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The predicted reward of different behavioral options plays an important role in guiding decisions. Previous research has identified
reward predictions in prefrontal and striatal brain regions. Moreover, it has been shown that the neural representation of a predicted
reward is similar to the neural representation of the actual reward outcome. However, it has remained unknown how these representa-
tions emerge over the course of learning and how they relate to decision making. Here, we sought to investigate learning of predicted
reward representations using functional magnetic resonance imaging and multivariate pattern classification. Using a pavlovian condi-
tioning procedure, human subjects learned multiple novel cue– outcome associations in each scanning run. We demonstrate that across
learning activity patterns in the orbitofrontal cortex, the dorsolateral prefrontal cortex (DLPFC), and the dorsal striatum, coding the value
of predicted rewards become similar to the patterns coding the value of actual reward outcomes. Furthermore, we provide evidence that
predicted reward representations in the striatum precede those in prefrontal regions and that representations in the DLPFC are linked to
subsequent value-based choices. Our results show that different brain regions represent outcome predictions by eliciting the neural
representation of the actual outcome. Furthermore, they suggest that reward predictions in the DLPFC are directly related to value-based
choices.

Introduction
A fundamental prerequisite for adaptive and goal-directed action
is a reliable representation of the predicted outcomes of different
behavioral options (Montague et al., 2006). Sensory cues signal
potential rewards, but the associations between cues and rewards
must be learned so that they can be used to guide choices. The
acquisition and representation of outcome predictions involves the
striatum (Knutson et al., 2001; O’Doherty et al., 2004; Samejima et
al., 2005; Kahnt et al., 2009; Tobler et al., 2009) and prefrontal
areas including the orbitofrontal cortex (OFC) (Tremblay and
Schultz, 1999; Schoenbaum et al., 1998; O’Doherty et al., 2002;
Gottfried et al., 2003; Plassmann et al., 2007) and the dorsolateral
prefrontal cortex (DLPFC) (Watanabe, 1996; Barraclough et al.,
2004; Roesch and Olson, 2004). Reinforcement learning (RL)
provides a theoretical framework for how sensory cues acquire
reward value (Sutton and Barto, 1998). Specifically, during re-
peated pairings between sensory cues and reward outcomes, the
value of the outcome is gradually taken over by the sensory cue by

minimizing the difference between the expected and the actual
outcome (Schultz et al., 1997).

Neuronal recording studies have shown that in the primate
prefrontal cortex, reward value is coded by different neuronal
populations that increase and decrease activity with increasing
reward value, respectively (Kennerley et al., 2009; Morrison and
Salzman, 2009; Kobayashi et al., 2010). In line with this distrib-
uted coding scheme, patterns of functional magnetic resonance
imaging (fMRI) activity in the OFC have been shown to carry
distributed information about the value of reward-predicting
cues (Kahnt et al., 2010, 2011b). Moreover, the idiosyncratic
fMRI patterns coding predicted rewards are similar to the fMRI
patterns coding the actual reward outcome (Kahnt et al., 2010).
This suggests that the distributed neural signature coding the
value of the outcome is taken over by the sensory cue. Thus, the
similarity between the fMRI patterns coding reward value during
the sensory cue and the outcome (hereafter, “pattern similarity”)
can serve as an fMRI measure for the acquisition of reward
predictions.

Here, we study cue– outcome pattern similarity to investigate
the acquisition of outcome predictions in the human brain. In
each of seven scanning runs, subjects learned six novel cue– out-
come associations using a pavlovian conditioning task. After each
run, these predicted reward representations were probed using a
free-choice task. We hypothesized that fMRI patterns coding pre-
dicted and actual outcomes are unrelated before learning, when
no reward expectancies have been established yet. However, once
outcome predictions have been acquired, similar fMRI patterns
should code the reward value during the cue and the actual out-
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come (Kahnt et al., 2010). First, we made no assumptions about
the formation of reward predictions and investigated pattern
similarity during early, mid, and late learning trials separately.
We find that cue– outcome pattern similarity emerges across
learning in the striatum and the prefrontal cortex. Second, we fit
an RL model to the behavioral data and show that the pre-
dicted reward representations in the dorsal striatum follow an
RL process and precede those in prefrontal regions.

