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Mapping Human Cortical Areas In Vivo Based on Myelin
Content as Revealed by T1- and T2-Weighted MRI
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Noninvasively mapping the layout of cortical areas in humans is a continuing challenge for neuroscience. We present a new method of
mapping cortical areas based on myelin content as revealed by T1-weighted (T1w) and T2-weighted (T2w) MRI. The method is general-
izable across different 3T scanners and pulse sequences. We use the ratio of T1w/T2w image intensities to eliminate the MR-related image
intensity bias and enhance the contrast to noise ratio for myelin. Data from each subject were mapped to the cortical surface and aligned
across individuals using surface-based registration. The spatial gradient of the group average myelin map provides an observer-
independent measure of sharp transitions in myelin content across the surface—i.e., putative cortical areal borders. We found excellent
agreement between the gradients of the myelin maps and the gradients of published probabilistic cytoarchitectonically defined cortical
areas that were registered to the same surface-based atlas. For other cortical regions, we used published anatomical and functional
information to make putative identifications of dozens of cortical areas or candidate areas. In general, primary and early unimodal
association cortices are heavily myelinated and higher, multimodal, association cortices are more lightly myelinated, but there are
notable exceptions in the literature that are confirmed by our results. The overall pattern in the myelin maps also has important
correlations with the developmental onset of subcortical white matter myelination, evolutionary cortical areal expansion in humans
compared with macaques, postnatal cortical expansion in humans, and maps of neuronal density in non-human primates.

Introduction
Modern neuroimaging methods reveal an enormous amount of
information about the functional organization and structural
connectivity of human cerebral cortex. However, interpretation
of these findings is seriously impeded by inadequacies of exist-
ing cortical parcellations. Brodmann’s cytoarchitectonic areas
(Brodmann, 1909), though widely used, are inaccurate over
much of cortex (Zilles and Amunts, 2010). An additional imped-
iment is that most analyses have been performed using methods
that do not respect the sheet-like topology of the convoluted
cerebral cortex. Observer-independent probabilistic architec-
tonic maps only cover a modest portion of the cortex (Eickhoff et

al., 2005a). Of these, only a minority have been mapped to the
individuals’ cortical surfaces (Fischl et al., 2008), enabling
surface-based registration with improved intersubject alignment.
Available architectonic maps are almost exclusively based on
postmortem histology. In vivo MR-based methods for accurately
mapping individual cortical areas would be useful, both to im-
prove cortical coverage and because they can be applied directly
to living humans.

Myeloarchitectural features have been visualized using MRI in
humans, including the stria of Gennari in V1 (Clark et al., 1992;
Barbier et al., 2002; Walters et al., 2003, 2007; Bridge et al., 2005;
Clare and Bridge, 2005; Eickhoff et al., 2005b) and tripartite lam-
ination of area 4 (Kim et al., 2009). Other studies have shown
regional differences in T1 or T1-weighted (T1w) image intensity
in cortical gray matter, including differences between association
cortices and primary sensory and motor cortices using surface
(Fischl et al., 2004; Salat et al., 2009) and volume analyses (Steen
et al., 2000). Several studies have directly compared MR images to
myelin-stained sections of the same tissue. In marmosets, this
approach revealed a strong correlation between T1 and T1w in-
tensities and histologically measured myelin content and enabled
accurate delineation of several cortical areas (Bock et al., 2009). In
humans, a similar approach demonstrated a myeloarchitectonic
difference between areas 4 and 3a in ex vivo T1 slices and myelin-
stained sections (Geyer et al., 2011). Also, fibers of the perforant
path are visible in both T2*-weighted images and in myelin-
stained sections (Augustinack et al., 2010). The myelin-related
MR contrast largely reflects differences in lipids (Koenig, 1991)
and free and myelin-bound water (Miot-Noirault et al., 1997)
concentration, but is also influenced by iron, particularly in T2*-
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weighted images. However, myelin and iron are strongly colocal-
ized within cortical gray matter (Fukunaga et al., 2010). Thus, it is
reasonable to conclude that MR-based signals across the cortical
gray matter largely reflect myelin content both directly and indi-
rectly. Sigalovsky et al. (2006) found an increased R1 signal (the
inverse of T1) in the posterior medial Heschl’s gyrus and sug-
gested that this reflected the high myelin content of primary au-
ditory cortex. Yoshiura et al. (2000) reported that Heschl’s gyrus,
particularly the posterior portion, has a lower T2-weighted
(T2w) intensity than the superior or middle temporal gyri. These
studies suggest that the myelin content of a cortical area covaries
with both T1w intensity and T2w intensity, but in opposite
directions.

Here, we tested this hypothesis using T1w and T2w MR
images from standard 1 mm isotropic 3T protocols. The ratio
of T1w to T2w signal intensity was mapped to the cortical
surface using a customized algorithm. The ratio method sub-
stantially improves areal localization by increasing the con-
trast to noise between heavily and lightly myelinated areas and
also by mathematically canceling the MR-related intensity bias
field (see methods). We demonstrate that myelin-based anal-
ysis (myelin maps) reveals part or all of the areal boundaries
for dozens of cortical areas in a population-average analysis.
Many of these areas can also be identified in individual sub-
jects, albeit with less precision.

Materials and Methods
Subjects and image acquisition. The methods were developed on a single
subject and then applied to two separate datasets obtained with differing
imaging parameters. All datasets were acquired using protocols approved
by the institutional review boards. The first included 69 control subjects
(37 males, 32 females, mean age 22 � 6 years) from the Conte Center
(provided by John G. Csernansky with assistance from Michael Harms
and Lei Wang). Subjects were scanned at Washington University in St.
Louis and at Northwestern University on Siemens 3T Tim Trios using a
12-channel head coil. A 3D T1w magnetization-prepared rapid gradient
echo (MPRAGE; TR � 2400 ms, TE � 3.16 ms, TI � 1000 ms, 8° flip
angle, bandwidth � 220 Hz/pixel, echo spacing � 7.5 ms, FOV 256
mm � 256 mm � 176 mm, matrix 256 � 256 � 176, 1 mm isotropic
resolution) sequence was acquired. A generalized autocalibrating par-
tially parallel acquisition (GRAPPA) factor of 2 in combination with 50%
phase oversampling (acquisition time 8 min) gave an SNR level interme-
diate to that with no parallel imaging and that with GRAPPA a factor of
2 and no phase oversampling. A 3D T2w sampling perfection with appli-
cation optimized contrast using different angle evolutions (SPACE;
TR � 3200 ms, TE � 449 ms, variable flip angle, bandwidth � 698
Hz/pixel, echo spacing � 3.26 ms, Turbo Factor � 139, FOV 256 mm �
256 mm � 176 mm, matrix 256 � 256 � 176, 1 mm isotropic resolution)
sequence was acquired. A GRAPPA factor of 2 was used with no phase
oversampling (acquisition time of 5 min). Both scans were acquired
sagittally. The original single subject was scanned with identical param-
eters to the above.

The second dataset includes the 10 control subjects (all male, mean
age � 42 � 11 years) from the publicly available Brain Multimodality
dataset from the National Alliance for Medical Image Computing
(NAMIC) (provided by the Psychiatry Neuroimaging Laboratory and
the Surgical Planning Laboratory, Brigham and Women’s Hospital). The
data were acquired on a 3T General Electric (GE) scanner at Brigham and
Women’s Hospital in Boston using an 8-channel head coil and GE’s
parallel imaging technology Array Spatial Sensitivity Encoding Tech-
niques (ASSET) was used with a SENSE (SENSitivity Encoding) factor of
2. A T1w spoiled gradient recalled sequence (SPGR; TR � 7.4 ms, TE �
3 ms, TI � 600 ms, 10° flip angle, FOV 256 mm � 256 mm, matrix 256 �
256, 1 mm slices) and a T2w extended echo train acquisition (XETA;
TR � 2500 ms, TE � 80 ms, FOV 256 mm � 256 mm, matrix 256 � 256,

1 mm slices) were acquired. Data were downloaded from the NAMIC
MIDAS website: http://insight-journal.org/midas/collection/view/190.

Surface generation and processing of T1w volumes. The original unresa-
mpled T1w volumes were processed through FreeSurfer 4.5’s default
recon-all preprocessing pipeline (http://surfer.nmr.mgh.harvard.edu/),
which includes brain extraction, intensity normalization, segmentation,
generation of white and pial surfaces, surface topology correction, infla-
tion of surfaces to a sphere, and spherical registration to the fsaverage
surface based on a measure of surface shape (Sled et al., 1998; Dale et al.,
1999; Fischl et al., 1999a,b, 2001; Ségonne et al., 2004). The most accurate
surfaces were obtained using unresampled T1w volumes, likely through
minimization of partial-volume effects. FreeSurfer white and pial sur-
faces were converted to GIFTI format with application of a transforma-
tion matrix to correct for a translational offset (“c_ras”) so that the
surface and volume would line up. Using Caret software (Van Essen et al.,
2001) a midthickness surface was generated by averaging the white and
pial surface coordinates. The white, pial, and midthickness surfaces with
the original number of vertices are referred to as “native” mesh surfaces.

The registered spherical surface (sphere.reg) was converted to GIFTI
format and resampled onto the fsaverage template spherical surface us-
ing Caret’s “create deformation map” function. The resultant deforma-
tion map between the native mesh surfaces and the fsaverage surface was
applied to bring the native mesh surfaces into register with and onto the
164k vertex fsaverage left or right mesh (hereafter, fs_L or fs_R). The fs_L
and fs_R meshes are not in register, so we used a landmark-based regis-
tration between them and a hybrid left and right fsaverage template
(hereafter, fs_LR), creating deformation maps for left and right hemi-
spheres (D. C. Van Essen, M. F. Glasser, D. L. Dierker, J. Harwell, and T.
Coalson, unpublished observations). We applied these deformation
maps to the subjects’ fs_L and fs_R resampled surfaces, bringing their left
and right hemispheres into register and onto the 164k vertex fs_LR mesh.
These steps enable quantitative comparisons of surface-mapped data
across subjects and hemispheres in a vertexwise fashion.

Processing of T2w images and generation of the T1w/T2w ratio image
volume. The T2w image was registered to the T1w image using FSL’s
FLIRT (Jenkinson et al., 2002) with 6 parameters (rigid body) and the
mutual information cost function. This registration precisely aligned all
brain regions except for small portions of ventral orbitofrontal cortex,
overlying the sphenoid sinus, and inferior temporal cortex, overlying the
mastoid air cells. In these areas, the gradient echo T1w and spin echo T2w
data were affected differently by magnetic susceptibility-induced signal
dephasing and signal loss (see Technical limitations). The T2w image was
resampled using the spline interpolation algorithm of FSL’s applywarp
tool. Spline interpolation minimizes the white matter and CSF contam-
ination of gray matter voxels that would result from the volumetric blur-
ring inherent in trilinear interpolation. Spline interpolation yielded
similar results when applied only to the T2w image or when applied
separately to both the T1w and T2w images so that they were resampled
the same number of times.

