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Alzheimer’s disease (AD) is the most common cause of dementia, and is characterized by memory loss and cognitive decline, as well as
amyloid � (A�) accumulation, and progressive neurodegeneration. Cdk5 is a proline-directed serine/threonine kinase whose activation
by the p25 protein has been implicated in a number of neurodegenerative disorders. The CK-p25 inducible mouse model exhibits
progressive neuronal death, elevated A�, reduced synaptic plasticity, and impaired learning following p25 overexpression in forebrain
neurons. Levels of A�, as well as the APP processing enzyme, �-secretase (BACE1), are also increased in CK-p25 mice. It is unknown what
role increased A� plays in the cognitive and neurodegenerative phenotype of the CK-p25 mouse. In the current work, we restored A�
levels in the CK-p25 mouse to those of wild-type mice via the partial genetic deletion of BACE1, allowing us to examine the A�-
independent phenotype of this mouse model. We show that, in the CK-p25 mouse, normalization of A� levels led to a rescue of synaptic
and cognitive deficits. Conversely, neuronal loss was not ameliorated. Our findings indicate that increases in p25/Cdk5 activity may
mediate cognitive and synaptic impairment via an A�-dependent pathway in the CK-p25 mouse. These findings explore the impact of
targeting A� production in a mouse model of neurodegeneration and cognitive impairment, and how this may translate into therapeutic
approaches for sporadic AD.

Introduction
Alzheimer’s disease (AD) is the most common type of dementia,
with an incidence that increases with age. The great majority of
AD cases are sporadic and idiopathic. Amyloid plaques are a
defining histological characteristic of AD (Hardy, 2006). Amy-
loid � (A�) peptides, which can exist as oligomers or aggregate
into amyloid plaques, are generated upon the sequential cleavage
of APP, which is initiated by the �-site amyloid precursor cleav-
ing enzyme (BACE1) (Vassar et al., 1999).

Cyclin-dependent kinase 5 (Cdk5) is a proline-directed ser-
ine/threonine kinase that binds to one of two activators, p35 or
p39 (Ko et al., 2001). Cdk5 regulates a multiplicity of physiolog-
ical events in the CNS, including neuronal migration, neurite
development, synaptic plasticity, and cognition (Dhavan and
Tsai, 2001; Fischer et al., 2002; Tomizawa et al., 2002; Cheung and
Ip, 2007; Kim and Ryan, 2010). The proteolytic cleavage of p35
into p25 by calpain, a Ca 2�-dependent protease, leads to the

prolonged activation and altered subcellular localization of Cdk5
(Lee et al., 2000; O’Hare et al., 2005). The generation of p25 has
been linked to neurotoxicity and several neurodegenerative dis-
orders including AD, amyotrophic lateral sclerosis, Parkinson’s
disease, Neiman Pick’s Type C disease, and ischemic brain injury
(Patrick et al., 1999; Nguyen et al., 2001; Sawamura et al., 2001;
Wang et al., 2003; Qu et al., 2007).

We created a transgenic mouse that overexpresses the p25
protein under the control of an inducible, calcium/calmodulin-
dependent protein kinase II � (CaMKII) promoter (CK-p25
mice) (Cruz et al., 2003). These mice recapitulate many hallmark
features of AD, including progressive neuronal loss, elevated A�,
tau pathology, cognitive dysfunction, and impaired synaptic
plasticity (Cruz et al., 2003; Fischer et al., 2005). p25/Cdk5 has
been shown to upregulate BACE1 expression and activity
through a transcriptional mechanism (Wen et al., 2008), and the
CK-p25 mice accordingly exhibit increased BACE1 levels and
activity, accompanied by the intraneuronal accumulation of A�
(Cruz et al., 2006).

Mouse models of AD in which A� is elevated via mutations in
APP or in A� processing express significant cognitive and synap-
tic deficits. However, unlike both AD patients and mice overex-
pressing p25, these models exhibit little or no neuronal loss. To
specifically examine the role of A� elevation in the CK-p25
mouse model of neurodegeneration, we evaluated the impact of
p25 overexpression on a background of normalized A� levels in
the CK-p25 mouse. To achieve this, we targeted A� production
by breeding CK-p25 mice to BACE1 knock-out mice, an ap-
proach which has led to the amelioration of pathology in several
mouse models of familial AD (FAD) (Ohno et al., 2004, 2007;
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Laird et al., 2005). We found that the de-
letion of a single copy of BACE1 in the
CK-p25/BACE1�/� compound mice re-
duced A� to baseline levels, and rescued
synapse density, synaptic plasticity, and
memory impairments in the CK-p25
mice, but not neuronal loss. These find-
ings indicate that increases in p25/Cdk5
activity may mediate AD-like pathology
via parallel pathways in the CK-p25
mouse, one of which involves increases in
A� generation, synaptic dysfunction and
cognitive decline, and a parallel pathway
that leads to neuronal death.

