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Development/Plasticity/Repair

Dendritic Spine Dynamics Regulate the Long-Term Stability

of Synaptic Plasticity

Cian 0’Donnell,-> Matthew F. Nolan,?> and Mark C. W. van Rossum!
'Institute for Adaptive and Neural Computation, and 2Neuroinformatics Doctoral Training Centre, School of Informatics, University of Edinburgh,
Edinburgh EH8 9AB, United Kingdom, and Centre for Integrative Physiology, University of Edinburgh, Edinburgh EH8 9XD, United Kingdom

Long-term synaptic plasticity requires postsynaptic influx of Ca®" and is accompanied by changes in dendritic spine size. Unless Ca*"
influx mechanisms and spine volume scale proportionally, changes in spine size will modify spine Ca>* concentrations during subse-
quent synaptic activation. We show that the relationship between Ca*" influx and spine volume is a fundamental determinant of synaptic
stability. If Ca®" influx is undercompensated for increases in spine size, then strong synapses are stabilized and synaptic strength
distributions have a single peak. In contrast, overcompensation of Ca*>" influx leads to binary, persistent synaptic strengths with
double-peaked distributions. Biophysical simulations predict that CA1 pyramidal neuron spines are undercompensating. This unifies
experimental findings that weak synapses are more plastic than strong synapses, that synaptic strengths are unimodally distributed, and
that potentiation saturates for a given stimulus strength. We conclude that structural plasticity provides a simple, local, and general
mechanism that allows dendritic spines to foster both rapid memory formation and persistent memory storage.

Introduction

Long-term synaptic plasticity is believed to underlie learning in
the brain (Milner et al., 1998; Morris et al., 2003). Synaptic plas-
ticity in central neurons is initiated by changes in dendritic spine
Ca*" concentration driven by presynaptic and postsynaptic neu-
ronal activity. The Ca®" signals are detected by molecular ma-
chinery within the spine, triggering a biochemical cascade that
leads to potentiation or depression of synaptic efficacy (see Fig.
1Ai) (Zucker, 1999; Malenka and Bear, 2004 ). Successful mem-
ory storage requires that changes in synaptic strength persist over
time. To achieve this, the synaptic plasticity machinery must re-
main insensitive to spontaneous Ca*" fluctuations from ongoing
neural activity. Understanding how dendritic spines and their
synapses solve this trade-off between plasticity and stability is a
fundamental problem for the neuroscience of memory.

Here we propose that the coupling of synaptic plasticity to
structural changes in spines provides a solution to this problem.
A close link between spine structural plasticity and synaptic plas-
ticity is suggested by several experimental observations: (1) den-
dritic spine size is tightly correlated with the strength of the
synapse it hosts (Matsuzaki et al., 2001); (2) spine size is actively
regulated during synaptic plasticity (Matsuzaki et al., 2004); (3)
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because of their differences in volume, small spines exhibit
greater [Ca®"] changes during synaptic activation than large
spines (Nimchinsky et al., 2004; Noguchi et al., 2005; Sobczyk et
al., 2005); and (4) large spines are more persistent in vivo than
small spines (Grutzendler et al., 2002; Trachtenberg et al., 2002;
Holtmaat et al., 2005; Zuo et al., 2005; Knott et al., 2006).

Clues to the function of the relationship between spine mor-
phology and synaptic plasticity come from computational mod-
els that predict that spine shape and size regulate Ca*" dynamics
(Gold and Bear, 1994) and the threshold for synaptic plasticity
(Kalantzis and Shouval, 2009). Nevertheless, the function and
general consequences of the correlation between spine size and
synaptic strength remain poorly understood. In particular, it is
not known how dynamic structural plasticity of dendritic spines
affects either the ability of synapses to encode new information or
the robustness of long-term synaptic information storage in the
face of ongoing neural activity.

To address these issues, we investigate the consequences of
dendritic spine structural plasticity for synaptic Ca** signaling.
We find that the exact form of the relationship between Ca*"
influx and spine size crucially determines long-term synaptic sta-
bility, synaptic strength distribution, and whether synapses store
information as a binary or continuous variable. We then use a
detailed biophysical model to predict that spine structural plas-
ticity enhances the stability of hippocampal CA3—CA1 pyramidal
neuron synapses while allowing them to store information as a
continuous variable. Our results unify several disparate experi-
mental findings and suggest a novel mechanism for rapid but
robust synaptic information storage.

Materials and Methods

Simulations and analysis were carried out using MATLAB (Mathworks)
(see Figs. 1-6) and MCell (Stiles et al., 1996) (see Fig. 7). The nomencla-
ture of voltage-gated Ca*" channels and glutamate receptors follows the
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guidelines of Catterall et al. (2005) and Collingridge et al. (2009),
respectively.

Ca’* signaling-dependent plasticity rule. Throughout the study, we model
the Ca?" dependence of synaptic plasticity as follows: low or baseline
spine Ca®" concentration cause no change in synaptic strength, Ca**
concentrations above a moderate threshold trigger depression, and Ca**
concentrations above a higher threshold cause potentiation (see Fig.
1Aii). These assumptions are consistent with many previous studies
(Bienenstock et al., 1982; Bear et al., 1987; Lisman, 1989; Cummings et
al., 1996; Hansel et al., 1997; Yang et al., 1999; Cho et al., 2001; Cormier
et al., 2001; Shouval et al., 2002; Ismailov et al., 2004). We formulate the
Ca*"-dependent plasticity rule as the difference of two sigmoid func-
tions, as follows:

_ M _ MNd
T 1+ e (Gt l-0pios | 4 ([Ca]-0a)0a

Aw

where Aw is the change in synaptic strength, 1 sets the magnitude of
plasticity events, [Ca**] is the spine Ca®" concentration (um), and 60
(um) and o (um) set the offset and steepness of the sigmoids, respectively.
The subscripts p and d denote potentiation and depression, respectively.
Because we let 6 and o be independent of synaptic strength, we are
implicitly assuming that the properties of the molecular Ca** detectors
and plasticity machinery do not vary with synaptic strength.