Materials and Methods
Subjects. Twenty-three subjects (mean age � SD, 25.43 � 3.23 years; 10
female) participated in the experiment. All subjects had normal or
corrected-to-normal vision and were free of neurological and psychiatric
history. The experimental procedure was approved by the local ethics
review board of the Charité–Universitätsmedizin Berlin, and subjects
gave informed written consent to participate in the study.

Pavlovian conditioning task. In each of the seven scanning runs, sub-
jects performed a pavlovian conditioning task where they learned the
associations between six novel cues and monetary outcomes or no
outcomes (three rewards, three no rewards). In each trial, one cue was
shown for 2 s followed by a variable delay of 4 – 8 s (mean, 6 s), after
which the outcome was presented for 2 s (Fig. 1 A). To obtain a
behavioral measure of conditioning during scanning, subjects were
instructed to respond to the presentation of the cue by pressing a
button with the right index finger. If the button was not pressed
within 2 s, no outcome was presented and the trial was aborted. Trials
were separated by a variable interval of 4 – 8 s. Each cue– outcome
pairing was repeated six times per scanning run (36 trials per run in
total), and the trial order was pseudo-randomized such that each cue
was presented twice during each one-third of the scanning run. In
each scanning run, six new cues were introduced, and each cue pre-
dicted the outcome with 100% contingency. This combination of
deterministic reinforcement and randomized presentation of multi-
ple cues was used to maximize the number of trials (cues and out-
comes) that can be used for data analysis while keeping learning speed
relatively slow.

Postscanning value-based choice task. To test whether subjects acquired
cue– outcome associations by the end of each scanning run, subjects
performed a value-based choice task within the scanner (without fMRI
data acquisition) after each run (Fig. 1 B). In each trial of the choice task,

a reward and a no-reward cue were presented
to the left and right side of fixation, respectively
(randomized). All combinations of reward and
no-reward cues were presented once, resulting
in nine trials per session. Subjects were asked to
pick their preferred cue by pressing the left or
the right button on a response box using the
index or middle finger of their right hand, re-
spectively. Importantly, to exclude further (in-
strumental) learning, no feedback was
provided during the choice task. The monetary
reward of the chosen cues was paid to the sub-
jects after the experiment.

Temporal partition of trials into learning
phases. The trials of each run were divided into
three learning phases (Fig. 1C): early (trials
1–12; first and second presentation of each
cue), mid (trials 13–24; third and fourth pre-
sentation of each cue), and late (trials 25–36;
fifth and sixth presentation of each cue) learn-
ing. All analyses of the behavioral and fMRI
data were based on this temporal partition. The
partition was used to have a sufficient number
of data points for the decoding analysis within
each learning phase. For early learning trials
(the first and second presentation of each cue),
we can assume that no reward predictions have
been formed yet, whereas the results of the
postscanning preference task show that asso-

ciations were established at least after the last trial (Fig. 2 A).
Reinforcement learning model. We used a standard RL model (Sutton