Materials and Methods
Mice. Single CaMKII-tTA or TetO-p25-GFP
transgenic mice were crossed to BACE1 �/�

mice (Cai et al., 2001) obtained from The Jack-
son Laboratory, and the resulting generations
were mated to obtain the genotypes of interest.
At 2 months of age, CK-p25 mice were induced
for 6 weeks to obtain forebrain-specific p25
expression (Cruz et al., 2003). Littermates and
same-sex mice were used for comparison when-
ever possible. All transgenes were heterozygous.
Upon brain dissection, one hemisphere was
drop-fixed in 4% paraformaldehyde (PFA), and
the other was flash-frozen in liquid nitrogen. Al-
ternatively, mice were perfused with 4% PFA be-
fore dissection of the hemispheres.

Immunoblot analysis. Forebrain lysates from
6-week induced mice were prepared as de-
scribed previously (Cruz et al., 2003). Proteins
were subjected to SDS-PAGE and immunoblot
analysis using the following antibodies (1:1000
unless noted): DC17 (Cdk5, Tsai laboratory,
1:50), p35 (Tsai laboratory), GAPDH (Santa
Cruz Biotechnology), pT205 (Invitrogen),
C-APP (Sigma), BACE1 (D10E5 clone; Cell
Signaling Technology).

A� ELISA. Forebrain tissue was homoge-
nized in an ice-cold 4� volume of PBS supple-
mented with 1� protease inhibitors (Roche),
AEBSF (4-(2-aminoethyl)benzenesulfonyl flu-
oride) (Pierce), and 8.2 M guanidine/82 mM

Tris HCl, pH 8.0, to a final concentration of 5 M

guanidine. Samples were processed with the
Mouse A�42 ELISA kit according to manufac-
turer’s instructions (Invitrogen).

Immunohistochemistry. Forty-micrometer-
thick sections were prepared from fixed brains.
Floating sections were labeled using the follow-
ing antibodies (1:500): 4G8 (Covance), NeuN
(Millipore), GFP (Aves Labs), and synapto-
physin (Sigma). To quantify neuronal density,
five comparable sections spanning the hip-
pocampus were immunolabeled, and the total
number of NeuN-positive cells in hippocam-
pal area CA1 across all sections was counted blindly. 4G8 pictures were
taken from comparable sections containing CA1 at the same rostrocau-
dal level. 4G8 puncta were defined as intracellular aggregates of �5 con-
tiguous pixels of matching maximum intensity. For synaptophysin
quantification, the stratum radiatum of the hippocampus was imaged
using a 63� oil objective and 4� optical zoom, and the number of
puncta with a diameter of �0.4 �m was counted. Comparable sections
were stained with Cresyl Violet dye, and total cell numbers were counted

under a light microscope. Immunofluorescent images were acquired us-
ing a Zeiss confocal microscope. All cell counts were quantified blindly.

Animal behavior. Context-dependent fear conditioning was per-
formed as described previously (Guan et al., 2009). Briefly, mice were
trained by exposure to the context, followed by a foot shock (2 s; 0.5, 0.8
mA constant current). Freezing behavior was recorded 24 h later upon
reexposure of the mice to the conditioning context.