General conditions for exact, under-, and overcompensation. We denote
the Ca*" influx during a stimulus as J,. The scenario (exact/under-/
overcompensation) can be determined by examining the relationship
between J, and spine volume, V. To maintain constant stimulus-
evoked changes in spine [Ca"], an increase in spine volume, AV, must
be matched by a proportional increase in Ca** influx, AJ-,. Exact com-

. . . A] Ca AVsp
pensation is achieved only when =

]Ca Vsp

increase in spine volume would require a corresponding 50% increase in

Ca’* influx. Undercompensation occurs if there is not a sufficient in-

creasein Ca?" influx to counter the fractional change in spine volume, as

follows:

. For example, a 50%

Aje, AV,
<
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]Ca V;p ’

Analogously, overcompensation occurs when the fractional increase in
Ca’" influx is greater than the fractional change in spine volume, as
follows:
A]Ca A‘/sp
>

] Ca Vsp '

Quantitative changes in the scaling relationship between spine size and
Ca®" influx that do not cross these boundaries will change only the
quantitative aspects of synaptic strength dynamics, but not their qualita-
tive behavior.

As an example, consider a spine with a spherical head, surface area
(Ayp), and volume V,, where spine Ca*" influx arises solely from GluNs
(NMDA receptors). If the number of spine GluNs scales proportionally
to spine surface area and is set at 10 channels/um?, then:

]Ca(Vsp) = IOjCaAsp
= 10jc,(B6m)'°VE?

2/3
o VSP S

where j-, is the Ca?* influx through a single GIuN. Then, for small spine
volume changes:

AICa _ ZAVsp
]Ca B 3 ‘/sp '

In this case, any increase in spine volume is accompanied by a smaller
increase in Ca”" influx. Hence, scaling GIuN number proportional to
spine surface area leads to undercompensation. Keeping the number of
GluNs constant also leads to undercompensation, as does any other con-
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dition where there is an insufficient increase in Ca®" influx to match a
change in spine volume.

Integrate-and-fire model. The subthreshold voltage of the leaky
integrate-and-fire neuron (see Figs. 2C, 3) was modeled as

dV_ + Ry, L
dt - ( Vv Rin syn)/Tm >

where V,, is the membrane potential (mV), R;, is the input resistance (1
GQ), Iy, = 3Nmig, is the summed synaptic input current (pA), and 7,,,
is the membrane time constant (10 ms). When the voltage reaches
threshold, V};, = 20 mV, a spike is fired and the voltage is reset to zero. We
use current-based synapses where single synaptic input currents were
modeled as iy, = w(e "™ — ¢ "™~), where w is the synaptic weight
(pA) and 74, = 0.18 ms and 7., = 1.8 ms set the waveform time
course.

In this simplified model, synaptic Ca*" signals arise solely from GIuNs
(NMDA receptors) (Sabatini et al., 2002; Shouval et al., 2002). The Ca**
influx (mol/s) through GluNs is modeled as Jy\;pa = pv. This is the instan-
taneous product of a dimensionless variable representing the fraction of
glutamate-bound GluNs, p, which is synapse specific, with a dimensionless
voltage variable representing postsynaptic membrane potential change from
a back-propagated action potential, v, which is identical for all synapses
(Shouval et al., 2002). This additional voltage variable is necessary because
the standard integrate-and-fire model does not describe the voltage during
an action potential, which is crucial for relieving the Mg™ block of
GluNs. Both p and v were constrained between 0 and 1, and evolved as

i —x/t, where x is either p or v (1,=50msand 7, = 5ms). When the
synapse is activated, p,a, = p, + (1 — p,)/2, ensuring eventual GluN
saturation upon repeated activation. When a postsynaptic spike occurs, v —
1. The amount of spine Ca*™, Cay, (mol), from the Ca’" influx through
GluNs follows:

dCa,,
Tdr = Jxvpa — Casp/ TCa

(7, = 20ms). Importantly, the spine volume, V,, is always proportional
to the synaptic weight such that V,, = w X 0.01 um */pA (Matsuzaki et
al., 2001).

To model each of the three scenarios of exact, under-, and overcom-
pensation, we set the magnitude of Ca** influx through GIuNs, Jyypa
(mol/s), to be a function of spine volume, as follows:

]NMDA(Vsp) = ka;, >

where V,_,is the spine volume (um?), and the exponent a determines the
scenario, as explained below. k is a constant (Keo,, = 833.3, kynger = 65
and k., = 100,000 mol/s/um>*) that is found by tuning so that spine
Ca?* transients were in the range of 0—10 uM. This rescaling factor, k, is
necessary to implement the phenomenological relationship we impose
between spine size and GluN Ca** influx. The spine Ca>" concentration
following synaptic activation is related to the absolute amount of Ca**

by the following:

2+ — Casl’ ng, — a—1
[Ca*"] = v, o Vv, kv .
If @ = 1, then spine [Ca*"] is independent of spine volume. This corre-
sponds to the compensating scenario. In contrast, if @ < 1, then spine
[Ca?"] is a decreasing function of spine volume, corresponding to the
undercompensating scenario. If & > 1, then spine [Ca” "] increases with
spine volume, corresponding to the overcompensating scenario. For the
representative simulations in Figures 2C and 3, we set a equal to 1, 0, and
2, respectively, for the compensating, undercompensating, and over-
compensating scenarios. Synaptic weights are instantaneously updated at
each timestep according to the Ca**-dependent plasticity rule above.

For simulations described in Figure 3, all 500 synapses were initially set to
approximately the same strength (Gaussian distributed with mean of 6 pA
and SD of 0.3 pA), and continuously stimulated at a low rate (~5 Hz). A
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subset (50) of these synapses were then stimulated with either one or three
bursts of 40 spikes at 80 Hz. The interburst interval is 1000 ms. We denote the
S0
mean strength of the stimulated synapses as W, (f) = % The drift
stim
rate, D (see Fig. 3B), was the change in wy,(f) over a time interval, A,
divided by At, as follows:

D= (wstim(to + At) - ﬁ/stim(to))/At'

In Figure 3B, D is plotted as a function of the initial mean strength,
Wyim(fo). At here was 60 s (1 min) of biological time.

