to equal 2, implying the embedding dimension di � 2
and the embedding delay �i � 1.

We use the reconstructed dynamics x (i ) to estimate the individual,
joint, and conditional entropies as used in Equation 4. The original ap-
proach is to divide the state space into K bins of some size � and calculate
the entropy H(x) of multidimensional dynamics x � {xt}t�1

N , observed N
times at time t, through constructing a histogram, estimating probabili-
ties pk(x, �) of being in the kth bin. The signal x is treated as realizations
of a discrete random variable, and the entropy is defined by

H�x,�� � � �
k�1

K

pk�x,�� log2 pk�x,��. (8)

Another approach is to estimate the corresponding correlation integrals,
which may give more accurate estimates than box-counting techniques

(Prichard and Theiler, 1995). Specifically,
entropy is related to the correlation integral
Cq(x,r) through

H�x,�� � � �
k(bins)

pk�x,�� log2 pk�x,�� �

� log2Cq�x,r� (9)

as a function of the characteristic scale length r,
and the integral order q (Prichard and Theiler,
1995). The parameter r can be related to the bin
size �.

The correlation integral is approximated by
the correlation sum Cq(x,r) estimated as
follows:

Cq�x,r� �
1

N(N � 1)q�1��
s�1

N ��
t�s

�(r �

�xs�xt �)�, (10)

where N is the number of data points, � is the
Heaviside function, and � � � stands for the
maximum norm distance between two data
points xs and xt. The second-order (q � 2) cor-
relation integral is interpreted as the likelihood
that the distance between two randomly cho-
sen points, xs and xt in the multidimensional
space spanned by x, at times s and t, is smaller
than r. The function 	t�s�(r � �xs � xt�) for
a given point s represents the number of
points t such that the distance between the
d-dimensional vectors xs and xt is less than r.
The expression (1/N )	s�t�(r � �xs � xt�) in
Equation 10 is a specific case of kernel den-
sity estimation, which is generally consid-
ered superior to calculating entropy through
estimating a multidimensional histogram
(Silverman, 1986).

Phase locking. The analysis of brain connec-
tivity in terms of signal amplitudes was com-
plemented by computing a measure called
phase-locking index (PLI) (Chávez et al., 2003;
Stam et al., 2007). The PLI is known in the
literature under different names, such as mean
phase coherence (Mormann et al., 2000) or
phase synchronization index (Tass et al., 1998).
The PLI is able to quantify phase synchroniza-
tion between signals in a statistical sense, and
emerged from studying coupled nonlinear sys-
tems (Rosenblum et al., 1996). In turn, phase

synchronization is based on an idea that the existence of relations be-
tween phases of coupled systems does not necessarily imply correlation
between their amplitudes.

Specifically, phase locking between channels across trials was com-
puted using the concept of frequency-specific phase difference between
the signals. More specifically, the cross spectrum Sij as a function of
frequency f between two signals Xi and Yj has

Sij � exp�i�ij�f ��, (11)

where �ij(f ) is the cross-phase spectrum. The function �i,j(f ) represents
the phase delay between the two signals at a specific frequency f.

Suppose that there are K estimates (for each trial) of the cross-phase
spectra. The functions exp(i�ij(f )), k � 1, . . . , K represent the radius
vectors in the complex space. The phase-locking index Rij(f ) is computed
as the absolute value of the mean vector obtained by averaging the radius

Figure 1. Local entropy: age-related changes in the variability of signals associated with local dynamics in auditory condition.
ThepatternofchangesrepresentedbythecontrastfromPLSanalysis isshownintheupperpart.Thetopographic(PLSbootstrapratio)maps
reflect the spatial distribution of electrode loadings, showing the electrodes’ contribution at a specific frequency to the identified contrast.
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vectors associated with cross-phase spectra,
across trials in the complex space.
Specifically,

Rij�f � � � 1

K�
k�1

K

exp�i�ij�f �� �. (12)

The phase-locking index represents a measure
to quantify the amount of phase synchrony in-
herent in two given signals across repeated ex-
posure to stimuli. By design, the statistic Rij( f )
is limited between 0 and 1. When the cross-
phase distribution is concentrated around the
mean, the PLI is close to 1. The PLI is close to 0
for the uniformly distributed phase differences
across trials.