Division of the T1w image by the aligned T2w image mathematically
cancels the signal intensity bias related to the sensitivity profile of the
radio frequency receiver coils, which is the same in both images. Taking
the ratio also increases the contrast related to myelin content. A simple
approximation (Eq. 1) explains both effects: if myelin contrast is repre-
sented by x in the T1w image and 1/x in the T2w image, and the receive
bias field is represented by b in both images, the T1w/T2w ratio image
equals x 2, i.e., enhanced myelin contrast, with no bias field contribution.
Because the noise in the T1w and T2w images is uncorrelated, there is
increased myelin contrast relative to the noise (i.e., increased contrast-
to-noise ratio).

T1w

T2w
�

x � b

�1/x� � b
� x2 (1)

Alternative bias field correction methods such as FSL’s FAST (Zhang et
al., 2001) and MINC’s nu_correct (Sled et al., 1998) are not sufficiently
accurate for the myelin mapping technique presented here. As demon-
strated below, myelin mapping relies on detection of subtle differences in
gray matter intensity that are obscured by either incomplete correction of
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the bias field or by errors in the bias field that can occur around the
exterior of the brain. These errors take the form of local inhomogeneities
between superficial cortex on the gyral crowns and deeper cortex in the
fundi of sulci, and they result from the steep image intensity gradient
between brain tissue and extracerebral tissues. These errors become more
apparent when one runs a bias field correction utility multiple times in an
attempt to completely remove the bias field. Intensity variations due to
transmit field biases are minimal when using body transmit coils, as used
here with the Siemens 3T Trios, because such coils produce very uniform
transmit fields over the head. Further, some of the residual biases from
the transmit field may also be reduced when dividing the images since,
while the transmit profiles between the two sequences are different, they
are correlated. Indeed, there was no discernible global signal bias in our
T1w/T2w ratio images, as the low-frequency variations in gray and white
matter were anti-correlated. We would expect them to be correlated if a
bias field were present, as they are in the raw T1w and T2w images. These
assumptions will not apply at higher resonant frequencies (i.e., at higher
field strengths like 7T) where local transmit coils are used and where the
transmit field biases are much stronger (Van de Moortele et al., 2009). In
this case, it will be necessary to use sequences for the ratio that have very
similar transmit profiles.

In volume slices of T1w and T2w images, interesting local signal inho-
mogeneities are evident in the gray matter, particularly in regions such as
the central sulcus (Fig. 1 A, B). These inhomogeneities are enhanced in
the T1w/T2w ratio images (Fig. 1C). When a color palette is used instead
of gray scale, the differences become even more apparent (Fig. 1 D). The
boundaries drawn on the colorized T1w/T2w image in Figure 1 D repre-
sent putative transitions between cortical areas (see Results). Indeed, a
direct comparison between myelin-stained histology and T1 contrast in
the central sulcus reported a similar border between areas 4 and 3a that
was aligned in both methodologies (Geyer et al., 2011).

Surface-based T1w/T2w ratio analysis. A customized volume-to-
surface mapping algorithm was applied to voxels assigned to the gray
matter ribbon by FreeSurfer—i.e., those with voxel centers located be-
tween the white and pial surfaces. To preserve accuracy, the gray matter
ribbon mask was not resampled once generated. For each vertex in the
native mesh midthickness surface, ribbon voxels were selected within a

cylinder orthogonal to the local surface. The cylinder had a height and
radius equal to the local cortical thickness value and was centered on the
vertex. Voxels were excluded if the T1w/T2w value exceeded �1 SD of all
T1w/T2w values within the cortical ribbon. This criterion had the effect
of removing voxels that contained significant blood vessel signal with
very high T1w/T2w values or CSF signal with very low values. The re-
maining ribbon voxels were averaged according to a Gaussian weighted
function (FWHM� �4 mm, � � 5/3 mm) to produce a value for the
vertex. Vertices in the noncortical medial wall had a FreeSurfer thickness
value of zero and were assigned a T1w/T2w value of zero.

Small patches of aberrant T1w/T2w values were detected and cor-
rected as follows. Each vertex’s cortical thickness and T1w/T2w values
were compared with the mean values of the neighbors within 10 steps
across the surface. If the values of both the cortical thickness and the
T1w/T2w exceeded 2 SDs from the mean, it was assumed that an error
had occurred in surface reconstruction and thus the data were unreliable.
These values were replaced by a Gaussian-weighted average of their
neighbors using a geodesic distance weighting. Only vertices having cor-
tical thickness values and T1w/T2w values �2 SDs from the mean were
included in the Gaussian weighted average (FWHM� �4 mm, � � 5/3
mm). This outlier detection and correction method performed well at
removing small artifacts from the data; however, it failed to correct larger
ones. If the anomalies are large enough, they affect the neighborhood
mean and SD and no longer appear anomalous to the algorithm. The
individual subject shown below in Figure 3, C, F, I, and L, was processed
with a SD value of one. This yielded a modestly improved artifact correc-
tion, but at a large increase in computational time that precluded appli-
cation to all 80 subjects. Finally, this individual’s data were smoothed
across the surface using a Gaussian average weighted by geodesic distance
(FWHM � 5 mm) that reduced high spatial frequency information,
which appeared to be mostly noise. We have incorporated the myelin
mapping software into Caret and made our myelin map data available in
GIFTI format online; interested investigators should visit http://
brainvis.wustl.edu/MyelinMaps/.

Construction and analysis of group average data. Transformation of
myelin map data from the individual subject’s native mesh to the fs_LR
standard mesh involves two deformation maps, one representing regis-
tration from the native mesh to fs_L and fs_R and another representing
registration between fs_L and fs_R and fs_LR. The two deformation
maps were concatenated into a single deformation map using Caret soft-
ware that was applied to the individual subject’s myelin map data, corti-
cal thickness data, and surface curvature data. Average midthickness
surfaces for the left and right hemispheres were generated from the indi-
vidual subjects’ registered surfaces, and these were strikingly similar to
the fsaverage midthickness surfaces. The individual myelin map data
were normalized to a group global mean and then averaged at each sur-
face node. A small amount of geodesic Gaussian-weighted smoothing
was applied to the group average myelin map (FWHM � 2.35 mm); prior
to gradient calculation, group data shown are unsmoothed. The gradient
magnitude—i.e., the first spatial derivative— of the group average my-
elin map was computed on the group average midthickness surface. This
gradient provides an observer-independent measure of rapid transitions
in myelin content and can be used as a basis for delineating areal borders.
To avoid edge effects along the noncortical medial wall, this region was
masked and the intensity along the edge was dilated into the center before
computing the gradient. The gradient analyses used here are similar in
spirit to those introduced by Cohen et al. (2008) and Nelson et al. (2010),
but differ in implementation. Whereas they computed gradients on a
Cartesian grid overlaid on a flat map (Cohen et al., 2008; Nelson et al.,
2010), we computed gradients directly on the convoluted surface mesh,
avoiding the necessary cuts and inherent distortions in the flattening
process.

Color palette. Myelin map values are dimensionless quantities whose
magnitude depends on many factors. The color palette used to display
myelin maps was adjusted so that its dynamic range was most informa-
tive for identifying the transitions between adjacent areas that are also
highlighted by the gradient calculation. Practically, the myelin maps (and
other images) were displayed at third and 96th percentiles for the hemi-
sphere as a whole, with saturation above (red) and below (black) these

Figure 1. A–D, Each panel shows the central sulcus of a single subject in axial section with
the anterior bank above the posterior bank. The white matter surface is a green contour and the
pial surface is a blue contour. The lines delimit area 6 from area 4 on the anterior bank, area 4
from area 3a in the fundus, area 3a from area 3b in the fundus, and area 3b from area 1 on the
posterior bank. A is a T1w image, B is a T2w image, C is the T1w/T2w image in gray scale, and D
is the T1w/T2w image in color scale. All volumetric data are unsmoothed. From these images, it
is apparent that areas 4 and 3b are more heavily myelinated than areas 6, 3a, and 1. The scale in
D is T1w/T2w � 1% (purple) to 99% (red).
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values. Figure 2 shows the image histograms
for the Conte-69, NAMIC-10, and the individ-
ual subject datasets. The histograms are very
similar in shape, with the highest peak repre-
senting the large expanses of lightly myelinated
cortex and a smaller peak or hump represent-
ing the heavily myelinated regions of cortex.
Although the absolute values are twofold
higher for NAMIC-10 vs Conte-69, the use of
percentile scaling allows a direct comparison
between them in Figure 3.

Thickness maps. In addition to myelin maps
and their gradients, cortical thickness maps
and their gradients were also analyzed. Cortical
thickness maps and surface curvature maps
were averaged after resampling onto the fs_LR
mesh. The average surface curvature was re-
gressed out of the average cortical thickness
map in a manner similar to that used by Siga-
lovsky et al. (2006), thereby correcting the
thickness map for biases caused by gyral and
sulcal folding. The magnitude of the spatial
gradient was computed on this curvature-
compensated cortical thickness map with a
prior smoothing of FWHM � 2.35 mm.

Probabilistic cytoarchitectonic areas and
activation foci. Surface-based probabilistic cy-
toarchitectonic areas were obtained from the
standard FreeSurfer distribution, most of
which were described by Fischl et al. (2008).
Spatial gradient magnitudes were computed
for each probabilistic cytoarchitectonic area as
an observer-independent measure of its most likely average border.
Volume-based cytoarchitectonic areas were obtained from the SPM
Anatomy Toolbox (Eickhoff et al., 2005a) and were transformed from
the original Colin27 space into the fsaverage volume space for accurate
mapping to the fsaverage atlas surfaces. This entailed linear (FLIRT)
followed by nonlinear (FNIRT) registration of Colin27 to the MNI152
nonlinearly generated template distributed with FSL. The fsaverage av-
erage volume was also linearly and then nonlinearly registered to the
MNI152 template. This transformation was inverted and concatenated
to the Colin27-to-MNI152 transform to produce a Colin27-to-fsaverage
nonlinear transform. The transform was then applied to the probabilistic
architectonic volumes using nearest neighbor resampling to preserve the
actual probability values. The volumetric maps were mapped to the
fs_LR midthickness surface using Caret’s interpolated voxel method.
Because these maps do not respect the topology of the cortical sheet,
spatial gradients would not be meaningful, as they are for surface-based
probabilistic areas, and thus were not computed. In some cases, volumet-
ric maps were represented by foci located at their centers of gravity, or as
a hard segmentation. Hard segmentations were produced by threshold-
ing the volumetric probabilistic cortical areas at a value that reflected
40% of subjects and then assigning each voxel to the cortical area having
the highest probability. Published coordinates of functional activation
foci were used in their reported MNI coordinates or after conversion
from the Talairach coordinates using a Matlab script (http://imaging.
mrc-cbu.cam.ac.uk/imaging/MniTalairach). Functional activation maps
and parcellations were mapped onto the fs_LR surfaces as described by
D. C. Van Essen, M. F. Glasser, D. L. Dierker, J. Harwell, and T. Coalson
(unpublished observations).

Delineation of corresponding locations along putative areal borders. The
highlighted surface vertices (white squares) in Figures 3–12 are in corre-
sponding locations in each panel (see figure legend to determine whether
they are also corresponding for left and right hemispheres). They were
positioned using information in the myelin gradients, probabilistic areal
gradients, and/or thickness gradients, unless otherwise specified. They
are positioned to reveal the correlations across the different modalities in
the panels. They also indicate areal borders (when the identity of an area
is known from histological studies mapped onto the surface) or putative

areal borders when the areal identity is inferred from published figures.
They are not intended to create a “hard” segmentation of cortex into
distinct parcels; rather, they draw attention to myelin features that likely
represent distinct cortical areas. The magnitude and width of the myelin
gradient represents how distinct one feature is from another and how
quickly the myelin content changes.