Electrophysiological analysis. Electrophysiological analysis was per-
formed as described previously (Guan et al., 2009). Recordings were
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Figure 1. CK-p25/BACE1 �/� mice exhibit normalized A� production and tau phosphorylation. A, Immunoblot analysis
of forebrain lysates from 6-week induced CK-p25/BACE1 �/� brains revealed a significant decrease in the APP C-terminal
fragments generated by BACE1 processing of APP when compared with CK-p25/BACE1 �/� mice (n � 5– 6 mice/geno-
type). B, Mouse A�42 ELISA demonstrated significantly reduced A�1– 42 levels in CK-p25 mice hemizygous for BACE1 (n �
6 –7 mice/genotype). A�1– 42 levels were indistinguishable between BACE1 �/� and BACE1 �/� mice. C, Representative
images of 4G8 immunoreactivity in hippocampal area CA1. Scale bar, 10 �m. D, 4G8 punctum diameter is significantly
decreased in CK-p25/BACE1 �/� mice compared with CK-p25/BACE �/� mice (n � 3– 4 mice/genotype). E, CK-p25/
BACE1 �/� exhibited a decrease in phosphorylated Thr205 tau, when compared with CK-p25/BACE1 �/� mice. F, Densi-
tometry analysis of phosphorylated tau at residue Thr205 relative to total protein (top left), and BACE1 protein levels (top
right). Cdk5 levels are not significantly different between the four genotypes (bottom left). p25-GFP levels are not signif-
icantly different between the CK-p25/BACE1 �/� and CK-p25/BACE1 �/� mice (bottom right). Results are presented as
fold-change over control or relative intensity (n � 4 – 6 mice/genotype). One-way ANOVA followed by Newman–Keuls
post hoc test. Mean � SEM. *p � �0.05, **p � �0.01, ***p � �0.001.
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made using transverse (400 �m) hippocampal slices prepared from 3-
to 4-month-old mice. Baseline responses were recorded for 30 min.

Results
CK-p25 mice hemizygous for BACE1 have decreased APP
processing and reduced tau phosphorylation
We performed biochemical analyses of brain lysates from �3-
month-old CK-p25/BACE1�/�, CK-p25/BACE1�/� mice and
their control littermates, following 6 weeks of p25 induction. We
show that the CK-p25/BACE1�/� mice displayed lower levels of
the BACE1-cleaved APP C-terminal fragment (C-APP) com-

pared with CK-p25/BACE1�/� mice (Fig.
1A), and were not significantly different
from control levels. To confirm the reduc-
tion in APP processing, we performed an
ELISA on forebrain tissue from 6-week in-
duced CK-p25 mice. Importantly, A�1– 42

levels in CK-p25 mice hemizygous for
BACE1 were comparable to those of wild-
type (BACE�/�) and BACE1�/� mice (Fig.
1B), while significantly elevated in the CK-
p25/BACE�/� mice. Moreover, fluorescent
immunolabeling of hippocampal sec-
tions with the anti-A� antibody 4G8
demonstrated a significant decrease in
the diameter of intraneuronal 4G8-
immunoreactive puncta in area CA1
neurons, although the average diameter
is still higher than that of the controls
(Fig. 1C,D). We also confirmed that the
CK-p25/BACE1 �/� mice exhibited re-
duced BACE1 levels compared with CK-
p25/BACE1 �/� mice, which were
comparable to controls (Fig. 1 E, F ).
Levels of Cdk5 did not differ among the
genotypes, nor did p25 levels differ be-
tween the CK-p25/BACE1�/� and the CK-
p25/BACE1�/� groups (Fig. 1E,F). We
found that CK-p25 mice hemizygous for
BACE1 (CK-p25/BACE1 �/�) exhibited
normalized tau phosphorylation at sev-
eral epitopes, including Thr205 (Fig.
1E,F), and Ser202 (data not shown),
while their CK-p25/BACE1�/� littermates
displayed the increased tau phosphorylation
typical of the CK-p25 genotype. As de-
scribed previously (Sankaranarayanan et al.,
2008; Kim et al., 2011), BACE1�/� and
BACE1�/� mice exhibited similar process-
ing of BACE1 substrates such as Nav1.1 and
neuregulin 1 (data not shown). These re-
sults validate the partial deletion of BACE1
as a means to normalize amyloidogenic APP
processing in the CK-p25 mouse.

Normalization of A� level does not
rescue neuronal loss in the CK-p25
mouse
The expression of p25 leads to severe
neuronal death and neurodegeneration
in the CK-p25 mouse (Cruz et al., 2003).
Accordingly, total brain weight was signif-
icantly reduced in 6-week-induced CK-
p25 mice compared with controls (Fig.