Fokker—Planck model. The Fokker—Planck equation can be used to
describe the time evolution of a probability density function (van Kam-
pen, 1992). Here we use the form:

2

PVl 9, [A(Vy,) P(V, )]+1—a [B'(Vyy) P(Vipot)]
= - §] s)t > ! §] s)t 5
AV e 20VE, P

ot

where P(V, t) is the time-dependent spine volume probability distribu-
tion, V,, is the spine head volume, and A(V,,) and B'(V,,,) are the drift
and diffusion terms, respectively. We numerically evaluate A and B’ as
follows. First, we use a discretized Ca*" concentration probability distri-
bution. In the implementation described here, the distribution is expo-
nential. Qualitatively similar results were found with either uniform or
log-normal distributions, or when a limit of 20 um is imposed on the ampli-
tude of the exponential distribution, because of the saturation in the plastic-
ity rule at high [Ca**]. The Ca*"-dependent plasticity rule is then used to
calculate the discrete probability distribution of plasticity jump sizes for a
given spine volume, Q(AV,,). From this we calculate the average jump,
<A\/S)P> = 3V,,,Q, and its mean square, <(AVSP)2> = 3(V,:)’Q:. The
average jump size as a function of spine volume gives the drift term,
A(V,,), while the mean square jump gives the diffusion term, B(V,,,) (van
Kampen, 1992). To incorporate intrinsic fluctuations, we add a volume-
dependent term to the diffusion term, based on data demonstrating that
the magnitude of spine size fluctuations increases linearly with spine
head volume (parameters adapted from Yasumatsu et al., 2008). The
final diffusion term, B'(V,,,), is given by

B'(Vy,) = B(V,) + (2 X 107*)(1 + 20V ,um™).

For simulation, we discretize the spine volume probability distribution,
P(V,,t), atresolutions Atand AV. We use the drift and diffusion terms to
build a Markov transition matrix, M, so that P(t + At) = AtMP(z). It
is important that At and AV are small enough for the Fokker—Planck
assumptions to hold. If we let a; = A/2AV and b, = B}/2(AV)?, then M is
the tridiagonal matrix, as follows:

—a,—b  —a+b 0 0 0

a, + b — 2b, —a;+b; 0 0

wo| 0 et B0
0 0 0 —2b,_,  —a,+b,
0 0 0 a, +b, a,—b,

Because the columns of M sum to zero, it has at least one eigenvalue equal
to zero. The eigenvector associated with the zero eigenvalue corresponds
to the steady-state probability distribution (see Fig. 5).

For Figure 4, A and B, left column (the compensating scenario), we
tune the Ca>" amplitude distribution so that depression is slightly more
likely than potentiation. Hence, the synaptic strength probability distri-
bution always drifts to the minimum strength, no matter what the initial
strength is. For Figure 4, Cand D, we measure the time to steady state (the
lifetime) as the time it takes for the median of the spine volume proba-
bility distribution to reach £20% of the steady-state median strength.
We choose the median instead of the mean because the distributions
were often bimodal, and graphing the median more clearly represented
the simulation findings, although the results were qualitatively the same
in either case. For Figure 4 E, we initially set the synaptic strength to the
minimum strength. We then define the probability of a spontaneous
transition from the weak to strong stable strength as pg;,, = P(V,, >
Vinax/2) following a fixed simulation time, tg;,. Here tg;, = 5000 s, but
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Table 1. Biophysical model parameter values

Symbol Value Parameter
Gy 0.75 wF/m? Membrane capacitance
R, 200 Qem Axial resistivity
Gleak 2pS/pum? Leak conductance density
Cleak —70mV Leak reversal potential
SCavsp 300 ps/m? Spine total CaV conductance density
&cavd 40 ps/um? Dendrite total CaV conductance density
eCa +10mV Ca®" reversal potential (Ohmic)
Leck 0.5 uwm Spine neck length
Greck 0.1 um Spine neck diameter
Lsend 795.77 um Dendrite length
Qyend 2 um Dendrite diameter
TiMPA 0.18 ms GluA rise time constant
Ao 1.8'ms GluA decay time constant
pa 2ms GluN rise time constant
i 89 ms GluN decay time constant
€yn 0mv GluA and GluN reversal potential
[@**], 50 nm Resting Ca®" concentration
D 22X10 "m¥s Ca* diffusion rate constant
Bs 0.8 X 10 %s Spine extrusion rate
Bend 3.2 X107 %s Dendrite extrusion rate
ke 100 X 106/M/s Endogenous buffer forward binding rate
k, 500/s Endogenous buffer backward binding rate
By 100 pum Spine total buffer concentration
Brdend 500 m Dendrite total buffer concentration
M, 1X107°S/s Potentiation rate
0, 5.5 pm Offset for potentiation sigmoid
g, 0.2 pum Slope for potentiation sigmoid
N 510715/ Depression rate
0, 4 pm Offset for depression sigmoid
oy 0.2 pm Slope for depression sigmoid

varying this choice does not change the qualitative shape of the curve in
Figure 4 E.

Biophysical CAI pyramidal neuron spine model. The biophysical spine
model (Fig. 6 A) includes both Ca?" and electrical dynamics and consists
of the following three compartments: a spherical head (volume range
0.01-0.3 um 3 Harris and Stevens, 1989); a cylindrical spine neck (di-
ameter 0.1 um, length 0.5 wm) (Harris and Stevens, 1989); and a single-
compartment cylindrical dendrite segment (diameter 2 um, length
795.77 wm, surface area 5000 um?). The values of the model parameters
are given in Table 1. The simulation code is available to download from
the online database ModelDB (http://senselab.med.yale.edu/modeldb/).