Myelin content surface maps of Adolf Hopf. Adolf Hopf produced some
of the most detailed myeloarchitectonic parcellations of human cortex
(Zilles, 2004). Unfortunately, most of these results were published in
German in a now defunct journal and are rarely cited. Hopf produced
drawings of what appear to be surface maps of myelin content for tem-
poral (Hopf, 1955), frontal (Hopf, 1956), and parietal (Hopf and Vitz-
thum, 1957) cortices. Maps of cingulate cortex are also included together
with frontal and parietal cortex (Hopf, 1956; Hopf and Vitzthum, 1957).
These works are available online (http://www.thehumanbrain.info/
database/literature.php) and are cited where relevant.

Results
Full-hemisphere myelin maps
Figure 3 shows myelin maps for the Conte-69 group average and
the NAMIC-10 group average, along with an individual subject
scanned like the Conte-69 subjects. Rows 1 and 2 are the left
lateral and medial inflated surfaces; rows 3 and 4 are the right
lateral and medial inflated surfaces. Although the Conte-69 and
NAMIC-10 datasets were acquired with different 1 mm T1w and
T2w sequences on different scanners, the spatial patterns are very
similar in the two population averages, as well as in the individ-
ual. Regions of heavy myelination in all three datasets include the
motor-somatosensory strip in the central sulcus, visual cortex in
the occipital lobe, and, extending into temporal and parietal
lobes, early auditory areas in the Sylvian fissure, and several other
regions of parietal, temporal, cingulate, and frontal cortex that
are discussed in detail below. Other regions of cortex in predom-
inantly classical “multimodal association” areas are less heavily
myelinated, including the inferior parietal cortex, most of the

Figure 2. A comparison of image histograms from the datasets in Figure 3. The gray lines mark the minimum (black � 3%) and
maximum (red � 96%) for the color palette used in Figure 3. The shapes of the T1w/T2w histograms are very similar, but their
absolute magnitudes differ markedly. The values for the NAMIC-10 group are twice as high as those for the Conte-69 group,
reflecting the fact that the data were collected on different scanners using different pulse sequences (see Materials and Methods).
The top row is the left hemisphere and the bottom row is the right hemisphere.
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temporal, prefrontal, cingulate, and medial and superior parietal
cortices. The lightest myelination occurs in anterior insula, tem-
poral pole, medial prefrontal cortex, and portions of the anterior
cingulate cortex. These patterns are highly consistent between the
left and right hemispheres, as are the more detailed patterns dis-
cussed below. In presenting the relationship of the distinctly my-
elinated regions to known anatomical and functional data, we
will focus on the larger Conte-69 dataset that provides the finest
spatial detail. A subsequent section assesses the residual artifac-
tual results present in these data.

The motor-somatosensory strip: lateral
The motor-somatosensory strip in the central sulcus is an excel-
lent domain for anatomical validation of the myelin mapping
technique. In this region, the individual myelin maps that pro-
duce the population average are well aligned because there is less
folding variability. The well defined surface-based probabilistic
architectonic maps that are available for this region provide a
substrate for validation. Of the six somatosensory and motor
areas in this region, areas 4 and 3b are the most heavily myelin-
ated (Fig. 4A,F, red). Each is bounded entirely by more moder-
ately myelinated areas (area 3a in between, area 6 anteriorly, and
areas 1 and 2 posteriorly, yellow and green on the myelin maps).
A similar pattern of alternating heavy and less heavy myelination

of these areas has been reported on flat-
tened cortex in the macaque (Disbrow et
al., 2003).

We compared these myelin maps to a
set of probabilistic cortical areas defined
histologically using observer-independent
cytoarchitecture (Geyer et al., 1996, 1999,
2000; Grefkes et al., 2001; Geyer, 2004)
that had been mapped to individual corti-
cal surfaces and registered to fsaverage
(Fischl et al., 2008) (Fig. 4D,E, I, J). No
myelination difference was discernible be-
tween areas 4a and 4p, so we summed the
probabilistic architectonic maps and identi-
fied this as area 4. To provide an objective
basis for these comparisons, we computed
the spatial gradients of the myelin maps
(Fig. 4B,G). We also computed the gradient
of each probabilistic architectonic map and
then summed all of the areal gradients (Fig.
4C,H). In general, there is excellent agree-
ment between the myelin map gradient and
the architectonic areal gradients in both
hemispheres. Thus, the myelin maps pro-
vide an accurate method for identifying cor-
tical areas in group average data. Area 4 is
clearly distinguished from areas 6 and 3a,
area 3a is clearly distinguished from 3b, and
3b is clearly distinguished from areas 1 and
2. Areas 1 and 2 only differ modestly in my-
elination and cannot be reliably discrimi-
nated by myelin gradients. In contrast, the
posterior border between area 2 and higher
somatosensory association cortex is identi-
fiable along its full extent despite less accu-
rate intersubject alignment (Fig. 4D,I).

Architectonic area 6 is much wider
than the other motor and somatosensory
areas and also is more variable in location,

which precludes an accurate estimate of its anterior extent. Its
myelin map is more heterogeneous, with heavier myelination
dorsally and caudally and lighter myelination ventrally and ros-
trally. This pattern is evident in individual subjects (Fig. 3C,I),
and is thus not likely the result of lower intersubject alignment
quality in the group average data. A similar pattern is present in
myelin content maps of Hopf, with cortex in the vicinity of caudal
and dorsal area 6 being more heavily myelinated than cortex in
rostral and ventral parts (Hopf, 1956). Area 4 also contains a
gradual dorsoventral myelin gradient in many individual subjects
(Fig. 3C,I), with lighter myelination ventrally and heavier myeli-
nation dorsally. The regional differences in areas 4 and 6 are
correlated with the somatotopy of these areas as determined in
macaques. The lower body is represented dorsally in area 4 and
dorsoposteriorly in area 6, whereas the upper body is represented
ventrally in area 4 and rostrally and ventrally in area 6 (He et al.,
1993; Rizzolatti et al., 1996). There is also a correlation with ar-
chitecture in the macaque, as Barbas and Pandya (1987) reported
heavier myelination in dorsal area 6 relative to ventral area 6 and
rostrocaudal differences in cytoarchitecture in dorsal area 6. In
addition, corticospinal projections are denser from the more cau-
dal portions of area 6 in the monkey (Dum and Strick, 1991).
These data, in combination with our myelin maps, suggest that
within-area variation in myelin content in areas 4 and 6 may be

Figure 3. A–L, An overall comparison of the T1w/T2w ratio in two groups and an individual subject on the fs_LR inflated
surface. Row 1 (A–C) is the left hemisphere lateral view, row 2 (D–F ) is the left hemisphere medial view, row 3 (G–I ) is the right
hemisphere lateral view, and row 4 (J–L) is the right hemisphere medial view. The left column (A, D, G, J ) is the Conte-69 average
data. The center column (B, E, H, K) is the NAMIC-10 average data. The right column (C, F, I, L) is the single subject scanned like the
Conte-69. The single subject data have been smoothed with 5 mm FWHM surface geodesic Gaussian smoothing (described in
Materials and Methods). Note the strong agreement of the patterns across groups and hemispheres. In all medial surface panels,
the medial wall is masked.
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related to the density and/or length of corticospinal projections
(see Discussion).

The motor-somatosensory strip: medial
Figure 5 shows an analysis of the paracentral lobule, immediately
medial to the central sulcus. Rows 1 and 3 show myelin maps (Fig.
5A,G), probabilistic areas (Fig. 5B,H), and cortical thickness
maps (Fig. 5C,I) for the left (top) and right (bottom) hemi-
spheres. Rows 2 and 4 show the respective gradients of the myelin,
areal (sum of gradients of areas 3a, 3b, 4, and 6), and thickness
maps. The area of heavy myelination in the paracentral lobule
is an extension of that from the central sulcus, but without the
regular pattern of alternating heavy and moderate myelina-
tion. This region contains the heavily myelinated medial ex-
tension of area 4, a moderately heavily myelinated area 5m,
and progressively more lightly myelinated subdivisions of area
6, the supplementary motor area (area SMA) and the pre-
SMA. The probabilistic maps of areas 3a, 3b, 1, and 2 termi-
nate dorsal to the paracentral lobule. Only the tip of area 3b is
discernible on the medial surface, where a transition in cortical
thickness map agrees with the areal gradient (Fig. 5B,C,E,F;
5H, I,K,L). Area 4 extends farther ventral into the paracentral
lobule (Fig. 5A,B; 5G,H) (Rademacher et al., 1993), as does the
heavy myelination. The posterior portion of the paracentral lob-
ule contains a thin and moderately heavily myelinated area. This
area is well delineated by the myelin and thickness gradients and
is in reasonable agreement with area 5m (Scheperjans et al.,
2008a), as mapped to the atlas by volume-to-surface mapping
(see Materials and Methods). Cortex in the region of area 5m is
heavily myelinated, according to the maps of Hopf (Hopf and
Vitzthum, 1957). Anterior to area 4, the caudal portion of the
SMA (medial area 6) is more heavily myelinated than the rostral
portion. This pattern is similar to dorsal area 6 and is consistent
with evidence for lower-versus-upper body in caudal-versus-

rostral SMA in the macaque (He et al., 1995; Rizzolatti et al.,
1996). There is architectonic evidence for a rostral-caudal subdi-
vision of area SMA on the basis of pigmentoarchitecture and
Nissl stains (Braak, 1979b; Vorobiev et al., 1998). Anterior to the
rostral SMA is pre-SMA, which is less heavily myelinated than the
SMA is, though the transition is gradual. In macaques, the tran-
sition from SMA (F3) to pre-SMA (F6) also shows a decrease in
myelin content (Matelli et al., 1991). There is a weak ridge in the
myelin gradient map (Fig. 5D, J) that coincides with the volu-
metrically mapped boundary of probabilistic pre-SMA (Fig.
5B,H) as defined by diffusion connectivity (Johansen-Berg et al.,
2004). The myelin content maps of Hopf show a gradual caudal
to rostral decrease in myelin content, similar to our myelin maps.
The pattern is consistent with area 4 being most heavily myelin-
ated, a moderately heavily myelinated caudal division of SMA, a
less heavily myelinated rostral division, and a more lightly my-
elinated pre-SMA (Hopf, 1956).