and Barto, 1998) to generate predictions about learning. Specifically, a
Rescorla-Wagner model (Rescorla and Wagner, 1972) learned the ex-
pected value of the cues via a simple delta rule. In each trial, the expected
value EV was updated by a prediction error �, the difference between the
actually received R and the expected reward: EVt�1 � EVt � � � �t,
where �t � Rt � EVt. These models have previously been shown to
account for learning-related changes in deterministic pavlovian condi-
tioning tasks (Seymour et al., 2004; O’Doherty et al., 2006). Because
reaction time (RT) latencies to conditioned stimuli have been shown to
correlate with the expected values derived from RL models (Critchley et
al., 2002; Gottfried et al., 2003; Seymour et al., 2004; O’Doherty et al.,
2006), the free parameter in the RL model (the learning rate �) was
estimated for all subjects together using the RT data as an on-line mea-
sure of conditioning (Bray and O’Doherty, 2007). Specifically, we com-
puted model-derived expected values for a range of learning rates (0.01 –
0.99, in steps of 0.01), and the expected values from each model were then
regressed (simultaneously for all runs and subjects) against the log-
transformed trial-by-trial RT latencies. To control for unspecific RT dif-
ferences between runs as well as unspecific RT drifts within runs, the
regression model included run-wise constants and within-run linear
trends besides the model-derived expected values. We finally used the
learning rate that produced expected values that explained the most
variance in the RT data (R 2). This estimation procedure yielded a
learning rate of � � 0.14. Please note that this learning rate is com-
parable to that used in previous pavlovian conditioning tasks with
deterministic reinforcement schedules involving six predictive cues
simultaneously (O’Doherty et al., 2006). The expected values derived
from our model indicate that reward predictions are low in early
learning trials, whereas learning is almost completed in late learning
trials (Fig. 2 C).

fMRI data acquisition and preprocessing. Functional imaging was con-
ducted on a 3 tesla Trio (Siemens) scanner equipped with a 12-channel
head coil. In each of the seven scanning runs, 285 T2*-weighted gradient-
echo echo-planar images containing 33 slices (3 mm thick) separated by
a gap of 0.75 mm were acquired. Imaging parameters, resulting in a voxel
size of 3 � 3 � 3.75 mm, were as follows: repetition time (TR), 2000 ms;
echo time (TE), 30 ms; flip angle, 90°; matrix size, 64 � 64; field of view
(FOV), 192 mm. A T1-weighted structural data set was collected for the

A
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Figure 1. Experimental design. A, In each of the seven scanning runs, six novel cues were associated with reward and no-reward
outcomes (3 reward and 3 no reward). Subjects had to respond to the presentation of the cue as quickly as possible using a button
press. B, After each scanning run, subjects performed a value-based choice task. C, Trials were sorted into an early, mid, and late
learning phase for all analyses.
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purpose of anatomical localization. The parameters were as follows: TR,
1900 ms; TE, 2.52 ms; matrix size, 256 � 256; FOV, 256 mm; 192 slices (1
mm thick); flip angle, 9°.

Preprocessing, parameter estimation, and group statistics of the
functional data were performed using SPM2 (Wellcome Department
of Imaging Neuroscience, Institute of Neurology, London, UK). For
preprocessing, images were slice time corrected, realigned, and spa-
tially normalized to the MNI template. No smoothing was applied at
this point of the analysis.

Searchlight decoding and pattern similarity. We have previously shown
that the reward value during anticipation and receipt of reward is coded
by similar fMRI patterns in the human OFC (Kahnt et al., 2010). Here, we
used the same searchlight decoding approach to track the similarity of the
fMRI patterns during learning. Specifically, as input to the decoding
analysis, for each scanning run we set up a GLM with four regressors [(1)
reward cues, (2) no-reward cues, (3) reward outcomes, and (4) no-
reward outcomes] for each of the three learning phases. This resulted in
12 regressors ([2 cues � 2 outcomes] � 3 learning phases). Note that
each regressor modeled six trials (3 cues � 2
presentations per learning phase). All regres-
sors were convolved with a canonical HRF and
simultaneously regressed against the BOLD
signal in each voxel. The resulting parameter
estimates represent the response amplitudes
for each voxel and each condition. Impor-
tantly, estimating parameters simultaneously
for all conditions in the context of a GLM as-
sures that cue- and outcome-related BOLD sig-
nals are separated.