Partial least squares. Partial least-squares
(PLS) analysis is a multivariate technique
based on an idea of extracting latent factors
that account for most of the variance of data
under investigation. This study takes the
mean-centering approach wherein the mean-
centered matrix is decomposed to produce a
set of mutually orthogonal factors. Here we
give a brief description of the technique, and
refer the reader to Lobaugh et al. (2001), Hay et
al. (2002), Düzel et al. (2003), and McIntosh
and Lobaugh (2004) for more details.

PLS operates on the entire data structure at
once with the data organized in a matrix form.
The rows of the data correspond to subjects
within conditions, whereas the columns corre-
spond to elements such as voxels in functional
magnetic resonance imaging, electrodes in
EEG, or magnetoencephalography sensors. In
our case, the elements are represented by indi-
vidual electrodes for the analysis based on local
entropy, and all the possible pairs of electrodes
for mutual information and phase locking.
Then, two steps are performed. First, column-
wise statistic averages are computed within
each condition. Second, the original data ma-
trix is mean-centered with respect to the
condition-specific statistic average of the entire
column.

Next, singular value decomposition (SVD)
is used to project the data matrix to a set of
orthogonal latent variables (LVs), which are
the left and right singular vectors from the SVD
with decreasing order of magnitude (analo-
gously to principal component analysis). Thus, a latent variable consists
of three components. It includes the following: (1) a singular value; (2) a
vector of the condition loadings (weights within the right singular vec-
tor) that represent an underlying contrast; and (3) a vector of the element
loadings (weights within the left singular vector) that represent the opti-
mal relation of the elements to the identified contrast.

Statistical assessment regarding the number of LVs to retain and
the importance of individual element weights within a specific LV is
based on resampling procedures. The first step is performed using
permutation tests, which randomly reassign conditions within sub-
jects. The permutation test assesses the significance of the effect rep-
resented in a given LV, in a sense how it is different from random
noise. A measure of significance is calculated as the number of times
the permuted singular value is higher than the observed singular
value. In the second step, the element loadings are further tested for
stability across subjects through bootstrap resampling of subjects
within conditions. A measure of stability is calculated as the ratio of
the loading to the SE of the generated bootstrap distribution, and is

approximately equivalent to a z-score. For example, the absolute
bootstrap ratios 
3.5 correspond approximately to a 99% confidence
interval. Furthermore, elements with positive bootstrap ratio values
directly support the contrast associated with a given LV. Elements
with negative bootstrap ratio values may also support the underlying
contrast, but in a reverse way.

Pipeline of the analysis. The first step of the analysis was performed with
EEGLAB (Delorme and Makeig, 2004). The data from 18 electrodes were
discarded due to the presence of excessive artifacts, thus leaving 110
electrodes for the further analysis. The continuous EEG recordings were
segmented into the auditory and visual stimuli events on the [�100 488]
ms intervals. In addition, independent component analysis (ICA) was
performed for artifact removal and correction as follows. First, we re-
moved trials contaminated with excessive amplitudes. Then, the subject-
based remaining concatenated trials were decomposed with ICA. Each
independent component was examined in terms of its topography,
power spectrum, activity over time and trials. Components associated
with residual ocular and muscle artifacts were identified based on topog-
raphy and frequency, and were removed from the dataset. Sixty good

Figure 2. Local entropy: age-related changes in the variability of signals associated with local dynamics in visual condition.
Similar to Figure 1, the upper part shows the underlying pattern, whereas the contribution of individual electrodes is expressed as
the topographic maps.
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trials were kept for each subject and condition. On preprocessing, see
more details in the Lippé et al. (2009) report.

The phase-locking analysis was performed as specified above, in Phase
locking, for each pair of electrodes. The entropy analysis was performed
based on spectrally decomposed data. Specifically, the time–frequency
representation of the original time series was derived by convolving the
data with the Morlet wavelets. Twenty frequency points were logarithmi-
cally equally spaced between 4 and 50 Hz. The following parameters were
used: the embedding dimension d � 2, the embedding lag � � 1, and the
characteristic scale length r � 1. The distributed and local entropy as
defined in Equations 5 and 6, respectively, were estimated for all the
single trials. Then, the entropy statistics defined in Equations 5 and 6
were averaged over trials within conditions.