Cingulate cortex
Thirteen distinct subdivisions were identified in cingulate cortex
using myelin maps (Fig. 6A,E), thickness maps (Fig. 6B,F), and
their respective gradients (Fig. 6C,D,G,H). These subdivisions
tend to be elongated parallel to the cingulate sulcus. In general,
the myelin maps show three distinct regional patterns for ante-
rior, middle, and posterior cingulate cortex. Posterior and middle
cingulate cortex tend to be more heavily myelinated than anterior
cingulate cortex but have a pattern of heavier, then lighter, then
heavier myelination as one proceeds dorsal to ventral. In anterior
cingulate cortex, the combination of myelin maps and thickness
maps reveals 3 distinct strips of cortex, in locations similar to the
schema of Paus (2001). He describes them as periallocortex, the
thinnest, most inferior strip; proisocortex, the middle strip; and
paralimbic cortex, the most superior strip. In Figure 6, these
strips are labeled 33, 24�, and 32� respectively, as described in

Figure 4. A–J, A comparison of myelin maps and gradients to probabilistic cytoarchitectonically defined cortical areas and gradients. The top row (A–E) shows the left hemisphere and the bottom
row (F–J ) the right hemisphere in the region of the central sulcus. The first column (A, F ) shows myelin maps as in Figure 3. The second column (B, G) is the gradient of the myelin maps, i.e., regions
of rapid intensity changes. The third column (C, H ) is the sum of the gradients of the probabilistic cortical areas shown in the last two columns (D, I and E, J ). These two columns alternate cortical
areas: D, I have 4, 3b, 2; E, J have 6, 3a, 1. The white marks are in the same position within each hemisphere, allowing direct comparison of the location of the gradients with respect to each other,
the myelin map, and the cortical areas.
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detail below. The middle strip of proisocortex has some of the
lowest myelin content of the entire cerebral hemisphere and is of
moderate thickness. The inner strip of periallocortex is slightly
more heavily myelinated, and is thicker. Posteriorly, there is a
sharp transition to thin, very heavily myelinated, retrosplenial
cortex that is located posteriorly. The outer strip of paralimbic
cortex is lightly myelinated relative to the rest of the brain but,
when compared with adjacent medial prefrontal cortex and proi-
socortex, is relatively more heavily myelinated. It is also the thick-
est strip of anterior cingulate cortex, being more similar in
thickness to the medial prefrontal cortex.

Cingulate cortex has been extensively studied with architec-
tonic techniques; however, over most of its extent, neither volu-
metric nor surface reconstructed probabilistic cortical area maps
are available. Thus, the comparisons we make here are necessarily
less precise than those of the motor-somatosensory strip are.
Aside from area 5Ci (Scheperjans et al., 2008a,b) and part of
medial prefrontal cortex (Öngür et al., 2003), our comparisons
between myelin maps and architectonic parcellations are restricted
to visual comparisons with published figures. Nonetheless, these
comparisons enabled many putative areal identifications based on
comparisons of the spatial topology of the gradient defined
areas with figures in published architectural studies (Vogt
et al., 1995, 2004, 2006; Vogt and Vogt, 2003; Palomero-

Gallagher et al., 2009). In particular,
Figure 6 of Vogt et al. (1995), Figure 4 of
Palomero-Gallagher et al. (2009), and
Figure 1 of Vogt et al. (2006) were used
in generating the identifications in Fig-
ure 6 A, E. We will discuss these areas
in a superior-to-inferior progression
within each of three cingulate subre-
gions: posterior, middle, and anterior
cingulate cortices.

In the posterior cingulate, below the
posterior portion of the paracentral lob-
ule is a distinct region of moderate myelin
content and medium thickness. This re-
gion overlaps extensively with area 5Ci as
reported by Scheperjans et al. (2008a,b),
i.e., it is on the superior bank of the
posterior part of the cingulate sulcus.
However, the volume-to-surface map of
probabilistic area 5Ci is artifactually lo-
cated primarily on the ventral bank of the
cingulate sulcus, and thus is not shown
here. This mismatch illustrates the limita-
tions of making comparisons to parcella-
tions (or functional activations) that are
based on volumetric registration, and
therefore do not respect the topology of
the cortical sheet. Inferior to putative area
5Ci is a strip of thick, lightly myelinated
cortex that likely corresponds to area 23c,
based the locations of neighboring areas.
Immediately inferior is a very thick,
lightly myelinated strip that likely corre-
sponds to areas 23a and 23b. Inferior to
putative areas 23a and 23b are the very
heavily myelinated and thinner areas 29
and 30. Multiple studies have shown areas
29 and 30 to be very heavily myelinated
histologically in macaques (Kobayashi

and Amaral, 2000) and in humans (Braak, 1979a; Morris et al.,
2000), and via MRI in humans (Fatterpekar et al., 2002). This
retrosplenial cortex is even visible in the myelin-stained sections
of the Atlas of the Human Brain (Mai et al., 1997), and for these
reasons we are especially confident in the delineation of this re-
gion. Posterior to areas 23a– c is a moderately myelinated, mod-
erately thick putative area 31, which is situated mainly within the
splenial (subparietal) sulcus. Anterior to areas 23a,b and inferior
to area 23c is putative area 23d, which has similar myelin density
to areas 23a,b, but is not as thick.

The midcingulate region, inferior to motor cortex and the
SMA, also has a number of putative cortical areas. The myelin
map shows heavy to moderately heavy myelination immediately
inferior to areas 4 and 6:SMA, which is putative area 24dd. This
area is adjoined inferiorly by more lightly myelinated cortex, pu-
tative area 24dv, analogous to the variation in the dorsal and
medial parts of area 6. Inferior to area 24dv is the posterior part of
area 24�, which is very lightly myelinated and of moderate thick-
ness. In the macaque, area 24d is more heavily myelinated than
areas 24c and 23 that surround it (Matelli et al., 1991); however, it
has not been explicitly subdivided into dorsal and ventral subdi-
visions (Vogt et al., 2005). As with dorsomedial area 6, the elec-
trophysiology in the macaque suggests that the dorsal portion of
area 24d (more heavily myelinated area 24dd in the human) rep-

Figure 5. A–L, A comparison of myelin maps and their gradients to probabilistic cortical areas and their gradients and also to
cortical thickness maps and their gradients. The top two rows (A–F ) show the left paracentral lobule, and the bottom two rows
(G–L) show the right paracentral lobule. A and G are myelin maps; D and J are myelin gradients; and B and H are probabilistic
cytoarchitectonic maps of areas 3b, 4, and 5m. Area 6 is divided into SMA and pre-SMA by a diffusion tractography-based parcel-
lation (Johansen-Berg et al., 2004), and only pre-SMA is shown for clarity. E and K are the sum of the gradients of areas 3b, 3a, 4,
and 6. C and I are cortical thickness maps corrected for surface curvature. F and L are thickness gradients. As in Figure 4, the white
marks are in the same positions in each panel.

Glasser and Van Essen • In Vivo Myelin Maps of Human Cortex J. Neurosci., August 10, 2011 • 31(32):11597–11616 • 11603



resents the lower body, and the ventral
portion of area 24d (more lightly myelin-
ated area 24dv in the human) represents
the upper body (Rizzolatti et al., 1996).
Corticospinal projections are not as
clearly differentiated as in area 6, but there
tend to be more lower body projections
dorsally (area 24dd) and more upper body
projections ventrally (area 24dv) (He et
al., 1995).

In the anterior cingulate, a superior
strip of cortex is relatively lightly myelin-
ated, moderately thick, and likely corre-
sponds to area 32� (32p), which extends
from the fundus of the cingulate sulcus up
onto the free wall of the medial frontal
cortex or into the paracingulate gyrus and
sulcus if present (Palomero-Gallagher et
al., 2008). Inferior to area 32� is a very
lightly myelinated, moderately thick area,
likely corresponding to area 24. [The a, b,
c, and prime subdivisions of area 24
(Palomero-Gallagher et al., 2009) are not
obvious from myelin maps or thickness
maps.] Like area 24, this strip extends
from the fundus of the cingulate sulcus
and occupies all of the cingulate gyrus.
This lightly myelinated strip is consistent
with evidence that area 24 in the macaque
is very lightly myelinated, whereas area 32
is relatively more heavily myelinated (Bar-
bas and Pandya, 1989). The cortex of area
24 has variously been called agranular
cortex (Vogt et al., 1995), heterotypic iso-
cortex (Triarhou, 2007a), and proisocor-
tex (Paus, 2001). As shown below, other
regions of similarly named cortex in the
anterior insula and planum polare are
also very lightly myelinated. The putative
definition of area 24 is consistent with ev-
idence in the human for a lightly myelin-
ated agranular area on the convexity of
the cingulate gyrus (Braak’s agm) (Braak,
1979c). Inferior to area 24/agm is a nar-
row, more heavily myelinated strip of cor-
tex buried in the callosal sulcus that is
most likely area 33. This putative defini-
tion of area 33 matches the more heavily
myelinated periallocortical strip of cortex (Braak’s eg) that lies
buried in the callosal sulcus (Braak, 1979c). Anterior to area 24 is
a region of thinner, somewhat more heavily myelinated cortex
that is most likely area 32 (Palomero-Gallagher et al., 2009), also
called area 32ac (Öngür et al., 2003). The cortex posterior and
inferior to areas 24 and 32 is lightly myelinated, thick, and likely
corresponds to areas 25 and 32 pl (Öngür et al., 2003). Anterior
and inferior to area 32 is area 10 according to Öngür et al. (2003),
and the other medial frontal cortical areas 8 and 9 are inferred
from their locations on the Vogt et al. (1995) flat map. Farther
inferior, an MR susceptibility artifact is present in both the my-
elin maps and thickness maps, resulting in artificially thin cortex
with artificially high T1w/T2w ratio in the region labeled “arti-
fact” on the gyrus rectus (Fig. 6A,E). Altogether, there are exten-
sive regional differences in myelin content and cortical thickness

in the cingulate cortex, allowing for delineation of many putative
cortical areas.

Cortex in and surrounding the Sylvian fissure
Figure 7 shows maps of the lateral aspect of each hemisphere,
more inflated than in Figure 3 so that all buried cortex is visible.
The hemispheres are oriented obliquely with anterior in the up-
per quadrant and posterior in the lower quadrant for the left
hemisphere and the reverse for the right. Many putative areas
were identified in insular and adjoining cortex based on myelin
maps (Fig. 7A,E) and myelin gradients (Fig. 7C,G). Thickness
maps are also provided to illustrate areal differences in cortical
thickness (Fig. 7D,H). We related the myelin maps and myelin
gradients to more than two dozen areas delineated in various
architectonic studies and mapped to the atlas using multiple

Figure 6. A–H, Myelin and thickness maps and their gradients are used to define putative cortical areas in the cingulate region
on an inflated surface. White marks are in the same positions within each hemisphere and were drawn on either the myelin
gradients, the thickness gradients, or the inferior borders of probabilistic areas 4 and 6 (data not shown). The top two rows (A–D)
are the left hemisphere and the bottom two rows (E–H ) are the right hemisphere. A and E show the myelin maps, B and F show
the cortical thickness maps corrected for surface curvature, C and G show the myelin gradients, and D and H show the thickness
gradients.
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methods (Fig. 7B,F). The regions in which myelin-based areas
were delineated include lateral orbitofrontal, insular, parietal,
and frontal opercular cortex, Heschl’s gyrus, the planum tempo-
rale, parts of the superior temporal gyrus (STG), and the planum
polare. In broad terms, this region is characterized by a heavily
myelinated auditory core, moderate to heavily myelinated audi-
tory association regions posteriorly, a lightly myelinated and
thick insular cortex, and mostly moderate or lightly myelinated
opercular and orbitofrontal regions. Our detailed analysis of Fig-
ure 7 proceeds from anterior to posterior, starting with lateral
orbitofrontal cortex; then fronto-opercular, insular, and tempo-
ral polar cortex; then parieto-opercular cortex; and finally, audi-

tory cortex including Heschl’s gyrus, the
planum temporale, and the superior tem-
poral gyrus. Because of the extensive par-
cellation data shown in Figure 7, we will
give the putative areal identification first
(labels in B and F), then discuss its myelin
content (A and E) and thickness (D and
G), and finally correlate these measures
with previous architectonic studies. Par-
cellations of cortex surrounding the peri-
sylvian cortical areas of interest are also
indicated in panels B and F (Amunts et al.,
1999, 2010; Caspers et al., 2006, 2008; Fis-
chl et al., 2008).