The parameter estimates were then used to
search for brain regions in which similar fMRI
patterns code reward value during the sensory
cue and the actual outcome in each learning
phase separately. For this, we used a searchlight
decoding approach (Kriegeskorte et al., 2006;
Haynes et al., 2007) that examines the informa-
tion in local fMRI patterns surrounding each
voxel (radius, 10 mm; Fig. 3A). Importantly,
because we were only interested in information
encoded in the distributed fMRI patterns, the
mean of each pattern was subtracted. This as-
sures that the average signal of each pattern is
zero and thus cannot contain any information
at all. We then used six of the seven scanning
runs to train a linear support vector classifier
(SVC) to separate fMRI patterns corre-
sponding to reward versus no-reward out-
comes. For this, we used the LIBSVM (Library
for Support Vector Machines) implementation
(www.csie.ntu.edu.tw/�cjlin/libsvm/). We tested
the SVC by classifying fMRI patterns corre-
sponding to reward versus no-reward cues in an
independent test data set (run 7) (Fig. 3B). We also performed the classifi-
cation in the reverse direction, by training on fMRI patterns during the cue
and testing on fMRI patterns during the outcome (reported results are aver-
aged across both directions). Importantly, because (1) we used different
sensory cues in each scanning run and (2) we trained on data during the
outcome and tested on data during the cue, significant above-chance decod-
ing is only possible if (1) fMRI patterns code the predicted reward indepen-
dent of the sensory features of the cue and (2) similar patterns code the value
of predicted and actual outcomes. This classification was repeated seven
times using a leave-one-run-out cross-validation. Note that cross-validation
using independent training and test data sets excludes biased results because
of overfitting or “double dipping.” The procedure was done for each search-
light (i.e., each center voxel) and each learning phase resulting in three voxel-
wise maps of decoding accuracy, one for each learning phase. If the similarity
between reward coding response patterns during cue and outcome emerges
during learning, significant classification should be possible in late but not in
early learning trials.

As a measure of decoding accuracy, we used the base-rate-inde-
pendent area under the receiver operating characteristic (ROC) curve
(Hanley and McNeil, 1982; Swets, 1986). However, using percentage
correct provides very similar results. For each searchlight, this ROC was
created using the actual labels of the test data set and the predictions
made by the SVC model (“decision values”) when applied to the test data
set. ROC curves relate the number of correct positive classifications to the
number of false positive classifications across the entire range of possible
decision boundaries. The area under the ROC curve (AUC; range, 0 –1;
chance level, 0.50) quantifies the accuracy of a classifier and has a
straightforward interpretation: If one instance of each category (e.g., a
reward and a no-reward cue) is chosen randomly from an independent
test data set, the AUC represents the probability that the reward cue will
have a numerically higher decision value than the no-reward cue. Be-
cause we trained and tested the SVC model on data during cue and
outcome, respectively, AUC values, in our case, reflect pattern similarity.
Specifically, AUC values are related to the similarity (i.e., the correlation)

BA C

Figure 2. Behavioral results. A, Bar plot shows average probability of a high-value choice in
the postscanning choice task across subjects; asterisks indicate individual data points. B, Log-
transformed reaction time data as a function of reward value and learning phase (early, mid,
late). Error bars indicate SEM for n � 23, and asterisks indicate significant RT (log-transformed)
differences at p � 0.05 (one-tailed). C, The EVs of reward–no-reward cues generated by the RL
model are plotted as a function of learning phase. R, Reward; NR, no reward.

A

B

Figure 3. Multivariate searchlight decoding. A, The local fMRI patterns in each searchlight were extracted for reward and
no-reward cues as well as for reward and no-reward outcomes for each run and each learning phase. B, Within each learning phase,
we trained a linear SVC on a training data set to separate reward versus no-reward outcomes. The performance of the SVC was then
assessed by testing how well the SVC classified reward versus no-reward cues in an independent test data set. Note that these
cross-classifications are only successful if similar patterns code reward value during cue and outcome.
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between the fMRI patterns (coding reward versus no reward) during the
sensory cue and the fMRI patterns (coding reward versus no reward)
during the outcome.

Group statistics were performed on a voxel-by-voxel basis. For this
purpose, the individual AUC maps were smoothed with a 6 mm FWHM
Gaussian kernel. Regions in which similar response patterns code reward
value during prediction and receipt of reward were identified using
voxel-wise t tests on AUC maps from late learning trials. We identified
significant clusters using a statistical threshold of p � 0.0001 (uncor-
rected) together with a cluster-extend threshold of k � 5 continuous
voxels. Furthermore, only voxels that also survived a whole-brain correc-
tion for multiple comparisons (false discovery rate, FDR) at p � 0.01 are
reported in Results.