To prepare for PLS analysis, the data matrices were organized in the
form of (age groups � subjects) by elements (electrodes or pairs of elec-
trodes). Six mean-centered PLS analyses were performed to explore
changes in phase locking, distributed and local entropy in auditory and
visual conditions, separately. The significance of LV’s contrast was esti-
mated using permutation tests with 500 permutations. The contribution
of individual electrodes (for the local entropy analyses) and connections
between the electrodes (for the distributed entropy and phase-locking
analyses) to the identified contrasts was assessed using bootstrap resam-
pling with 500 samples.

Results
The following sections describe how three qualities, namely local
and distributed entropy and the degree of phase locking in terms
of intertrial coherence, change across four aging groups as the
functions of frequency.

Local entropy
The PLS analyses revealed the existence of one significant LV for
each modality ( p � 0.001), which can be interpreted as the stand-
point of developmental changes. Specifically, Figures 1 and 2
show the age-related patterns of changes in the local entropy
statistic Elocal in the auditory and visual conditions, respectively.
The upper parts of the figures, which represent the corresponding
data-driven contrasts, illustrate the developmental trends in the
variability of brain signals, associated with local processing.

With the exception of the increase in the amount of local
entropy for babies of 2– 8 months old compared to 1–2 months in
the auditory task, both auditory (Fig. 1, gray contrast) and visual
(Fig. 2, copper contrast) conditions are in general characterized
by a decrease in local entropy with maturation of the brain. It
should be noted, however, that the contrast in PLS is a relative
measure. The contrast should be interpreted only considering the
question of how exactly it is expressed across the elements (elec-
trodes and frequencies in our case).

Electrodes’ contribution is shown as the topographic maps of
the bootstrap ratio values, reflecting the extent to which individ-
ual electrodes at specific frequencies support the identified con-
trast. Positive bootstrap ratio values coded in red directly support
the contrast under investigation. Negative bootstrap ratio values
shown in blue indicate electrodes for which the contrast should
be inverted (multiplied by �1). Electrodes of robust contrast
expression can be identified by thresholding the absolute boot-
strap ratios to values 
3.5, corresponding approximately to a
99% confidence interval. With regards to the auditory task (Fig.
1), the positive peaks on the topographic maps are observed at
8 –9 Hz. Similar peaks can be found for the visual task (Fig. 2)
around 8 Hz.

Distributed entropy
A decrease in the variability of signals related to local processing is
accompanied by the expected complementary developmental

changes in distributed signal variability. As in the case with local
entropy, one significant LV was found both for the auditory and
visual task. Figures 3a and 4a illustrate the corresponding data-
driven contrasts (p � 0.001 in both cases) underlying the group
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Figure 3. Age-related changes in distributed entropy in auditory condition: underlying contrast
from the corresponding PLS analysis (a); distribution of the PLS bootstrap ratio values across frequen-
cies (b); number of connections with the bootstrap ratio values 
3.5, which corresponds approxi-
mately to the 99% confidence interval (c); and number of connections with the bootstrap ratio values
less than �3.5 (d). Note the difference in scales on the ordinate axes of c and d.
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Figure 4. Age-related changes in distributed entropy in visual condition: underlying contrast from the
corresponding PLS analysis (a); distribution of the PLS bootstrap ratio values across frequencies (b);
number of connections with the bootstrap ratio values
3.5 (c); and number of connections with the
bootstrap ratio values less than�3.5 (d). Note the difference in scales on the ordinate axes of c and d.
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differences in terms of mutual informa-
tion between electrodes in the auditory
and visual conditions, respectively. In
conjunction with the corresponding dis-
tributions of the bootstrap ratio values,
the identified contrasts are, on average,
interpreted as an increase in the amounts
of distributed signal variability with brain
development.

The distributions of the bootstrap ra-
tio values that are associated with the con-
tribution of all the electrode pairs to the
LV contrast are shown in Figures 3b and
4b as functions of frequency. Specifically,
the bootstrap ratios are limited approxi-
mately between �5 and 12. At all the fre-
quencies, the bootstrap ratio distribution
is skewed toward positive values, which
directly supports the contrasts in Figures
3a and 4a.