Starting anteriorly, the lateral orbito-
frontal cortex contains area 47, which has
been subdivided into areas 47m, 47l, 47r,
and 47s (Öngür et al., 2003). They de-
scribed areas 47m and 47l as being
especially heavily myelinated. We find a
heavily myelinated area in orbitofrontal
cortex that corresponds well with their
area 47m; however, 47l does not clearly
appear more heavily myelinated than sur-
rounding cortex in our maps. In agree-
ment with our maps, Öngür et al. (2003)
describe area 47s as the least heavily my-
elinated subdivision of area 47. Medial to
area 47m are areas 11 and 13, which are
less heavily myelinated than area 47m
(Öngür et al., 2003), in agreement with
our findings. Additionally, we find a mod-
erately heavily myelinated area in the
frontal operculum inferior and medial to
area 45. This area is most likely precentral
opercular cortex (PrCO) as described by
Öngür et al. (2003); however, it was not a
focus of their parcellation and has not
otherwise been investigated histologically
in humans. PrCO is moderately heavily
myelinated in the macaque (Preuss and
Goldman Rakic, 1991; Belmalih et al.,
2009) and marmoset (Burman and Rosa,
2009). PrCO is located laterally and ante-
riorly to primary gustatory cortex (G) in
humans (Öngür et al., 2003) and is impli-
cated in olfactory and taste processing (de
Araujo et al., 2003).

Posterior to area 47s and inferior to
putative areas PrCO and G is a sharp tran-
sition from lightly myelinated orbitofron-

tal and opercular cortex to the very lightly myelinated anterior
insula. Although the insula has not been fully parcellated by re-
cent investigators, based on the partial parcellations of Öngür et
al. (2003) and Kurth et al. (2009) and the classical anatomical
work of Brodmann (Brodmann and Garey, 2006) and Von
Economo (Triarhou, 2007a), the anterior very lightly myelinated
region likely corresponds to agranular insular cortex. This region,
which is the most lightly myelinated cortex in the entire cerebral
hemisphere, is labeled Iag in Figure 7B,F. Several studies have
reported that agranular insular cortex is very lightly myelinated
in the macaque (Mesulam and Mufson, 1982) and human
(Öngür et al., 2003). We can relate the low myelin content of

Figure 7. A–H, Myelin maps, gradients of myelin maps, and thickness maps are compared with cortical areas and gradients of
cortical areas in the perisylvian region on an inflated surface. White marks are in the same positions within each hemisphere and
were drawn on the myelin gradients and gradients of probabilistic areas. The top two rows (A–D) are the left hemisphere and the
bottom two rows (E–H ) are the right hemisphere. A and E show the myelin maps. B and F include the gradients of the probabilistic
areas in Figure 4 and the gradients of surface mapped areas 44 and 45. The orbito-frontal parcellation was derived from surface
mapped architectonic parcels from the 4 hemispheres presented by Öngür et al. (2003). The spheres and associated colored patches
are 3D centers of gravity of volume mapped cortical areas and a hard segmentation of the volume mapped cortical areas thresh-
olded at 4 subjects from the SPM anatomy toolbox (Eckhoff et al., 2005a). C and G show the myelin gradients. D and H show the
cortical thickness maps corrected for surface curvature. Note that Tga is more lightly myelinated than Tg, but the difference is not
visible in A and E because both are extremely lightly myelinated compared with the rest of the brain.
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anterior insular cortex to that of very lightly myelinated cingulate
cortex (area 24; see above). The Von Economo and Koskinas map
shows a strip of agranular cortex extending from the anterior
insula laterally onto the medial portion of the planum polare
(Triarhou, 2007a). Following the convention of Von Economo
and Koskinas, we identify this medial cortex as area Tga (Triar-
hou, 2007b). This difference in the type of cortex on the medial
planum polare accords with our finding of a strong gradient be-
tween medially located Tga and the temporal polar cortex (Tg).
Braak (1978) describes several cortical areas on the medial pla-
num polare as proisocortex, and the border between these areas
and the more anterolateral isocortex appears parallel to the
Tga/Tg gradient we find in the myelin maps (Braak, 1978). The
myelin content maps of Hopf also agree with our myelin maps,
showing a strip of very lightly myelinated cortex located medially
on the planum polare, and then relatively more heavily my-
elinated cortex located laterally on the temporal pole (Hopf,
1955). Ding et al. (2009) described isocortical areas TG and
TAr as extending over most of the planum polare, but this is
not consistent with our myelin maps or the parcellations of
Braak and Von Economo. The agranular insular and planum
polare cortices are also among the thickest in the brain (Fig.
7D,H; see also Fischl and Dale, 2000; Triarhou, 2007a). En-
closed within this region is the piriform cortex (Pir) (Ding et
al., 2009), which is significantly more heavily myelinated than
the surrounding cortex and thinner.

Posterior to agranular insular cortex is dysgranular insular
cortex (Fig. 7B,F, labeled Id). Kurth et al. (2009) generated prob-
abilistic architectonic maps for one subdivision of this cortex,
Id1, shown as a turquoise region in Figure 7B,F after volume-to-
surface mapping. They also indicated that there were at least two
other dysgranular subdivisions (Id2 and Id3). Areas Id1–3 are all
comparably lightly myelinated in our myelin maps, though more
heavily myelinated than Iag. Areas Id2 and Id3 (Fig. 7B,F, indi-
cated by Id) are considerably thicker than Id1 in both hemi-
spheres (Fig. 7D,H); however, we did not attempt to draw
boundaries between the dysgranular cortical areas. Posterior to
dysgranular insular cortex, Kurth et al. (2009) generated proba-
bilistic architectonic maps of two divisions of granular insular
cortex, Ig1 and Ig2 (Fig. 7B,D, yellow and pink, respectively, after
volume-to-surface mapping). In general, the dysgranular cortex
is intermediate in myelin content between agranular cortex and
granular cortex, as was also reported in the macaque (Mesulam
and Mufson, 1982). Ig1 may be more heavily myelinated than Ig2;
however, we cannot rule out an alternative explanation arising
from imperfect intersubject registration. This region contains a
very steep gradient between the heavily myelinated auditory core
and the adjoining lightly myelinated insular cortex. Averaging
these signals in the population could lead to spuriously elevated
myelin levels in the region of Ig1 showing a myelin content inter-
mediate between the two extremes.

Posterior to frontal opercular and insular cortex is rolandic
and parietal opercular cortex. Immediately inferior to areas 4 and
SI are the opercular areas OP1– 4 (Eickhoff et al., 2006a,b) dis-
played on the atlas after volume-to-surface mapping. Strong my-
elin or thickness gradients are lacking in this region, and the lack
of surface-based cortical areas made interpretation of the weaker
gradients difficult; however, several trends were apparent in both
hemispheres. Area OP1 (dark blue), the putative homolog of
macaque area SII according to Eickhoff et al., was moderately
heavily myelinated. OP4 (olive green), is the least heavily myelin-
ated of the opercular areas, and may correspond partially to
Brodmann area 43. Eickhoff et al. (2006a,b) suggest that OP4 is

the homolog of non-human primate area PV, which is somewhat
less heavily myelinated than area SII (Krubitzer and Kaas, 1990;
Krubitzer et al., 1995; Disbrow et al., 2003; Coq et al., 2004). OP3
(purple) is moderately heavily myelinated, and Eickhoff et al.
(2006a,b) propose that it corresponds to non-human primate
area VS, which is also moderately heavily myelinated (Coq et al.,
2004). Area OP2 (green) appears to be more heavily myelinated
than the other opercular areas, though blurring of the myelin
signal from misregistration, as with Ig1, cannot be ruled out. In
the macaque, cortex posteromedial to the auditory core (area
proA) is relatively heavily myelinated (Pandya and Sanides,
1973), similar to area OP2. Eickhoff et al. consider area OP2 to be
separate from the SII complex (SII, PV, VS), and instead consider
it a homolog of parieto-insular vestibular cortex (Eickhoff et al.,
2006c), which would be consistent with its different myelin pro-
file from OP1, 3, and 4. Superior and posterior to the parietal
opercular areas are divisions of parietal association area PF.
After volume-to-surface mapping of the probabilistic areas of
(Caspers et al., 2006, 2008), Figure 7, B and F, shows only the
centers of gravity of these areas to reduce complexity. All but
one of these areas (PF, PFop, PFt, PFm) are all lightly myelin-
ated and moderately thick, and they are all distinct from area 2
anteriorly, which is thinner and more heavily myelinated. Of
the PF subdivisions, PFcm (yellow) may be distinguished by
more moderate myelination.

Inferior to the parietal opercular cortex is auditory cortex. The
posterior two thirds of Heschl’s gyrus is one of the most heavily
myelinated regions of neocortex, as noted originally by Siga-
lovsky et al. (2006) using R1 from MRI. This region corresponds
to the auditory core (C) and has been subdivided into areas TE1.0
(red) and TE 1.1 (orange) by Morosan et al. (2001). The other
core subdivision, area TE1.2 (green) is less heavily myelinated.
Contrary to what Siglovsky et al. reported, but consistent with
Fischl et al. (2000), average cortical thickness values are notably
low for areas TE1.0 and 1.1; however, this may at least in part
reflect an artifactual bias of heavy myelination in segmentation
and thickness estimates (see Discussion). The lateral belt (B) re-
gion, which corresponds to BA 42, is more heavily myelinated
than the medial belt region. The medial belt is located anterome-
dial to the auditory core (Fig. 7B,F, black region surrounded by
C, Ig1, and Id1) and may correspond to BA 52 (Brodmann,
1909). This difference between lateral and medial belt cortices is
consistent with histological estimates of myelination in human
and non-human primate auditory cortex (Hackett et al., 2001).
Posterior to the belt cortex and inferior to area PFcm is a moder-
ately heavily myelinated region that overlaps with retro-insular
cortex (reI) (Kurth et al., 2009). This cortex is also relatively
heavily myelinated in the macaque (Pandya and Sanides, 1973).
Inferior to the early auditory regions on the posterior STG is a
large region of moderately myelinated cortex that extends to the
fundus of the superior temporal sulcus (STS). A moderately my-
elinated region in the STG has previously been described in hu-
mans (Wallace et al., 2002; Zilles, 2004), and the posterior
portion of the STG has a lower T2w intensity than does the mid-
dle temporal gyrus (MTG) (Yoshiura et al., 2000). This region
overlaps extensively with BA 22 and is moderately myelinated in
the myelin map of Hopf (1955). The region also overlaps with the
cortical termination of the superior temporal portion of the ar-
cuate fasciculus, and likely represents auditory association cortex
involved in phonologic processing (i.e., classically defined Wer-
nicke’s area) in the left hemisphere (Glasser and Rilling, 2008;
Rilling et al., 2008). The most posterior part of the moderately
myelinated region (inferior to the divisions of area PF) does not
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overlap with the arcuate termination. This posterior region has a
distinctly stronger myelination signal in some individuals (Fig.
3C,I, for example), but is in a region of high interindividual fold-
ing variability [similar to an area in the intraparietal sulcus (IPS)
discussed below]. Thus, it might represent a separate heavily my-
elinated area that has higher myelin density than auditory asso-
ciation cortex. Inferior to the posterior STG is lightly myelinated
cortex that overlaps with temporal multimodal association cor-
tex involved in lexical-semantic language processing in the left
hemisphere (Glasser and Rilling, 2008).