The electrical component contained GluAs (AMPA receptors), GluNs, a
leak conductance, and four different voltage-gated Ca** conductances:
Ca,3.1 (T-type), Ca,2.3 (R-type), Ca,1.2/1.3 (L-type), and Ca,2.2 (N-type).
These four Ca" channel types can account for the majority of Ca** influx
through Ca®" channels (CaVs) at hippocampal spines (Bloodgood and Sa-
batini, 2007). The time course of GluA and GluN glutamate binding was
expressed as the dimensionless quantity, G, and modeled as the difference
between two exponentials, Gyypanvpa = € 7™ — e~ "™ The GluN
model also contained a voltage-dependent Mg * block (Jahr and Stevens,
1990), so the total GIuN conductance is as follows:

g _ &umpa X Gavpa
NMDA = o
1 4 ¢ 0063V Mg
3.57

where guupa 1s the peak GluN conductance, V,, is the spine membrane
potential (mV), and [Mg "] is the extracellular magnesium concentra-
tion (mm), here taken as 1 mm (Jahr and Stevens, 1990). The CaV models
were adapted from the literature as follows: Ca,3.1 (T-type) from
Traboulsie et al. (2007); Ca,2.3 (R-type) from Grunditz et al. (2008);
Ca,1.2/1.3 (L-type) from Carlin et al. (2000); and Ca 2.2 (N-type) from
Huang and Robinson (1998). The postsynaptic voltage was driven to the
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specified voltage by a tonic current stimulus to the dendrite, and activa-
tion of synaptic conductances depolarized the voltage even further. The
three-compartment circuit was simulated using standard compartmen-
tal modeling methods (Segev and Koch, 1998).

The Ca?" dynamics had parameters hand tuned to reproduce the data
from Sabatini et al. (2002). Ca®" entered the spine head through GluNs
and Ca?" channels, and was then buffered, extruded through membrane
pumps, or diffused to the dendrite. The spine head Ca" concentration,
[Ca”]sp(t), evolved as follows:

d[ca2+]sp(t) _ - IC;\
dt - ZFV,,
§] SS
—(Ca (0~ [ L
sp
([Ca2+]sp(t) - [CaZJr]neck(t))Aneck
lncck‘/sp
- kj([B]sp(t)[Ca2+]sp(t)) + kb([B]Tsp - [B]sp(t))

The first term on the right-hand side represents Ca*" influx; I, (am-
peres) is the total Ca* ™" current influxing to the spine (I, = I,y + 0.1 X
Inmba)» 2 is the Ca®™ jonic charge, 2, and F is the Faraday constant. The
second term represents extrusion through the membrane; [Ca>* ], is the
resting Ca’" concentration (um), Bsp is the extrusion rate (um-s "),
and S, is the spine head surface area ( wm?). The third term is diffusion
through the spine neck according to Fick’s law; Dis the Ca*™ cytoplasmic
diffusion constant (um?/s), [Ca®"], .q is the spine neck Ca** concen-
tration (um), A, is the cross-sectional area of the spine neck (um?),
and [,y is the length of the spine neck (wm). The fourth and fifth terms
represent Ca®" binding and unbinding with endogenous buffer, respec-
tively; k-and k; are the forward (um ~'s ~') and backward (s ~') Ca®*
buffer binding rate constants, respectively; [B] ., is the fixed total con-
centration of endogenous Ca?* buffer (um); and [B],,(#) is the dynamic
concentration of unbound endogenous Ca’" buffer (um). Analogous
equations govern Ca** dynamics in the spine neck and dendrite.

The Ca?*-to-Ca?" buffer reaction was modeled according to the ki-
netic equation [Ca*"];, + [B]y, <> [BCal, where [BCa] is the concen-
tration of Ca®"-bound buffer, [BCa] = [B]TSP - [B]Sp. The free buffer,
[B ]Sp, evolves as

d[B]SP 2+
dt = kf([B]sp[Ca ]sp) + kb([B]Tsp - [B]bp)

In this model, the spine’s endogenous buffer capacity, kg, is as follows:

Kg = [B]’l‘sp(t)kf/kb
=100 uM X 10° M~ 's"'/500 s~
=20,

implying that ~95% of the Ca>* influx to the spine is buffered (Sabatini
et al., 2002). The remainder of the Ca?* is rapidly extruded, and only a
small fraction (<1%) diffuses to the dendrite (Sabatini et al., 2002).
Hence, the spine neck plays only a negligible role in Ca** dynamics.

The peak GluA conductance, gu\ps, Was proportional to spine head vol-
ume, gaypa = 5000 pS/um?, while peak GIuN conductance, guyips, Was
independent of spine head volume, guyps = 90 pS (Fig. 6 B). The GluN—
spine size relationship is crucial for the predictions of the biophysical model.
We obtained qualitatively similar results if we assumed a GluN conductance
that weakly increased with spine size (gxvpa = 35 + 250V;,) (Noguchi et
al., 2005).

Although the rate of Ca®" diffusion through the spine neck has been
shown to be activity dependent, it appears to be regulated independently
of spine head size (Bloodgood and Sabatini, 2005; Grunditz et al., 2008).
EM studies also find that spine neck diameter (a key regulator of diffu-
sion through the spine neck) has no correlation with spine head volume
in hippocampus (Harris et al., 1992). This is in contrast to spine head
size, which is tightly correlated with synaptic strength (Matsuzaki et al.,
2001). It therefore seems unlikely that the rate of diffusion through the
spine neck is also tightly scaled with synaptic strength. Hence, we do not
investigate the implications of scaling of spine neck properties.
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The stimulation protocol for Figure 6 was a burst of 100 synaptic
inputs at 100 Hz with the postsynaptic voltage driven to the described
potential by a tonic current stimulus to the dendrite.

Molecular-level MCell spine model. The model was adapted from Keller
et al. (2008) and implemented with the MCell simulator (Stiles et al.,
1996). The spine head is represented as a single cube with edge length
scaled to achieve the desired volume. One side of the cube is chosen as the
postsynaptic density (PSD) and contains 20 GluNs, independent of spine
volume. GluNs were here represented as simple Ca®" sources, which
released Ca?" ions into the spine at a fixed rate, governed by the Mg *
block voltage dependence (Jahr and Stevens, 1990). To simulate elevated
postsynaptic activity during common synaptic plasticity protocols (Lee
etal., 2009), the postsynaptic membrane potential is set to —30 mV. The
spine bulk contains the following three Ca>" buffers: mobile calbindin (45
um); immobile calmodulin (10 um); and a generic fast immobile endoge-
nous buffer (5 um). The spine membrane uniformly contains plasma mem-
brane Ca”* ATPase (PCMA) pumps, Na *—Ca”* exchangers (NCXs), and
a constant low-rate Ca>" influx to maintain resting Ca>* concentration
(Keller et al., 2008). The base of the spine contains a square patch of mem-
brane 0.15 X 0.15 wm? that is transparent to Ca**, modeling Ca®" escape
by diffusion through the spine neck to the dendrite.