2A). Lowering A� levels via BACE1 hemizygosity in the CK-p25
mice did not rescue the reduced brain weight in the CK-p25/
BACE1�/� mice (Fig. 2A). We observed a nearly 50% reduction
in the number of NeuN-positive cells in hippocampal area CA1 in
the 6-week-induced CK-p25 mice, and this neuronal loss was not
rescued in the CK-p25/BACE1�/� mice (Fig. 2B,C). Additional
analyses using FluoroJade staining confirmed that both CK-p25
groups showed significant neuronal death (data not shown). Fur-
thermore, both CK-p25 genotypes presented significantly ele-
vated levels of GFAP immunoreactivity in the cortex and
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Figure 2. BACE1 hemizygosity does not rescue neuronal death in CK-p25 mice. A, BACE1 genotype does not affect the signifi-
cant decrease in brain weight in CK-p25 mice. B, C, Severe neuronal death in hippocampal area CA1 is evident in CK-p25/
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hippocampus, indicative of reactive astrogliosis (data not
shown). In a number of neuropathologies, including AD, that
involve neuronal loss, neurons engage in aberrant cell cycle be-
havior and show evidence of DNA damage (Butterfield et al.,
2001; Lu et al., 2004; Herrup and Yang, 2007). Likewise, the CK-
p25 mouse exhibits ectopic neuronal cell-cycle protein expres-
sion and DNA double-strand breaks following 2 weeks of p25
induction (Kim et al., 2008). However, the normalization of A�
levels in the CK-p25/BACE1�/� does not ameliorate the DNA
damage or cell-cycle reentry phenotype, as detectable by �H2AX
and Ki67 immunoreactivity, respectively (data not shown). To-
gether, these results suggest that non-amyloid mechanisms may
underlie the severe neurodegeneration of the CK-p25 mouse.

BACE1 hemizygosity rescues memory impairments in the
CK-p25 mice
The CK-p25 mice exhibit significant impairments in associative
learning following prolonged expression of the p25 transgene
(Fischer et al., 2005). To examine how the removal of elevated A�
levels impacts the associative learning deficits of the CK-p25
mice, we examined 6-week-induced animals using contextual
fear conditioning, a hippocampus-dependent task. CK-p25/
BACE1 �/� mice froze significantly more than CK-p25/
BACE1 �/� mice, and were indistinguishable from controls (Fig.
3A). Both exploratory behavior and response to the foot shock
did not differ between the different genotypes (Fig. 3B,C). Thus,
normalizing A� levels ameliorates cognitive impairments in the
CK-p25 mice.

The normalization of A� levels via BACE1 hemizygosity
restores synaptic plasticity and synapse density in the CK-p25
mouse hippocampus
We next examined long-term potentiation (LTP) in hippocam-
pal area CA1 to determine how the normalization of A� levels
would impact the phenotype of impaired synaptic plasticity in the
CK-p25 mice. Consistent with previous observations (Fischer et
al., 2005), the CK-p25/BACE1�/� mice displayed diminished
CA1 LTP following a 6-week induction of p25 (red; Fig. 4A).
Strikingly, LTP was fully restored to wild-type levels in the CK-
p25/BACE1�/� mice (green; Fig. 4A). All groups of mice exhib-
ited normal basal synaptic properties (Fig. 4B).

The pathology of Alzheimer’s disease includes significant syn-
aptic loss, which correlates with memory impairments (DeKosky
and Scheff, 1990; Honer, 2003). The presynaptic protein synapto-
physin has been widely used as a synaptic marker (Honer, 2003). We
performed an analysis of synaptophysin-immunoreactive puncta
(diameter �0.4 �m) in neurons from 6-week induced CK-p25 mice
and their control littermates. Consistent with previous reports in the
CK-p25 mouse (Fischer et al., 2007), CK-p25/BACE1�/� mice ex-
hibited a significantly reduced density of synaptophysin puncta in
the stratum radiatum of the hippocampus (Fig. 4C,D). The normal-
ization of A� levels in the CK-p25/BACE1�/� mice led to a striking
recovery in the density of synaptophysin-immunoreactive puncta,
to levels that were not statistically different from those of the
BACE1�/� and BACE1�/� mice. Together, the results of the cur-
rent work demonstrate that the normalization of A� concentration
in the brains of CK-p25 mice rescues the synaptic and cognitive
impairments associated with p25 overexpression, but that p25-
dependent neuronal loss occurs via a mechanism independent of A�
generation.

Discussion
The goal of the current work is to delineate the role of elevated A�
in the CK-p25 phenotype of AD-like neurodegeneration and cog-

nitive impairment. In human AD patients, neuropathology is
characterized by both neuronal and synaptic loss (Davies et al.,
1987; Selkoe, 2002). In mouse models of AD in which amyloid
processing is affected, there is a noteworthy lack of significant
neurodegeneration despite heavy A� burdens and profound cog-
nitive decline (for review, see Chin, 2011). However, the CK-p25
mouse also displays severe neurodegeneration, including exten-
sive neuronal death, even though the increase in endogenous A�
in these mice is relatively modest (Cruz et al., 2006).