Visual cortex
Because visual cortex occupies all of the occipital lobe and por-
tions of the parietal and temporal lobes, we discuss its myelina-
tion and its parcellation from three separate views: posterolateral
(Fig. 8), medial (Fig. 9), and ventral (Fig. 10). In the lateral view,
we will discuss areas 17 and 18 first, then area MT (middle tem-
poral area), and finally the region in between. In Figure 8, the
myelin maps show heavy myelination at the occipital pole (Fig.
8A,F) and moderately heavy myelination in a surrounding belt
of extrastriate areas that includes a “finger” extending into lateral
occipitotemporal cortex in the vicinity of area MT. In general,
early visual areas in occipital cortex are heavily myelinated. Areas
V1/17 and V2/18 are thin, as well as heavily myelinated, making it
difficult to obtain accurate myelin maps and gradients (Fig.
8B,G) in this region (see Technical limitations). We used the
gradient (Fig. 8C,H) of probabilistic area 18 (Fig. 8D, I) (Amunts
et al., 2000) that was surface registered (Fischl et al., 2008) to
delineate the boundary of V1 plus V2. Area 17 is coextensive with
retinotopic V1 (Hinds et al., 2009), but it is uncertain how closely
the boundaries of area 18 and retinotopic V2 align, especially in
anterior parts of the calcarine sulcus, where peripheral visual
fields are represented (D.C. Van Essen, M. F. Glasser, D.L.

Dierker, J. Harwell, and T. Coalson, unpublished observations).
For myelin and areal gradients in Figures 8 –10, we marked only
gradients that are consistent across hemispheres, given that there
are many uncertainties regarding the parcellation of higher extra-
striate areas.

A third visual area that has surface-based cytoarchitectonic
maps is area hOc5 of Malikovic et al. (2007), which corresponds
approximately with functionally defined area MT	 (Wilms et al.,
2005) but only partially with retinotopic MT (D.C. Van Essen,
M. F. Glasser, D.L. Dierker, J. Harwell, and T. Coalson, unpub-
lished observations). Figure 8, A and F, shows an extension of
heavily myelinated cortex that completely encloses cytoarchitec-
tonically defined area hOc5 (Fig. 8D, I); however, the myelin
gradient (Fig. 8B,G) delineates a slightly larger domain than the
areal gradients (Fig. 8C,H). This difference suggests that the
heavily myelinated region includes other heavily myelinated por-
tions of the MT	 complex, perhaps including middle superior
temporal area (MST) and floor of superior temporal area (FST)
(Huk et al., 2002; Kolster et al., 2010). In humans, area MT is
heavily myelinated (Clarke and Miklossy, 1990; Clarke, 1994;
Tootell and Taylor, 1995), and identification of this area by the
myelin mapping technique further supports its validity. The
MT	 region is surrounded ventrally, anteriorly and superiorly
by a band of moderately myelinated cortex that transitions into
lightly myelinated cortex of the inferior parietal lobe (areas PGa
and PGp from Caspers et al., 2006), middle temporal gyrus, and
ventral temporal cortex. The anterior myelin transition is near
the termination of the arcuate fasciculus in the middle temporal
gyrus (Glasser and Rilling, 2008).

Cortex immediately anterior to area 18 and posterior to area
MT in these lateral views is relatively heavily myelinated com-
pared with the lightly myelinated cortex in the parietal lobe, but is
not of uniform myelin content. Consistent gradients in both

Figure 8. A–J, Myelin maps, gradients of myelin maps, cytoarchitectonic areas, gradients of cytoarchitectonic areas, and visuotopic areas of the lateral visual cortex on an inflated surface. Because
of increased variability of the gradients within this region, white marks were drawn on a map of left � right myelin gradients, which highlights gradients that are consistent across hemispheres and
are in the same positions in all images. For the area18 border, the left � right gradient of area 18 was used, as myelin maps become unreliable in this region. The top row (A–E) is the left hemisphere
and the bottom row (F–J ) is the right hemisphere. A and F show the myelin maps, B and G show the gradients of the myelin maps, C and H show gradients of the cortical areas shown in D and I (17,
18, and hOc5; Amunts et al., 2000; Malikovic et al., 2007), and E and J show the visuotopic areas from Kolster et al. (2010), Swisher et al. (2007), and V6 of Pitzalis et al. (2006). Two volumetrically
mapped probabilistic areas (PGa and PGp; Caspers et al., 2006, 2008) are shown as 3D centers of gravity. For the visuotopic maps, areas V1, V2, and V3 were not shown because they do not align with
the histologically defined areas (D. C. Van Essen, M. F. Glasser, D. L. Dierker, J. Harwell, and T. Coalson, unpublished observations).
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hemispheres enable demarcation of three myelin-based ROIs in
this region (Fig. 8B,G, 1–3). These are only in approximate cor-
respondence with the retinotopic areas from the Swisher et al.
(2007) and Kolster et al. (2010) parcellations that were mapped to
the atlas (Fig. 8E, J) (D. C. Van Essen, M. F. Glasser, D. L. Dierker,
J. Harwell, and T. Coalson, unpublished observations). These
retinotopic maps represent two of many visual cortical parcella-
tions in the literature, and the exact retinotopic parcellation of
higher extrastriate visual cortex remains a matter of debate (Han-
sen et al., 2007; Georgieva et al., 2009). The most dorsal ROI (1,
Fig. 8B,G) includes most of V3A and parts of V3B on the lateral
surface, but extends onto the medal surface (Fig. 9). The middle
ROI (2, Fig. 8B,G) is more heavily myelinated and overlaps most
with V3B, but also with LO. The inferior ROI (3, Fig. 8B,G)
overlaps with area LO as defined in both studies and is the most
lightly myelinated of the three ROIs. The superior limit of heavily
myelinated visual cortex (above ROI1) is near the border between
areas V7 and V3A. More moderately myelinated cortex (includ-
ing V7) extends along the medial bank of the IPS, where Swisher
et al. (2007) also reported multiple additional retinotopic visual
areas (Fig. 11).

On the medial surface (Fig. 9), the heavily myelinated cortex
of areas 17 and 18 dominates, but technical artifacts make the
myelin gradients in and near the calcarine sulcus essentially un-
interpretable (see Technical limitations). Dorsal to area 18 is a
wedge of heavily myelinated cortex whose areal identity is un-
known except that it may partially overlap with area V6 in the left
hemisphere (Pitzalis et al., 2006). More anteriorly, in the anterior
bank of the parieto-occipital sulcus (POS), there are three ROIs
of distinct myelin content: an inferior moderately myelinated
area, a middle heavily myelinated area, and a superior moderately
myelinated area. The histological and functional correlates of
these areas are unclear, as this sulcal part of human cortex has not
been extensively studied. We have named these regions POS1,
POS2, and POS3 from ventral to dorsal, as we were unable to
correlate them with published cortical parcellations, although it
has been noted that there are multiple cortical areas of hetero-
genic cytoarchitecture in this region (Scheperjans et al., 2008a).
Cortex in the vicinity of POS1 is activated in mental navigation
tasks, and it has been suggested to be homologous to macaque
area V6A (Ino et al., 2002), though human V6 (Pitzalis et al.,
2006) does not adjoin this region. Anterior to this sulcal region is
more lightly myelinated posterior cingulate cortex including ar-
eas 31 and 23a,b (Fig. 6A,E). Anterior and further superior are
areas 7m and 7p (Scheperjans et al., 2008a,b), which appear to
have little or no overlap with these 3 parieto-occipital sulcus ar-
eas. Between area 18 and the corpus callosum is a strip of rela-
tively lightly myelinated cortex, the area properistriata (A.P.)
(Braak, 1977). Ventral and anterior to area 18 is a swath of heavily
myelinated cortex that includes areas hOC3v/V3v and hOC4v/
V4v (Rottschy et al., 2007), whose centers of gravity have been
mapped as foci on the surface.

Figure 10 shows ventral views of the visual cortex, including
the border between areas 17 plus 18 and higher visual cortex and
the same centers of gravity of hOC3v and hOC4v from Rottschy

Figure 9. A–H, Myelin maps, gradients of myelin maps, cortical areas, and gradients of
cortical areas of the medial visual cortex on an inflated surface. Similar to Figure 8, the white
marks are in the same location in both hemispheres and were defined similarly. The top two

4

rows (A–D) are the left hemisphere and the bottom two rows (E–H) are the right hemisphere.
A and E show the myelin maps, B and F show the gradients of the myelin maps, C and G show
the cortical areas 17 and 18 from Amunts et al. (2000), V6 from Pitzalis et al. (2006), 7m and 7p
from Scheperjans et al. (2008a,b), and hOC3v from Rottschy et al. (2007); D and H show the
gradients of the area 18.
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et al. (2007). Extending anteriorly along the medial portion of the
fusiform gyrus (Fig. 10A,D, downward) is a finger of cortex that
is more heavily myelinated than cortex on either side. To assess its
relationship to the fusiform face area (FFA), we mapped the face-
selective activation pattern reported by Rajimehr et al. (2009) for
the right hemisphere onto both the left and right hemisphere atlas
surfaces (Fig. 10C,F). (Their data were not available for the left
hemisphere.) The medial boundary of the FFA activation (Fig.
10C,F, yellow-to-blue transition) is closely aligned to a myelin
gradient between moderate myelination laterally (within FFA)
and heavier myelination medially, overlapping with the parahip-
pocampal place area (Epstein et al., 1999). The myelin content
maps of Hopf show more heavily myelinated strip along the fusi-
form gyrus (Hopf, 1955), though the strip in Hopf appears to
extend further anterior than it does in our data (but see Technical
limitations in this region).

Superior parietal and IPS cortex
Within the IPS, a strip of moderate myelination runs along the
full extent of the medial bank in the group average results (Fig.
11B,F). This strip overlaps extensively with cortical areas V7 and
IPS1-4 defined in a retinotopic fMRI study (Swisher et al., 2007)
(Fig. 11D,H). A restricted focus of modestly heavier myelination
is present on the medial wall of the IPS (Fig. 11B,F, dotted out-
line); however, the intensity is much lower than in the exemplar
individual subject (compare Fig. 3A,G vs C,I). A plausible expla-
nation is that intersubject alignment is relatively poor in this
region, because of the high degree of folding variability and the
inability of surface-based registration using only cortical shape
features (“average convexity”) to align architectonically corre-
sponding areas. Hence, the peaks of heaviest myelination may
remain spatially dispersed when averaged across subjects. A sim-
ilar problem may affect the heavily myelinated posterior STS area

Figure 10. A–F, Myelin maps, gradients of myelin maps, and the group average right hemisphere results of Rajimehr et al. (2009) on an inflated surface. Similar to Figures 8 and 9, the white
marks are in the same location in both hemispheres and were defined similarly. A–C are the left hemisphere and D–F are the right hemisphere. A and D show the myelin maps and 3D centers of
gravity of areas hOC3v and hOC4v from (Rottschy et al., 2007), B and E show the gradients of the myelin maps, and C and F show the Faces 
 Places task fMRI contrast of the right hemisphere from
Rajimehr et al. (2009).