The Ca?* nanodomain signals are measured around a single Ca,1
(L-type) channel (Magee and Johnston, 1995) that is inserted into the
center of the PSD. We measure instantaneous nanodomain Ca*" con-
centrations by placing a transparent sampling cube of 20 X 20 X 20 nm
size at the desired distance from the channel pore, counting the number
of molecules in the box and dividing by the volume and Avagadro’s
number to get the molar concentration. We choose the L-type CaV be-
cause it is the only CaV that has been implicated in local postsynaptic
Ca*" signaling involved in synaptic plasticity (Yasuda et al., 2003; Lee et
al., 2009). Nanodomains both form and disappear rapidly (within hun-
dreds of microseconds) when the channel opens and closes, respectively,
and are maximal in the steady state (Neher, 1998). Because these time
scales are comparable to the mean channel open time of L-type channels
(~1 ms) (Magee and Johnston, 1995), stochastic gating can have the
effect of reducing the amplitude of nanodomain Ca®* concentrations by
cutting short the transient to steady state. This reduction in the ampli-
tude of nanodomain Ca** concentrations from stochastic channel gat-
ing enhances the effect of spine size on nanodomain signals, because the
relative magnitude of the bulk Ca?* concentration (which the spine size
directly influences) is greater than it would be compared with the steady-
state nanodomain concentration.

Results

The spine size-Ca>* influx relationship is a critical factor in
synaptic plasticity

How does the relationship between spine size and Ca** influx
mechanisms affect synaptic plasticity? To address this question,
we first consider a single dendritic spine attached to its parent
dendrite. We use this generic model to introduce a general frame-
work, which can then be applied to any spine.

Fast EPSCs from synapses are primarily mediated by spine
GluAs. The number and state of synaptic GluAs are important
factors that determine the strength of a synapse. Throughout this
study, we assume that synaptic GluA number, and therefore syn-
aptic efficacy, is proportional to spine head volume (Fig. 1 Aiif)
(Takumi et al., 1999; Matsuzaki et al., 2001; Ganeshina et al.,
2004; Noguchi et al., 2005).

Ca** influx to spines arises primarily from GluNs and CaVs,
and is determined by both presynaptic and postsynaptic activity
patterns. Intracellular [Ca**] changes of sufficient amplitude
can trigger synaptic plasticity (Lynch et al., 1983). We assume
that the Ca** concentration within the spine directly determines
both the magnitude and polarity of synaptic plasticity (Bienen-
stock etal., 1982; Bear et al., 1987; Lisman, 1989; Cummings et al.,
1996; Hansel et al., 1997; Yang et al., 1999; Cho et al., 2001;
Cormier et al., 2001; Shouval et al., 2002; Ismailov et al., 2004).
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Low or baseline spine [Ca®"] causes no
change in synaptic strength. Intermediate
[Ca*™] triggers synaptic depression, while
high [Ca**] triggers synaptic potentia-
tion (Fig. 1Aii), with corresponding
changes in spine size.

Given these assumptions, there are
three possible scenarios by which spine
plasticity can influence spine [Ca’"]
changes in response to stimuli (Fig. 1B-
D). First, Ca®" concentration in a spine
may be independent of spine volume (Fig.
1B-D, left column). This scenario can
only be achieved if Ca®" influx mecha-
nisms are continuously scaled during syn-
aptic plasticity to exactly counter changes
in spine volume (Fig. 1 Bi,Ci). We refer to
this case as the compensating scenario. In
this case, because Ca’* concentration
does not depend upon spine size (Fig.
1 Di), the direction and magnitude of syn-
aptic plasticity is dictated only by neuro-
nal activity and not by synaptic strength.
Although possible in principle, exact
compensation is perhaps unlikely because
it requires the rapid and precise tuning of
multiple spine Ca®" properties. For ex-
ample, to compensate Ca*" influx for
changes in spine volume, the spine would
need to scale the density of its Ca**-
permeable channels and receptors pro-
portional to r** (where ris the spine head
radius) (see Materials and Methods).

Second, when spines increase in size,
there might not be a corresponding in-
crease in the number of Ca”"-permeable
channels and receptors. We refer to this
case as the undercompensating scenario
(Fig. 1 B-D, center column). For example,
the number of Ca*"-permeable channels
might be independent of spine head vol-
ume (Fig. 1Cii). In this case, small spines
will experience greater [Ca”*] transients
than large spines (Fig. 1 Dii). This also ap-
plies to the case where Ca*" influx is
proportional to spine surface area (see Ma-
terials and Methods). In the undercompen-
sating scenario, a single stimulus might
cause a [Ca”*] change sufficient to trigger
potentiation at small spines, but might
cause a smaller [Ca**] change that triggers
only depression at large spines. Very large
spines will have [Ca*"] changes too dilute
to trigger synaptic plasticity at all (Fig. 1 Dii,
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Figure 1. The relationship between spine size and Ca** influx falls into one of three different scenarios. Ai, The synaptic
plasticity cascade. Coincident presynaptic and postsynaptic activity triggers postsynaptic Ca%* signals, which are shaped by
dendritic spine properties. Ca** signals trigger kinase- and phosphatase-based molecular cascades, resulting in long-term po-
tentiation/depression. Aii, Ca* " -dependent synaptic plasticity rule. The change n synaptic strength as a function of spine [Ca 1.
There is a moderate threshold for depression and a higher threshold for potentiation. Aiif, Spine size is assumed to be proportional
to synaptic strength, in accordance with experimental data (Matsuzaki et al., 2001). Bi, Ca®* influx might exactly compensate for
changesin spine volume so that [Ca 2 ] isindependent of spine size. Bii, Ca** influx might undercompensate for changes in spine
volume so that large spines have lower amplitude [Ca "] transients than small spines. Biii, Ca2* influx might overcompensate
for changes in spine volume so that large spines have higher-amplitude [Ca®* ] transients than small spines. C, D, The absolute
amount of Ca* influx (€) and Ca®* concentration change (D) following a plasticity-inducing stimulus, as a function of spine
volume. i, In the compensating scenario, Ca>™ influx is proportional to spine volume. Di, This leads to a volume-independent
[Ca®"]. Hence, a given stimulus causes the same synaptic plasticity for spines of all sizes. Gii, In the undercompensating scenario,
Ca** influxis sublinear with spine volume. i, This leads to large spines experiencing lower [Ca** ] than small spines. Hence, a
given stimulus can cause potentiation at small spines, depression at medium-sized spines, and no change in synaptic strength at
large spines. Giii, In the overcompensating scenario, Ca* influx is superlinear with spine volume. i, This leads to large spines
experiencing higher [Ca%*] than small spines. Hence, a given stimulus can cause potentiation at large spines, depression at
medium-sized spines, and no synaptic strength change at small spines.