To be more specific, the effect associ-
ated with the developmental changes in
connectivity is the most strongly ex-
pressed around 8 Hz. Furthermore, the
number of connections with the boot-
strap ratio values exceeding the threshold
of 3.5 is shown in Figures 3, c and d, and 4,
c and d. Relatively large number of con-
nections with high positive bootstrap val-
ues can be observed at lower frequencies,
with a sharp peak around 8 Hz for both
the auditory and visual tasks. The number
of connections that robustly contribute
(with 99% confidence) to the identified
contrast is negligibly small compared to
the connections supporting the reverse
(negative) interpretation of the contrast.

Figure 5 shows spatial distributions of the connections sup-
porting the developmental changes in distributed entropy in the
auditory (Fig. 5a,b) and visual (Fig. 5c,d) conditions. Specifically,
Figure 5, a and c, shows the connections that directly support the
identified contrasts (Figs. 3a and 4a, respectively) at 8 Hz with the
bootstrap ratio values 
6. The distributed entropy for such con-
nections increases with age. The reversed support of the same
contrast is shown in Figure 5, b and d, whereas the blue lines
represent connections with the bootstrap ratio values less than
�3 at 23–33 Hz. These connections are characterized by a de-
creased amount of the distributed entropy with development.
Because the direct support in the alpha range is a much stronger
effect compared to the inverse support in the higher beta to lower
gamma range, for the purpose of visualizing the peaks in the
topographic maps, we used the different thresholds for the boot-
strap ratio values.

Phase locking
Phase locking in the electrode space was computed as described
in Materials and Methods, Phase locking. Similar to Figures 3 and
4, Figures 6 and 7 illustrate the patterns characterizing develop-
mental changes in the phase locking between the EEG channels.
PLS mean-centered statistical analyses detected a pattern of linear
increase in the amount of phase synchronization (Figs. 6a, 7a),
which was significant both for the auditory and visual conditions
with the p values �0.001.

Figures 6b and 7b show the distribution of the bootstrap ratio
values associated with pairs of electrodes across the frequencies
from 0 to 50 Hz. The number of connections with the bootstrap
ratio values exceeding the threshold of 3.5 and �3.5 are plotted as
a function of the frequency in c and d, respectively, of Figures 6
and 7. The strongest effect is robustly expressed at lower frequen-
cies, directly supporting the increase in the degree of phase lock-
ing. It is interesting to note the existence of a peak around 8 –9 Hz,
which corresponds to the same peak for the distributed entropy.
At the same time, it is worth noting that the peak in the distribu-
tion of the positive bootstrap ratio values for the mutual infor-
mation is not as sharp as that for the phase locking.

In addition, there is a robust effect, although not so strong,
supporting the inverse interpretation of the contrast shown in
Figures 6a and 7a. Specifically, in the higher beta frequency range,
peaking at 28 –30 Hz, the degree of phase locking is decreasing
with age. Comparing Figures 3d and 6d, or Figures 4d and 7d, one
would note that the analysis based on the mutual information
between signal amplitudes hints at the existence of the same pat-
tern of a linear decrease in phase synchronization with age. Still,
in terms of the number of connections with the high bootstrap
ratio values, this effect is weaker for the distributed entropy than
for the phase locking.

Similar to Figure 5, Figure 8 shows spatial distributions of the
connections supporting the developmental changes in the degree
of phase locking between the electrodes in the auditory (Fig. 8a,b)
and visual (Fig. 8c,d) conditions. Specifically, the connections
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Figure 5. Spatial distributions of the connections supporting the developmental changes in distributed entropy: in auditory
condition, as identified in Figure 3a (a, b); and in visual condition, as identified in Figure 4a (c, d). The maps in a and c show the
connections that directly support the identified contrasts at 8 Hz with the bootstrap ratio values 
6. The distributed entropy for
such connections (red lines) increases with age. The maps in b and d represent the reversed support of the same contrasts at 23–33
Hz (with the bootstrap ratio values less than �3). Such connections shown as the blue lines are characterized by a decreased
amount of the distributed entropy with development.
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that directly support the identified contrasts (Figs. 6a, 7a) at 8 –11
Hz are shown in Figure 8, a and c, as the red lines. The degree of
phase locking for such connections increases with age. The blue
lines in Figure 8, b and d, represent the connections at 23–33 Hz
for which the degree of phase locking decreases in development
(the inverse support of the same contrasts). Similar to Figure 5,
for better visualizations of the peaks in the topographic maps, the
thresholds for the bootstrap ratio values were set at 
6 and less
than �3 for the support in the alpha and higher beta to lower
gamma range, respectively.