Figure 11. A–F, Myelin maps (A, B, E, F), gradients of myelin maps (C, G), and visuotopic areas of Swisher et al. (2007) of one right hemisphere (D, H) on an inflated surface. The top panels (A–D)
are the left hemisphere and the bottom panels (E–H) are the right hemisphere. The most heavily myelinated IPS area is surrounded by white marks that are the same in each panel within a
hemisphere. The ellipse surrounds the region that has been suggested to be the homolog of macaque area LIP by functional studies, spheres. The center of gravity of the nearby area hIP3 from
Scheperjans et al. (2008a) is also shown.
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mentioned above (compare Fig. 7). Therefore, the heavily my-
elinated IPS area, which is relatively consistently identifiable in
individuals (data not shown) may not be as well aligned as the
other heavily myelinated structures in more consistently folded
regions. This region is also evident in the myelin content maps of
Hopf on the anterior part of the medial bank of the IPS (Hopf and
Vitzthum, 1957). The border of this area colocalizes with transi-
tions in functional connectivity maps (Glasser et al., 2011), add-
ing further evidence that it is a distinct functional area.

One intriguing possibility is that this area is the human ho-
molog of the heavily myelinated macaque area LIPv (Lewis and
Van Essen, 2000). Several neuroimaging studies reviewed by
Grefkes and Fink (2005) have suggested that human LIP is lo-
cated on the medial bank of the posterior IPS (Sereno et al., 2001;
Koyama et al., 2004; Orban et al., 2006; Swisher et al., 2007).
Figure 11 shows the anterior and posterior IPS stereotaxic coor-
dinates reported in these studies plus that of Shulman et al.
(2003) plotted as spherical foci. The posterior activations lie
within moderately myelinated cortex of the posterior IPS in both
hemispheres but are not centered on the most heavily myelinated
portion. Of these studies, Shulman et al. is closest. The anterior
IPS activations are also not centered on the heavily myelinated
region. The center of gravity of the nearby cytoarchitectonically
defined area hIP3 (orange cube) (Scheperjans et al., 2008a) over-
laps with the heavily myelinated area in the left but not right
hemisphere. To fully disentangle the homologies in the highly
variable medial IPS, it will be valuable to perform myelin map-
ping together with a saccade task in individual humans and ma-
caques. The rest of the superior and medial parietal cortices are
relatively lightly myelinated, similar to inferior parietal cortex,
frontal cortex, and temporal cortex, suggesting that they are as-
sociation regions.

Hippocampal/parahippocampal cortex
The hippocampal/parahippocampal region includes heavy my-
elination that corresponds to the subiculum complex (subicu-
lum, presubiculum, and parasubiculum). Figure 12 compares
myelin maps (B,D) to the probabilistic map of the subiculum
complex (C,E) from Amunts et al. (2005). This volumetric prob-
abilistic map was mapped to the fs_LR surface; however, because

of the reduced precision afforded by this method, we did not
attempt to analyze areal gradients. The combined histological
and high-resolution structural and diffusion MRI study of Au-
gustinack et al. (2010) shows that the presubiculum is more heav-
ily myelinated than surrounding cortex, particularly in the
superficial layers. This heavier myelination corresponds to fibers
from the perforant pathway collecting in the superficial layers of
cortex (Augustinack et al., 2010) and explains the signal we see in
the myelin map.

Frontal eye fields and neighboring cortex
The last region in which we consider myelin maps is the cortex
around the frontal eye fields (FEFs). Figure 13 shows myelin
maps (A,C) and probabilistic maps of area 6 (B,D) together with
a number of stereotaxic foci from functional neuroimaging and
electrophysiological studies of eye movements. As noted previ-
ously (compare Fig. 4), area 6 is heterogeneously myelinated.
Some cortex that is anterior to area 6 is also moderately heavily
myelinated, including cortex on the anterior bank of the precen-
tral sulcus next to the middle frontal gyrus and cortex of the
inferior frontal sulcus (Fig. 13A,C). In the macaque, the portion

Figure 12. A–F, Myelin maps (B, E) and probabilistic cortical area (C, F) from Amunts et al.
(2005) on a cortical midthickness surface. Left hemisphere is shown in A–C, and right hemi-
sphere is shown in D–F. The probabilistic area of the subiculum complex (Sub) is centered on
the region of heavier myelination on the parahippocampal gyrus. The white marks are in the
same locations in each panel within a hemisphere.

Figure 13. A–D, Myelin maps and probabilistic areas 6 from Geyer (2004) and 44 from
Amunts et al. (1999). A and B are the left hemisphere, and C and D are the right hemisphere. Foci
from several fMRI studies of regions activated by saccade tasks are shown for both hemispheres
as spheres. One study (Lobel et al., 2001) also used electrical stimulation to elicit saccades, and
their stimulation coordinates are marked by cubes. The dorsal ellipse surrounds the region of
overlap between fMRI activations, saccades elicited by stimulation, and moderate to heavy
cortical myelination that is the most likely location of the FEFs. The ventral ellipse surrounds a
region that may be area 8Av.
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of the FEFs with the lowest threshold for stimulating eye move-
ments is associated with a distinct architectonic area, 8Ac, which
is more heavily myelinated than surrounding cortex (Stanton et
al., 1989; Preuss and Goldman Rakic, 1991). The region of the
FEFs is also more heavily myelinated than neighboring cortex in
the marmoset (Krubitzer and Kaas, 1990).

To test whether functionally defined human FEFs colocalize
with more heavily myelinated cortex, we plotted stereotaxic co-
ordinates from several functional neuroimaging studies of sac-
cades (Lobel et al., 2001; Koyama et al., 2004; Amiez et al., 2006;
Hagler and Sereno, 2006; Kagan et al., 2010). A cluster of eye-
movement activation peaks (spheres) is centered on the posterior
bank of the precentral sulcus in locally heavily myelinated cortex
(Fig. 13A,C, ellipses). The anterior bank also contains a cluster of
foci where electrical stimulation elicited saccades (Lobel et al.,
2001), and this cluster also colocalizes with a spot of heavier
myelination (Fig. 13A,C, cubes). A second electrical stimulation
study described a similar location (Blanke et al., 2000) in their
figures. Electrical stimulation results tend to localize in cortex
anterior to area 6 in macaques and humans, whereas fMRI results
tend to localize in area 6 (Amiez and Petrides, 2009). This dis-
crepancy is apparent in our meta-analysis as well (Fig. 13B,D).
Both clusters appear to have heavier myelination than surround-
ing cortex, however. Preuss and colleagues noted that it was pos-
sible to elicit eye movements from cortex surrounding the lowest
threshold area FEF (anterior to area 6), and in particular parts of
adjacent rostral premotor cortex (area 6) in the owl monkey
(Preuss et al., 1996). Given this evidence, at least two heavily
myelinated frontal eye fields may be present in humans, one on
the anterior bank of the precentral sulcus and one on the poste-
rior bank.

Ventral to the putative FEFs is a region of moderate myelin
content in the posterior portion of the inferior frontal sulcus (Fig.
13A,C). This cortex is also anterior to probabilistic area 6 and
superior to probabilistic area 44 (Fig. 13B,D). According to Pe-
tredies and Pandya (1999), this region would correspond to area
8Av in the human, given its topographical relationships to areas 6
and 44. The myelin content maps of Hopf (1956) also show a
region of moderately increased myelination in a corresponding
location to putative 8Av.

Technical limitations
The preceding sections demonstrate that myelin mapping can
identify many cortical areas and putative areas in both individu-
als and group data acquired with different scanners and pulse
sequences. Nonetheless, the technique has limitations that can
cause artifactual results of two main types: (1) artifacts in the MRI
volumes themselves (chiefly susceptibility-induced dephasing
and resultant signal loss of the gradient echo-based T1w images),
and (2) imperfect surface reconstructions (where if the surface
reconstruction were perfect, the artifact would not be present,
because the volumetric data are accurate).

MR-induced myelin map artifacts are limited to regions very
close to air/tissue interfaces. The same regions also affect fMRI,
though they are more restricted in their extent in the myelin
maps. Orbitofrontal cortex on the crowns of the gyrus rectus and
medial orbital gyrus contains regions of spurious hyperintensity
because of the sphenoid sinus. The cortex of the frontal pole
adjacent to the frontal sinus also contains regions of increased
signal variability and intensity that may be related to susceptibil-
ity artifacts. Finally, in the temporal lobe, the middle portion of
the fusiform gyrus contains regions of hyperintensity that are
related to susceptibility-induced dephasing from the mastoid air

cells. The myelin map hyperintensities are caused by signal loss in
the superficial layers of cortex near sinuses, which lead to artifi-
cially thin cortex that overrepresents the more heavily myelinated
deeper layers. These artifacts might be improved by using spin-
echo-based T1w images that would not suffer from dephasing
and signal loss.

Artifacts caused by imperfect surface reconstructions could be
improved by better surface reconstruction algorithms or higher-
resolution data, because the volumetric T1w/T2w ratio data are
accurate in these regions. These artifacts take two forms (termed
Type A and Type B errors here), and the amount of each appears
to depend on the exact acquisition parameters of the T1w image
used to generate the cortical surface. The first form (Type A)
involves hypointensities in cortex that is thin and heavily myelin-
ated, particularly in association with thin gyral blades of white
matter. These artifacts occur principally on the postcentral gyrus
in area 3b and in the occipital lobe in early visual cortex (V1, V2,
and perhaps V3). In these regions, cortex at 1 mm isotropic res-
olution may be as little as one voxel thick. FreeSurfer has signifi-
cant difficulty in segmenting these regions because the heavily
myelinated gray matter intensity differs only modestly from that
of white matter. Partial-volume voxels of CSF and gray matter
have a signal that appears to FreeSufer to be more like gray matter
than the heavily myelinated full-volume gray matter voxels,
which look more like white matter. FreeSurfer’s algorithm may
place the white matter surface just below the partial-volume vox-
els and the pial surface just above them. This error leads to arti-
ficially low T1w/T2w ratio values and underestimates cortical
thickness. The second form (Type B) of surface reconstruction
artifact involves hyperintensities in regions of thick lightly my-
elinated cortex, particularly in frontal and cingulate areas. In
these cases, the superficial layers of gray matter are more similar
in intensity to CSF than to the deeper layers. FreeSurfer’s algo-
rithm may place the pial surface too deep in the cortex, and thus
produce an artificially high T1w/T2w ratio and also underesti-
mate cortical thickness. In our experience, the Type B error pre-
dominates when the TI is set lower (e.g., 900 ms), and the Type A
error predominates when it is high (e.g., 1100 ms) for an 8° flip
angle. We attempted to minimize the impact of these artifacts by
using the outlier detection algorithm described in Materials and
Methods and doing our primary analysis on the group average
data; however, significant improvements are likely feasible. The
main results presented here were carefully vetted to ensure that
they were present in volume slices of the individual subject as well
and were not attributable to MR artifacts or surface reconstruc-
tion errors.