experience greater-amplitude [Ca*"] transients from synaptic

spines >0.2 wm?). Hence, undercompensation makes strong syn-
apses on very large spines immune to synaptic plasticity from ongo-
ing neural activity.

Third, when spines increase in size the gain in their number of
Ca’"-permeable channels might be greater than that required for
exact compensation. We refer to this situation as the overcom-
pensating scenario (Fig. 1B-D, right column). For example, a
spine might double its volume following synaptic potentiation
while trebling its number of GluNs. In this case, large spines

stimulation than small spines (Fig. 1 Diii). Hence, according to
the Ca®"-dependent plasticity rule, overcompensation makes
strong synapses on large spines more susceptible to potentiation,
and makes weak synapses on small spines more susceptible to
depression (Fig. 1 Diii).

In summary, one of the three possible Ca*>* influx scenarios
must occur when spine volume is changed during synaptic plas-
ticity: compensation, undercompensation, or overcompensa-
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tion. The scenario that occurs is determined by the relationship
between spine volume and its number of Ca>"-permeable chan-
nels (the precise conditions for each scenario are described in
Materials and Methods). It is not clear a priori which of the three
scenarios applies to biological synapses.

Undercompensation and overcompensation change the rules
of synaptic plasticity compared with the compensating
scenario

How do the three spine Ca**-handling scenarios affect long-term
synaptic strength dynamics? To address this question, we take the
spine model from Figure 1, but now consider what happens as the
stimulus intensity is varied.

In general, an increase in the intensity of either a presynaptic or
postsynaptic stimulus leads to an increase of Ca’* influx to the
spine. For example, elevating the presynaptic firing rate causes in-
creased release of glutamate, which can then bind to GluAs and
GluNs, causing increased local postsynaptic depolarization, and a

0

The effect of stimulus intensity on the direction of synaptic plasticity for the three different scenarios. 4, Increasing the
stimulus intensity (from thinner to thicker lines) increases the Ca 2 influx across all synaptic strengths in all three cases. 4i, For the
compensating rule, the direction of synaptic plasticity is dependent on stimulus intensity, but not on synaptic strength. Aii, For
the undercompensating rule, each stimulus intensity leads to a corresponding stable strength (intersection of orange curves with
upper dashed line). Above the stable strength, synapses are depressed, while below the stable strength, synapses are potentiated.
Stronger stimuli shift the stable point to greater synaptic strengths. Aiii, For the overcompensating rule, each stimulus intensity
has a corresponding unstable threshold strength (intersection of red curves with the upper dashed line). Above the threshold
synapses are potentiated, while below the threshold synapses are depressed. Stronger stimuli shift the unstable threshold to
weaker strengths. B, Plasticity direction as a function of both stimulus strength (horizontal axis) and spine volume (vertical axis).
Dashed black curves indicate thresholds for LTD and LTP. Arrows indicate the direction of change of synaptic strength. C, Final
synaptic strengths on an integrate-and-fire neuron following prolonged Poisson stimulation, as a function of presynaptic firing
rate. Ci, Compensation results in synapses eventually drifting to their maximum or minimum strength, depending on their stim-
ulation rate. Gii, Undercompensation yields synapses that represent the stimulation rate as a continuous variable. Giii, Overcom-
pensation leads to either maximal or minimal strengths, but whether a synapse ends up strong or weak depends not only on the
stimulus rate, but also on the initial synaptic strength. Above the separatrix (dashed gray curve), the synapse will potentiate, but
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consequent increase in spine Ca*" influx
through GluNs and CaVs. Similarly, in-
creased firing of postsynaptic action poten-
tials leads to depolarization at the synapse
and an increase of spine Ca*" influx
through GluNs and CaVs. In Figure 2 A, we
plot spine [Ca*"] as a function of spine
volume for the three scenarios of exact
compensation, undercompensation, and
overcompensation (Fig. 2 Ai,A1i,Aiii, respec-
tively). The thin-to-thick curves indicate
[Ca**] in spines for stimuli of increasing
intensity. In spines of all sizes and in all
three scenarios, increasing stimulus in-
tensity always increases spine [Ca®"]. Im-
portantly however, the consequences of
varying stimulus intensity for synaptic
plasticity differ between the scenarios. We
will consider each scenario individually

. below.

. Because spine [Ca’"] depends on
X two different factors (stimulus intensity
and spine volume), the direction of syn-
aptic plasticity triggered by a stimulus
will also depend on these two factors. To
illustrate this point, we plot the direc-
tion of synaptic change as a function of
both spine volume and stimulus inten-
sity— presynaptic firing rate in this
case—for each scenario (Fig. 2B). In the
compensating scenario, the direction of
synaptic plasticity is independent of spine
volume (Fig. 2 Bi). In contrast, in both the
undercompensating (Fig. 2 Bii) and over-
compensating (Fig. 2 Biii) scenarios the
direction of synaptic plasticity depends on
spine volume.