Discussion
As the brain develops, its activity becomes more variable and
complex. Two key mechanisms may contribute to brain com-
plexity: bigger repertoire of the physiological states of individual
regions that become more specialized, and increased integration
between distributed neuronal populations. We showed that the
latter mechanism is a key factor contributing to the increased
complexity of brain signals in development. The degree of inte-
gration of distributed neuronal populations in the brain increases
with age. These effects can be observed both in terms of nonlinear
correlations between signal amplitudes (mutual information)
and phase synchronization. Moreover, this is accompanied by a
decrease in the amount of information processed locally, quanti-
fied as average conditional entropy. In other words, the variabil-
ity of brain dynamics associated with differentiating spatially
local information transforms into the variability of coordinated
brain activity during the development.

It should be clarified that specialization of individual brain
regions (modules of the underlying functional networks) may
increase with development. This is in line with other evidence
indicating increased refinement of neuronal maps and receptive
fields. Under the framework of metastability, this could be inter-
preted as a greater repertoire of the microstates of individual
modules and more facile state transitions (Fingelkurts and Fin-
gelkurts, 2004). In turn, the increased number of microstates can
be observed though the corresponding increased signal complex-
ity, which has been shown in a number of studies (Meyer-
Lindenberg, 1996; McIntosh et al., 2008). It is worth noting that
estimating signal complexity essentially quantifies the variability
of the brain signals, and thus can be associated with the total
entropy of individual modules constituting a network. In this
study, we attempted to decompose this total amount of entropy.
Specifically, the local entropy defined by conditioning over dis-
tant modules was shown to be decreasing in development. How-
ever, this does not contradict the fact that local specialization
increases in parallel, which is reflected by the increased total en-
tropy. Such a phenomenon is possible as entropy assigned to
specific modules becomes more and more efficiently shared.

Increased connectivity was observed at lower frequencies,
reaching a peak around 8 –10 Hz. At the same time, these effects
were accompanied by increased phase scattering at higher fre-
quencies, in the higher beta or lower gamma range. The analyses
based on mutual information indicated the presence of such ef-
fects in terms of correlations between signal amplitudes. Still, the
desynchronization effect at higher frequencies, although being
weaker than increased synchrony, was clearly observed in terms
of phase locking over pairs of the electrodes. Such findings would
support the hypothesis that the interplay between phase locking
and phase desynchronization across different frequency bands is
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Figure 6. Differences in phase locking across the age groups in auditory condition: pattern
characterizing developmental changes (a); distribution of the corresponding PLS bootstrap
ratio values across frequencies (b); number of connections with the bootstrap ratio values
3.5
(c); and number of connections with the bootstrap ratio values less than �3.5 (d).
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Figure 7. Differences in phase locking across the age groups in visual condition: pattern
characterizing developmental changes (a); distribution of the corresponding PLS bootstrap
ratio values across frequencies (b); number of connections with the bootstrap ratio values
3.5
(c); number of connections with the bootstrap ratio values less than �3.5 (d).
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a crucial factor for the process of large-
scale integration (Varela et al., 2001). The
possible mechanism involves inhibitory
modulations of the neural rhythms, leading
to phase resetting of underlying neural en-
sembles. In other words, uncoupling of the
connected neural populations, observed as
active phase scattering rather than a return
to the baseline of synchrony, is necessary to
switch from one cognitive state to another
(Rodriguez et al., 1999). In turn, a greater
repertoire of dynamic states in development
would imply an increased demand for the
computational resources related to active
phase desynchronization.