Results
Behavioral measures of predicted reward representations
Behavioral performance on the postscanning choice task revealed
that subjects had acquired reward predictions during condition-
ing and were able to use these representations to guide their
choices (mean, 98% high-value choices; Fig. 2A). Learning of
reward predictions was also evident in the RT data during condi-
tioning. A (3 � 2) time-by-reward ANOVA with repeated mea-
sures on log-transformed RT revealed significant main effects for
reward (F(1,22) � 4.38; p � 0.05) and time (F(2,44) � 32.51; p �
0.05) as well as a significant time-by-reward interaction effect
(F(2,44) � 4.23; p � 0.05). Post hoc t tests showed significantly
shorter log-transformed RT latencies to reward than no-reward
cues in mid and late learning (p � 0.05, one-tailed), but not in
early learning trials (p � 0.56; Fig. 2B). A standard RL model
(Sutton and Barto, 1998; Kahnt et al., 2009; Park et al., 2010) was
fit to the RT data to predict learning-related changes in expected
value. The RL model suggests that reward predictions (difference
between the expected values of reward and no-reward cues) are
well established in late learning trials (Fig. 2C). Together, the
behavioral results clearly show that subjects learned the associa-
tions between the cues and the outcomes and were subsequently
able to use this information to guide their choices.

fMRI measures of predicted reward representations
In the following, we focus on the fMRI data to search for neural
changes associated with the acquisition of reward predictions.
First, we identified brain regions that reveal significant cue– out-
come pattern similarity (as a neural measure for learning; see
above) after reward predictions have been acquired (i.e., in late
learning trials). To identify such regions, we used a searchlight
decoding approach that examined the information in locally dis-
tributed fMRI patterns (Fig. 3A). Specifically, for the fMRI pat-
terns in each searchlight (radius, 10 mm), we tested how well the
reward value (reward vs no reward) of a sensory cue was classified
(in an independent test data set), if the classifier was trained on
fMRI patterns from reward versus no-reward outcomes (Fig. 3B).
Pattern similarity thus reflects the information about reward ver-
sus no reward that is common to both prediction and receipt of
reward. In late learning trials, we found significant (p � 0.0001;
k � 5) AUC values in the medial and central OFC (medial BA 11,
MNI [x, y, z] � [�3, 57, �9], t � 4.32; central BA 11, [�18, 57,
�9], t � 4.59; Fig. 4A), in the bilateral DLPFC (left BA 9, [�18,
45, 42], t � 5.32; right BA 9, [27, 48, 39], t � 4.97; Fig. 4B), in the
left dorsal striatum ([�21, �12, 15], t � 4.41; Fig. 4C), in the
superior temporal gyrus (BA 22, [�54, �48, 12], t � 4.03), and in
the posterior cingulate cortex (BA 23, [�6, �27, 24], t � 4.31).
Thus, these brain regions code reward value (reward vs no re-
ward) during prediction and receipt of reward by similar activity
patterns after the cue– outcome associations have been acquired.

In a second step, we examined pattern similarity in these re-
gions during the other time points of learning. From (1) the
medial and central OFC, (2) the bilateral DLPFC, and (3) the
dorsal striatum, exhibiting significant pattern similarity during
late learning trials (see above), we extracted the averaged (across
voxels) AUC values from all three time points (Fig. 4, right). We
then applied these AUC values to a (3 � 3) time-by-region
ANOVA with repeated measures. We found a significant main
effect of time (F(2,44) � 13.23; p � 0.001) that was driven by
significant (p � 0.01) differences between AUC values during
early and late as well as mid and late learning but not between
early and mid learning (p � 0.99). We observed no significant
main effect of region (F(2,44) � 1.80; p � 0.18) but a significant
time-by-region interaction (F(4,88) � 2.58; p � 0.05). Post hoc t
tests revealed that this interaction was driven by significantly
higher AUC values in the dorsal striatum compared with the
DLPFC (t � 2.79; p � 0.05) and the OFC (t � 3.05; p � 0.05)
during mid learning trials. These results suggest that reward pre-
dictions in the dorsal striatum arise at an earlier time point than
in the prefrontal cortex.