To explore how these mechanisms
work in practice, we simulate an
integrate-and-fire neuron with synapses
that obey compensating, undercompen-
sating, or overcompensating plasticity
rules (see Materials and Methods). We
stimulate all synapses on the neuron with
Poisson spike trains of a given rate and
observe how the synaptic strengths evolve. Eventually, synaptic
strengths settle to steady-state values (Fig. 2C). We measure these
steady-state synaptic strength values for a range of different stim-
ulus intensities (presynaptic firing rates). Now we discuss the
three scenarios in turn.

If synapses exactly compensate their Ca?" influx following
spine size changes, then the direction of a plasticity event is de-
termined only by stimulus intensity and not by spine volume
(Fig. 2 Ai,Bi). Weak activity causes no change, intermediate activ-
ity causes depression, and high activity causes potentiation (Fig.
2 Ai, thin, medium, and thick lines, respectively). With repeated
stimulation, a compensating synapse will continue to potentiate
or depress without limit because there is no inherent mechanism
in the plasticity rule to provide an upper or lower limit to its
strength. In our simulations, we impose hard upper and lower
limits on synaptic strength to avoid unphysiologically strong or
weak synapses (25 and 5 pA, respectively). Following repeated

50
fore (H2)
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stimulation synaptic strengths converge
to the imposed maximum or minimum
strengths. Whether a synapse settles to
the maximum or minimum strength de-
pends only on its stimulus intensity, and
not on its initial synaptic strength.
Hence, exact compensation does not en-
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dow any particular initial synaptic
strength with extra stability over other 0
strengths. Therefore, while in principle
exactly compensating synapses could
initially store information as a continuous
variable, if potentiation and depression
are not finely balanced, they will even-
tually lose this information by drifting
to their maximum or minimum
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strengths (Fig. 2Ci) (Fusi and Senn,
2006; Fusi and Abbott, 2007).

In the undercompensating scenario,
because a plasticity-inducing stimulus
triggers potentiation at weak synapses
but depression at strong synapses, it
drives synapses toward a stable target
strength at the crossover point between
potentiation and depression (Fig. 2 A,
intersection of curve with the upper
dashed line). Hence, repeating the same
plasticity-inducing stimulus at an un-
dercompensating synapse will eventu-
ally saturate plasticity at a fixed synaptic strength.
Importantly, because increasing the stimulus intensity in-
creases [Ca”"] in synapses of all strengths, stronger stimuli to
undercompensating synapses shift the stable target strength to
greater values (Fig. 2 Aii, thin to thick lines), as observed ex-
perimentally (McNaughton etal., 1978). The steady-state syn-
aptic strength is a monotonically increasing function of
stimulus intensity (Fig. 2Cii). Hence, undercompensating
synapses can store information as a continuous variable. The
plasticity rule also naturally regulates synaptic strength so that
no externally imposed limits on synaptic strength are
necessary.

In the case of overcompensation, a plasticity-inducing
stimulus will depress weak synapses but potentiate strong syn-
apses (Fig. 2 Aiii,Biii). Hence, all stimuli drive synapses toward
either their minimum or maximum limits. As for the compen-
sating case, these minimum and maximum strengths must be
imposed by some additional mechanism. Whether a given syn-
apse potentiates or depresses depends on whether its initial
synaptic strength is greater or less than a certain threshold
[Fig. 2 Biii,Ciii (dotted gray line)]. This threshold depends on
stimulus intensity such that stronger stimuli lower the threshold
(Fig. 2 Biii,Ciii). In this scheme, the synapse is effectively binary
because only the minimum and maximum synaptic strengths are
stable. Although, in general, binary synapses cannot store as
much information as multistate synapses (Barrett and van Ros-
sum, 2008), binary storage is robust because small, undesired
changes in synaptic strength are automatically corrected, and
random transitions between the strong and weak states are un-
likely (Petersen et al., 1998).

In summary, we find that the Ca** influx to spine size sce-
nario crucially determines the long-term dynamics of synaptic
strength and the form of synaptic information storage. Compen-
sation leads to binary information storage, which is not robust;

10 |
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Memory induction and retention in an integrate-and-fire neuron depend on the relationship between spine
sizeand Ca ™ influx. Ai, Aii, Synapses potentiate in response to a strong stimulus (vertical arrows) and then drift over time
due to weak ongoing activity that occasionally triggers plasticity. Ai-Aiii, Dark and light colors indicate synapses subject
to 3 and 1X burst stimuli, respectively, for the compensating (4i), undercompensating (Aii), and overcompensating
(Aiii) scenarios. B, The drift of synaptic strength as a function of synaptic strength. Bi, In the compensating scenario, drift
rate is independent of synaptic strength. Bii, In the undercompensating scenario, drift is large and negative for weak
synapses, but small and negative for strong synapses. Biii, In the overcompensating scenario, drift is large and negative for
weak synapses and large and positive for strong synapses.

undercompensation leads to robust continuous-variable informa-
tion storage; and overcompensation leads to robust binary informa-
tion storage.

Spine plasticity determines the influence of ongoing neural
activity on synaptic strength stability

Ongoing neural activity might degrade stored memories by occa-
sionally causing spine [Ca* "] transients large enough to trigger syn-
aptic plasticity. We therefore examine whether the relationship
between spine size and Ca>™ influx affects memory storage in the
presence of ongoing neural activity. We compare how well each of
the three scenarios allow information about a previous activity pat-
tern to be stored in the synaptic strengths of an integrate-and-fire
model neuron, similar to that presented in Figure 2C. We consider a
neuron with 500 synapses driven by Poisson inputs that are tonically
active at a rate just sufficient to keep the postsynaptic neuron
active (both the prefiring and postfiring rates are ~5 Hz). To
simulate weak and strong memory events, we subject 50 of the
synapses to either one or three brief high-frequency trains of
input, respectively (see Materials and Methods). These high-
frequency input events potentiate the stimulated synapses. Af-
ter the input events, synapses are left to evolve their strengths in
the presence of baseline neural activity. Because the baseline
presynaptic inputs arrive randomly in time (but with a fixed
average firing rate), occasionally multiple inputs arrive simul-
taneously by chance. If they are of large enough amplitude,
these chance events trigger spontaneous synaptic plasticity.
These spontaneous synaptic strength changes will accumulate
over time, and might eventually “wash out” the potentiation
initially induced by the high-frequency stimulus. The stability
of the memory depends on both the magnitude of the initial
high-frequency stimulus (1X or 3X) and on the Ca*" influx
to spine size scenario. We examine each scenario in turn.
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compensating synapses lead to the persis-
tence of strong synapses, and hence
protects strong memory traces from plas-
ticity due to ongoing activity.