Discussion
Few studies have made surface maps of myelin content in cortical
gray matter using MRI, or used differences in myelin content to
identify cortical areas in vivo. Previous studies have demonstrated
proof of concept by showing that cortical myelin content can be
estimated in vivo and used to identify one or a few cortical areas
(see Introduction). The present study shows that regional differ-
ences in myelin content can be objectively assessed across nearly
all of cerebral cortex after mapping the MRI-derived T1w/T2w
ratio to the surface, producing myelin maps. This analysis was
made possible by improvements in bias field removal, mapping
of cortical gray matter voxels to the surface, and surface-
constrained smoothing to reduce noise.

Using population-average myelin maps and their gradients,
coupled with cortical thickness maps and their gradients, we were
able to largely or completely delineate dozens of cortical areas and
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candidate areas. Areas were identified by comparisons with par-
cellation schemes mapped to the same atlas surface, in particular,
surface-based probabilistic cytoarchitectonic areas (Fischl et al.,
2008), and by using figures in published cortical parcellation
studies. Where possible, we also compared our myelin maps with
histological myeloarchitectural studies in humans and non-
human primates. In general, primary and early unimodal areas
are more heavily myelinated than multimodal association areas.
For example, motor, somatosensory, visual, and auditory cortices
are all heavily myelinated, whereas prefrontal, temporal, parietal,
insular, and cingulate association cortices are more lightly my-
elinated. Notable exceptions to this trend include the heavily my-
elinated orbitofrontal area 47m, retrosplenial cortex, areas on the
medial bank of the IPS, in the STS, in the parieto-occipital sulcus,
and the frontal eye fields. Also, primary gustatory cortex is rela-
tively lightly myelinated, being less heavily myelinated than a
neighboring gustatory association area (PrCO) both in our data
and in the marmoset (Burman and Rosa, 2009), and thus it is an
exception to the trend of primary areas being heavily myelinated.
Our results raise intriguing questions about the cause and func-
tional significance of differences in myelin content across the
cortical gray matter.

Several neurobiological and technical issues warrant further
discussion. Neurobiological issues include the anatomical basis
of myelin content heterogeneity within motor areas, spatial cor-
relations between myelin content and neuronal density, cortical
expansion during evolution and development, and the progres-
sion of subcortical myelination during development. Technical
issues include potential methodological improvements, the rela-
tionship between cortical thickness and myelin maps, and com-
paring myelin maps across studies and subject groups.

Myelin map heterogeneity in motor areas
Myelin evolved as a way to speed conduction along axons, and is
present in most long-distance projection neurons of the CNS.
Corticospinal projections may be more heavily myelinated be-
cause they must traverse long distances to reach their spinal cord
targets. These distances are much greater for lower versus upper
body projections, and larger axons and heavier myelination may
help offset the additional time delay. If efferent connections con-
tribute substantially to myelin content of a cortical area, or if
heavily myelinated outputs are correlated with heavy myelination
of input connections and/or intrinsic connections, this could ac-
count for the observed tendency for myelin content to be greater
in motor regions representing the lower body compared with the
upper body in areas 4, 6, and 24d.

Correlations of myelin with neuronal density and cortical
expansion in development and evolution
Hill et al. (2010) noted a correlation between neuronal cell den-
sity and cortical expansion in human postnatal development and
primate evolution. We find that myelin content is closely corre-
lated with all three patterns. Collins et al. (2010) analyzed neuro-
nal cell density across the entire hemisphere in the macaque and
two other non-human primates. They reported high neuronal
densities in a number of heavily myelinated areas, including area
V1, early visual association areas, primary auditory and primary
sensory areas, early sensory association areas, and area MT.
Lightly myelinated multimodal association areas in the STS, IPL,
SPL, frontal, and cingulate cortices tended to have relatively low
neuronal densities in the macaque. In general, regions with rela-
tively low neuronal densities and myelin content have more com-
plex dendritic arbors, larger somas and dendritic field sizes, and

more spines than regions with higher neuron densities (Elston et
al., 2001). Collins et al. have suggested that early cortical sensory
processing is highly parallel and uses a large number of neurons
with small dendritic arbors, resulting in high neuronal density.
Conversely, areas involved in “higher” functions use neurons
with large dendritic arbors and many synapses, resulting in lower
neuronal density. Thus, a key determinant of myelin content in
different areas may be the density of neurons, leading to an in-
creased density of myelinated axons exiting and perhaps also en-
tering the cortex. Other potentially important factors are the
density of tangential fibers and the thickness of the lightly my-
elinated superficial layers (i.e., above layer IV) relative to the
more heavily myelinated deep layers.

Another interesting correlation is between myelin maps and
cortical expansion during human postnatal maturation (Hill et
al., 2010). The regions with high areal expansion tend to be
lightly myelinated, including prefrontal, inferior parietal, lat-
eral temporal, and anterior cingulate cortices. Regions with
low areal expansion, including primary motor, primary sen-
sory, primary auditory, and early visual cortices, tend to be
heavily myelinated. A similar correlation exists between my-
elin content and maps of cortical expansion generated by reg-
istering human and macaque cortex using landmarks that
reflect known or presumed homologies (Van Essen and Dierker,
2007). Lightly myelinated regions have expanded much more than
heavily myelinated regions during human evolution. Importantly,
generation of myelin maps for macaque and chimpanzee cortex is
technically feasible. Such myelin maps may enable a detailed com-
parison of cortical areal homologies based on the hypothesis that
myelin profiles are largely preserved during primate evolution.
Group average myelin maps may also provide a substrate for im-
proved cross-species landmark-based surface registrations that use
architectonic features along with conventionally defined homolo-
gies. Myelin maps may also be useful in improving registration of
regions with highly variable folding patterns across subjects, such as
the IPS and STS.

Correlations of myelin content with the order of subcortical
myelination during development
Over 100 years ago, Paul Flechsig mapped the myelination order
of white matter beneath the cortical sheet during perinatal devel-
opment. His map (Fig. 14) is widely reproduced (Fuster, 1995,
1997), and highlights the heavily myelinated primary sensory and
motor cortices as myelinating first (darkest shading). Most of the
nonprimary heavily myelinated areas also myelinate early, in-
cluding an orbitofrontal region near area 47m, retrosplenial cor-
tex, the subiculum, the heavily myelinated area in the IPS, area
MT, and the cingulate motor area. Lightly myelinated areas tend
to myelinate later in Flechsig’s analysis, including prefrontal, in-
ferior parietal, middle and inferior temporal, and anterior cingu-
late cortices. In short, there is a striking correlation between high
adult gray matter myelin content and early white matter myeli-
nation versus low myelin content and late myelination.

Potential methodological refinements
As discussed in Technical limitations, imperfect surface recon-
structions present more significant limitations to this technique
than do the principles behind the T1w/T2w ratio. Errors in sur-
face reconstruction are especially common in regions such as
early visual cortex, where they strongly affect the group average
data; however, individuals often have artifacts irregularly distrib-
uted across the cortical surface. These errors limit the current
utility of myelin gradients for estimating areal boundaries in in-
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dividuals. Improvements in image resolution and surface recon-
struction algorithms may improve individual myelin maps.
Higher resolution would also allow for measurement of the my-
elination profile across the cortical thickness, i.e., to do laminar-
based myeloarchitectonics. The algorithms presented here are
also applicable to other bias field-free measures of cortical my-
elin, including T1, T2*, or the M2PRAGE (Marques et al., 2010).

Interaction between myelin and cortical
thickness measurements
Cortical thickness corrected for surface curvature is generally in-
versely related to myelin content, with more heavily myelinated
cortex being thinner (except for primary motor cortex), and
thicker cortex being more lightly myelinated [except for the thin
lightly myelinated cortex of the frontal pole (Triarhou, 2007a)].
The cause of this relationship is twofold. (1) Cortex that is more
heavily myelinated tends to be thinner as measured histologically;
e.g., thin somatosensory and visual cortex versus thick superior
frontal, inferior parietal, and temporal cortices. (2) In heavily
myelinated cortex, the deeper layers may be difficult to distin-
guish from white matter, which may lead to artificially thin esti-
mates of cortical thickness (see Technical limitations, Type A
errors). The auditory core, which appears thin in Figure 7, is not
found to be thinner histologically (Triarhou, 2007a), for exam-
ple. The interaction between cortical thickness and myelin con-
tent also works against our ability to accurately measure myelin
content, as it is most frequently underestimated in thin heavily

myelinated regions. The dependence of cortical thickness mea-
sures on myelin content may affect the interpretation of the
growing number of studies measuring cortical thickness, as
group differences in cortical thickness may in part reflect system-
atic differences in myelin content.

Quantitative comparison of myelin maps across subject
groups and studies
An obvious next step would be to compare controls and diseased
groups, as the short scans needed to acquire myelin mapping data
are applicable to clinical populations. Myelin mapping gives
highly consistent local patterns of relative variation in the gray
matter across different scanners and sequences, given high-
resolution 1 � 1 � 1 mm data or better (Fig. 3). A cautionary note
is warranted, however, as the T1w/T2w ratio is a unitless quantity
based on unitless raw intensity data. The myelin map values are
simply the ratio of the raw intensities of the T1w and T2w images
and will vary in absolute magnitude depending upon what those
intensities are. Therefore, absolute myelin map values of a given
region of cortex may differ according to the physical scanner or
pulse sequence (Fig. 2). It may be possible to use the relative
percentage difference between the myelin map values of a region
and the average myelin map value of the whole brain, but this
would need validation. Also, because the method is dependent on
highly accurate structural images, groups that differ in degree or
incidence of head motion might have systematic biases in their
myelin map values because of different degrees of image blur.

Conclusions
No single imaging modality is likely to be adequate in identifying
the estimated 150 –200 cortical areas per hemisphere in humans
(D.C. Van Essen, M. F. Glasser, D.L. Dierker, J. Harwell, and T.
Coalson, unpublished observations). However, progress may be
accelerated by using a multimodal approach involving structural
and functional imaging performed on each individual. The Hu-
man Connectome Project (http://humanconnectome.org) will
use surface-based methods to analyze structural connectivity,
resting-state functional connectivity, task-evoked fMRI, and my-
elin mapping in each of 1200 normal human subjects. Such mul-
timodal comparisons would ideally be performed with an
observer-independent approach that used gradients in the vari-
ous modalities to delimit cortical areas and identified areas based
on their unique patterns of myelin content, structural and func-
tional connectivity, and task activations. Such an approach would
go beyond the results presented here and lead to a more accu-
rate parcellation of the cortex. Cross-modal comparisons of
myelin maps with resting state fMRI (Glasser et al., 2011) and
the other modalities, coupled with careful study of a rapidly
growing body of anatomical and functional information, may
greatly increase our understanding of how to parcellate the
complex cortical mosaic.
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