Moreover, we searched for brain regions in which reward pre-
dictions change at the same pace as the expected values of the RL
model. We reasoned that the higher the model-derived expected
values, the better the reward predictions should be represented
specifically in brain regions where learning proceeds in an
RL-like fashion. To test this idea, we correlated the whole-
brain images of AUC values (early, mid, and late learning)
with the expected values of the RL model (for reward vs no-
reward cues, as shown in Fig. 2C). Only in the dorsal striatum
([�21, �15, 12], t � 4.98) did this analysis reveal significant
(p � 0.0001; k � 5) correlations between changes in expected
value of the RL model and changes in neural representations of
predicted reward (pattern similarity). Importantly, these vox-
els overlapped substantially with the striatal voxels observed
above. We did not find any significant correlations with the
OFC and the DLPFC. This result suggests that reward predic-
tions only in the dorsal striatum change at a pace that is in line
with classical RL processes. In fact, this result could have been
expected based on the temporal profile of the AUC values in
the striatum and the expected values of the RL model that was
fitted using RT data.

We further explored whether outcome predictions in striatal
and prefrontal regions are related to subjects’ ability to use these
outcome predictions to guide value-based decisions. Specifically,
we tested whether cue– outcome pattern similarity during late
learning trials was correlated with the percentage of high-value
choices in the postscanning task. Because the percentages of
high-value choices are not normally distributed (Kolmogorov–
Smirnov test, p � 0.05), the nonparametric Spearman’s rank
correlation coefficient was used to explore this relationship. This
correlation between pattern similarity in late learning trials and
the percentage of high-value choices in the postscanning task was
significant in the DLPFC (r � 0.51; p � 0.05) but not in the OFC
(p � 0.85) or the dorsal striatum (p � 0.20). In addition, we
performed a permutation test (2000 permutations) to obtain the
exact two-tailed p value for our empirically observed relation-
ship. This procedure yielded a value of p � 0.014. These results
suggest that only outcome predictions in the DLPFC are directly
related to value-based action selection, i.e., the DLPFC activity
seems to be important for the ability to use reward predictions to
guide choices.
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Discussion
In the current study, we have shown that spatially distributed
fMRI patterns in the OFC, DLPFC, and striatum represent the
reward value of predicted outcomes. Furthermore, we have
shown how these representations are acquired across learning
and that striatal representations precede those in prefrontal cor-
tex. Finally, our results suggest that reward representations in the
DLPFC specifically subserve value-based action selection.

The representation of outcome predictions in striatal and pre-
frontal regions is consistent with a large body of evidence from
animal electrophysiology and human neuroimaging studies
(Watanabe, 1996; Schoenbaum et al., 1998; Tremblay and
Schultz, 1999; Breiter et al., 2001; Knutson et al., 2001; O’Doherty
et al., 2002, 2004; Gottfried et al., 2003; Barraclough et al., 2004;
Roesch and Olson, 2004; Samejima et al., 2005; Plassmann et al.,
2007; Kahnt et al., 2009; Tobler et al., 2009; Park et al., 2011).
However, the precise coding scheme as well as how these repre-
sentations emerge during learning has remained primarily elu-
sive. We have previously shown that similar fMRI patterns code
the reward value of predicted and actual outcomes after outcome
predictions have been established (Kahnt et al., 2010). Here, we

extend this finding in a critical way by showing that this pattern
similarity is present after, but not before, learning, suggesting that
the distributed representations of predicted and actual outcomes
become similar during learning. Importantly, this cue– outcome
pattern similarity was extremely robust and generalized across
the different sensory cues (predicting the same reward outcome)
that were used in the seven independent scanning runs. Thus, the
brain might represent reward predictions by eliciting the neural
representation of the actual reward outcome independent of the
cue that caused this prediction.