Reductions in A� generation effected by deletion of BACE1
have been shown to ameliorate the phenotypes of mouse AD
models such as the Tg2576 (Ohno et al., 2004), 5XFAD (Ohno et
al., 2007), and APPswe;PS1	E9 lines (Laird et al., 2005). We used
a similar approach to examine the contribution of elevated A�
levels to p25-induced neurodegeneration. In our approach,
BACE1 activity and A� generation in CK-p25 mice was normal-
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ized via the deletion of one allele of the BACE1 enzyme, and mice
were then examined for the occurrence of tau phosphorylation,
neuron and synaptic loss, and cognitive dysfunction. While
A�1– 42 levels do not appear to differ between wild-type and
BACE1�/� mice in our study, we have previously shown that
BACE1 protein levels are increased in the CK-p25 mouse, which
is accompanied by increased A� production (Cruz et al., 2006). It
was subsequently shown that p25/Cdk5 upregulates the tran-
scription of BACE1 (Wen et al., 2008). This is likely to be the
main mechanism whereby the loss of one allele of BACE1 is able
to reduce A� levels in CK-p25 mice. Thus, BACE1 heterozygosity
appears to be sufficient to normalize the increased A� levels that
result from BACE1 upregulation in the CK-p25 mouse. Although
BACE1 homozygous knock-out animals have abnormalities in
behavior, electrophysiology, myelination, and spine density,
BACE1 heterozygotes appear to be normal in these measures
(Laird et al., 2005; Savonenko et al., 2008). We found that CK-
p25 mice exhibiting wild-type levels of APP processing and A�
were protected from many p25-dependent pathologies, and had
normal cognitive function, but still showed the extensive neuro-
nal death typical of the CK-p25 phenotype.

Symptoms of cognitive impairments and changes in affect
observed in AD may be due to synaptic dysfunction, reflected in

part by reduced synaptic density (DeKo-
sky and Scheff, 1990). The expression (�
6-weeks) of the p25 transgene gives rise to
similar phenotypes, with mice exhibiting
decreases in synaptophysin immunoreac-
tivity, learning and memory, and synaptic
plasticity. The restoration of cognitive
function and synaptic plasticity that we
observe in CK-p25 mice upon A� nor-
malization, in the absence of protection
against neuronal death, argues for a sepa-
ration in the etiology of these pathologies
in this mouse model, such that p25/Cdk5-
induced increases in A� generation may
be responsible for synaptic dysfunction,
while other mechanisms underlie neuro-
nal death. This concept is supported by
the recent findings of a specific role for A�
in synaptic dysfunction in the absence of
neuronal loss (Cissé et al., 2011; D’Amelio
et al., 2011). The apparent disconnect be-
tween functional recovery and neuronal
death is striking, but not unprecedented
(Pesavento et al., 2002; Nahm et al., 2003;
Fischer et al., 2007) and suggests that, in
the course of neurodegeneration, the
function of remaining neurons may be
improved via various interventions, even
though the disease itself may not be
slowed or halted.

Neuronal death observed in the
CK-p25 mice may be explained by the
phenomena of genomic instability and
ectopic cell-cycle protein expression that
are observed before neuronal death, and
which are mediated by the inhibition of
the histone deacetylase 1 (HDAC1) pro-
tein (Kim et al., 2008). In addition, other
groups have described a neurotoxic role
for p25/Cdk5 in the nucleus, where its ac-

tions may trigger aberrant cell-cycle reentry (O’Hare et al., 2005;
Saito et al., 2007) as well as induce the phosphorylation and deg-
radation of the transcription factor MEF2 following neurotoxic-
ity, leading to cell death (Gong et al., 2003; Tang et al., 2005).
Cdk5, in association with p35, has also been shown to be protec-
tive in the neuronal nucleus, where it suppresses cell cycle activity
in the differentiated neuron (Cicero and Herrup, 2005; Zhang et
al., 2010). Together, these observations suggest a model in which
A� production facilitate synapse loss, and learning and synaptic
deficits in the CK-p25 mouse, while neuronal death occurs via
mechanisms less directly linked to amyloid. As A� also increases
p25 production in neurons (Lee et al., 2000), these two pathways are
intricately linked in a feedforward mechanism of p25 overproduc-
tion that likely culminates in both the cognitive deficits and neuro-
degeneration observed in the CK-p25 mouse and, potentially, in
human AD. Therefore, the inhibition of the p25/Cdk5 complex,
while leaving the p35/Cdk5 complex intact, is a promising avenue
for the therapeutic intervention of neurodegenerative disease.
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