Computational modeling demon-
strated that phase scattering marking
the transition between synchronized
states is an efficient and flexible method
of integration of dynamic systems. This
was done under the framework of viewing
the brain as an ensemble of coupled non-
linear systems (Nunez, 1995). Specifically,
a number of studies reported the presence
of desynchronization patterns from cha-
otic states in coupled oscillator systems.
The arrays of oscillators can be synchro-
nized with weak coupling. However, ei-
ther the coupling strength or the number
of coupled systems exceeding a critical
threshold can lead to the appearance of
desynchronizing bifurcations. Physiolog-
ically, it may reflect the myelination of
cortical pathways (Paus et al., 1999),
changes in synaptic density (Huttenlocher
and Dabholkar, 1997), and brain volume
(Courchesne et al., 2000).

It would be interesting to look into the transformation of local
signal variability into connectivity in development from the per-
spective of studies dedicated to consciousness. Regarding this
long-standing mystery, a key issue is to find mechanisms respon-
sible for our being aware of some thoughts and feelings. A number of
studies have emphasized the integrative function of conscious-
ness (Tononi and Edelman, 1998). Global workspace theory
involves a notion of fleeting memory and works under the hy-
pothesis that only one consistent event corresponding to what we
are conscious of can be dominant at a given moment (Baars,
2002, 2005). This dominant content should be widely distributed
across the brain. One of the predictions of this model is related to
an interplay between widespread and local information. Specifi-
cally, according to the model, nonconscious experiences are pro-
cessed locally within separate brain areas. At the same time,
conscious perception arises when the dominant events are
broadcast to a wider network of unconscious brain processes.
The result is the appearance of long-range coordinated activ-
ity, corresponding to the widespread flows of information across
the global workspace. Our findings regarding the transformation
of local entropy into connectivity in the alpha range seem to be in
good accordance with a theory claiming that consciousness is
integrated information (Tononi, 2004, 2008). At the same time,
disintegration observed at higher frequencies can also be viewed
under the same framework. Broadcasting local information to a
network of neural regions should require the ability of the brain

to deal with neural conflicts. The mechanism to prevent conflict-
ing messages from being broadcast to the global workspace could
be based on inhibition destroying synchronized processes.

Despite the fact that global workspace theory seems to be con-
sistent with our findings at first approximation, we should clarify
the question about differentiating between high integration in a
network and high information transferred through this network.
As implied by global broadcasting of signals from any particular
cortical module, the same message or conscious content would be
sent to many modules constituting a network. Such a situation
requires that the coupling (integration) between different mod-
ules be relatively high. However, this does not exclude the idea
that a single strong signal being broadcast to the rest of the brain
represents high integration but little information transfer. The
observed increase in mutual information between distant mod-
ules is more compatible with the idea that different signals, as
carriers of information, are being exchanged effectively among
many different modules. In other words, each module can
strongly affect many targets, and different modules do so in
different ways, which represents the simultaneous existence of
both high integration and high information exchange. It is
interesting to note that the high information being transferred
requires both synchronization and desynchronization at dif-
ferent frequency bands, as suggested by computer simulations
of neuron models. Specifically, as shown in Baptista and
Kurths (2008), the maximum capacity of information transfer
between neurons can be reached if the neurons synchronize at
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Figure 8. Spatial distributions of the connections supporting the developmental changes in phase locking: in auditory condi-
tion, as identified in Figure 6a (a, b); in visual condition, as identified in Figure 7a (c, d). The plots (a) and (c) shows the connections
that directly support the identified contrasts at 8 –11 Hz (with the bootstrap ratio values
7). The degree of phase locking in terms
of the intertrial coherence for such connections increases in development. The plots in b and d represent the reversed support of the
same contrasts at 23–33 Hz (with the bootstrap ratio values less than �3). The degree of phase locking for such connections was
found to be decreasing with age.
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slow timescales (lower frequencies) and desynchronize at fast
timescales (higher frequencies).
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Baddeley R, Hancock P, P Földiák, eds (2000) Information theory and the

brain. Cambridge, UK: Cambridge UP.
Baptista MS, Kurths J (2008) Transmission of information in active net-

works. Phys Rev E Stat Nonlin Soft Matter Phys 77:026205.
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