We found differences in learning between striatal and pre-
frontal brain regions. Specifically, representations of reward pre-
dictions in the striatum occurred earlier than in the DLPFC and
the OFC, and only changes in the dorsal striatum were correlated
with the expected values of an RL model. This suggests the pres-
ence of multiple reward signals in the brain that are not necessar-
ily all related to RL processes. Similar dissociations of learning in
striatal and prefrontal areas have been revealed in animal record-
ing studies, where striatal processes have been shown to precede
prefrontal representations (Pasupathy and Miller, 2005). In line
with this, altered functional connectivity between the striatum

A

B
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Figure 4. Similar reward coding response patterns for cue and outcome during late learning. Left, In the OFC (A), DLPFC (B), and dorsal striatum (C), similar fMRI patterns encode reward during
prediction and receipt of reward. The purple outline in A represents a significant cluster for a similar analysis in a previous study (Kahnt et al., 2010). T-maps are thresholded at p � 0.0001 (yellow)
and p � 0.001 (red) and are overlaid on a normalized anatomical image averaged across subjects. Right, Learning-related changes in pattern similarity in the OFC (A), DLPFC (B), and striatum (C).
Coronal sections depict voxel-wise pattern similarity (AUC) during early, mid, and late learning. Black outlines indicate significant regions (p � 0.0001) corresponding to yellow areas on the left. Bar
plots depict pattern similarity averaged across voxels in the black outline below. *p � 0.05. White dashed lines indicate chance level (AUC of 0.5).
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and the DLPFC has been shown to account for learning and
decision-making impairments in addicted patients (Park et al.,
2010). Furthermore, our results suggest that representations in
the DLPFC are directly related to subsequent value-based deci-
sion making. This result is well in line with numerous findings
linking DLPFC activity to information necessary for optimal de-
cision making such as sensory evidence (Romo and Salinas, 2003;
Heekeren et al., 2004; Philiastides et al., 2011), categories (Seger
and Miller, 2010), rules (Wallis et al., 2001), and previous choices
and rewards (Watanabe, 1996; Barraclough et al., 2004; Lee and
Seo, 2007).

The fMRI patterns we observe to code specific rewards are
likely to result from randomly distributed populations of neu-
rons with different tuning properties for reward. Specifically,
positive and negative value coding neurons have been shown to
coexist in the primate and rat OFC (Schoenbaum et al., 1998;
Tremblay and Schultz, 1999; Padoa-Schioppa and Assad, 2006;
Kennerley et al., 2009; Morrison and Salzman, 2009; Kobayashi et
al., 2010). Positive value coding neurons increase their firing rate
with increasing value, whereas negative value coding neurons
decrease their firing rate. Both populations are equally prevalent
in the primate PFC (Kennerley et al., 2009) and could lead to
slightly biased responses of individual MR voxels (Kahnt et al.,
2010). Biased sampling of individual voxels, as well as similar
mechanisms (Kriegeskorte et al., 2010; Swisher et al., 2010), has
been suggested to account for orientation information in fMRI
patterns obtained from the early visual cortex (Haynes and Rees,
2005; Kamitani and Tong, 2005) but also for higher cognitive and
decision variables throughout the brain (Haynes and Rees, 2006;
Norman et al., 2006; Kahnt et al., 2011a,b; Soon et al., 2008).

In the current study, we have shown that value-coding fMRI
patterns during the reward-predicting cue and the rewarding
outcome become similar during learning. Representations in the
striatum appeared earlier than in the DLPFC and OFC, pointing
toward different time courses of learning in these regions and the
presence of different value signals. Furthermore, only reward
representations in the DLPFC were related to the performance in
subsequent value-based decisions, suggesting a critical role of
DLPFC representations in reward-based action selection. These
results shed light onto the basic functional architecture of learn-
ing and decision making and suggest that multiple reward repre-
sentations in the human brain promote specific and dissociable
functions.
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