In the overcompensating scenario, the
behavior of synapses is qualitatively differ-
ent from the two previous cases (Fig. 3Aiii,
Biii). After initial potentiation, strong synapses
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Bi

0.5

Median strength (nS)
& =
©
I L =

until reaching the maximum strength (25 pA),
because overcompensation makes larger
spines have higher-amplitude [Ca*" ] tran-
sients and therefore more susceptible to
potentiation. Once these synapses reach
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of relative fluctuation amplitude.

In the exactly compensating scenario, in the presence of base-
line activity the synaptic strengths drift in a direction determined
by the ratio of the total amount of spontaneous potentiation to
total spontaneous depression. Because in this example baseline
activity triggers more depression than potentiation, all synapses
experience net depression over time (Fig. 3A17). Synapses drift toward
their minimum strength (5 pA). Importantly, the rate and direction
of drift are independent of synaptic strength, such that no particular
initial synaptic strength is more stable than any other (Fig. 3Bi).

In contrast, for the undercompensating scenario strong syn-
apses stay potentiated for the duration of the simulation, because
the large volumes of their spines dilutes [Ca*"] transients so that
spontaneous depression is rarely triggered. At the same time,
intermediate strength synapses are occasionally spontaneously
depressed, causing their synaptic strengths to eventually drift
back to baseline (Fig. 3Aii). The rate of drift is slower for strong
synapses than for weak synapses (Fig. 3Bii). In this way, under-

/.

0.01 0.1 1 10 100
Relative fluctuation amplitude

The lifetime of undercompensating and overcompensating synapses in the presence of intrinsic fluctuations is
substantially longer than for compensating synapses in a Fokker—Planck model. Ai—Aiii, Synaptic strength probability distribu-
tions over time for the compensating (4i), undercompensating (Aii), and overcompensating (Aiii) scenarios. Darker color indicates
higher probability. A synaptic plasticity event is simulated by initializing the synapse at a particular strength. The strength of the
synapse then drifts probabilistically over time toward the steady-state strength. Note different time scales on the x-axis of each
panel. Bi-Biii, Decay of median synaptic strength for the three learning rules for a range of different initial strength synapses. Ci,
Cii, The synaptic retention time for the compensating (Ci) and undercompensating (Cii) learning rules as a function of initial
synaptic strength. Undercompensation leads to very stable large spines, but their retention time is ultimately limited by intrinsic
fluctuations. Di, Dii, Synaptic retention time for compensating (Di) and undercompensating (Dii) synapses of increasing initial
strength (thin to thick lines) as a function of relative amplitude of fluctuations. Note differences in the time-scale axis between Di
and Dii. E, Probability of overcompensating synapse spontaneously transitioning from lower to upper stable strength as a function

the maximum strength they are fixed
there indefinitely. Weaker synapses, in
contrast, are subject to net depression and
drift back toward baseline strength. The
net drift from spontaneous potentiation
and depression is positive for strong syn-
apses and negative for weak synapses (Fig.
3Biii). Thus, overcompensating synapses
threshold memory events into two cate-
gories: either strong and persistent or
weak and transient.

T
1 2x10°
Timesteps

Spine plasticity increases synaptic
lifetimes in the presence of

intrinsic fluctuations

In addition to spontaneous synaptic plas-
ticity due to ongoing neural activity, den-
dritic spines exhibit intrinsic fluctuations
in their size (Yasumatsu et al., 2008;
Minerbi et al., 2009; Loewenstein et al.,
2011), while postsynaptic densities dem-
onstrate intrinsic fluctuations in both
their size and shape (Mysore et al., 2007;
Blanpied et al., 2008). Because these fluc-
tuations are thought to be random (Ya-
sumatsu et al., 2008), they may over time
corrupt information encoded in the syn-
aptic strength. To examine the impact of
these fluctuations, we use a reduced math-
ematical model, based on the Fokker—
Planck  equation, where synaptic
strength is described by a probability
distribution. The intrinsic fluctuations have a diffusive effect
on this probability distribution. We set the amplitude of in-
trinsic fluctuations to scale proportionally to spine size
(Minerbi et al., 2009). Together, the activity-dependent plastic-
ity and intrinsic fluctuations probabilistically determine the syn-
apse’s evolution (see Materials and Methods). This abstract
model’s key strength over more detailed models is that it contains
only a small number of free parameters that are all based on clear
assumptions. It therefore allows general properties to be estab-
lished that would be difficult to uncover using either a biophysi-
cal or integrate-and-fire model neuron.

Using this model, we change the strength of a single synapse
and then follow the time evolution of its synaptic strength prob-
ability distribution when the synapse is subject to [Ca**] tran-
sients from ongoing neural activity (Fig. 4A). We measure how
long the synapse takes to equilibrate back to its baseline strength
(Fig.4). Once this equilibrium has been reached, any information
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stored in the synaptic strength is lost be-
cause it has become indistinguishable
from other synapses. We measure the re-
tention time as a function of initial synap-
tic strength for each of the three spine
Ca’*-handling scenarios in the presence
of intrinsic spine size fluctuations.

For the compensating scenario, the
rate of drift toward equilibrium is inde-
pendent of synaptic strength (Fig. 4Bi, 0 0.5
parallel curves). As a result, the retention
time of compensating synapses is poor,
but scales linearly with initial strength
(Fig. 4Ci). When the amplitude of intrin-
sic fluctuations is increased, retention
time is decreased. The effect is similar for
synapses of all strengths (Fig. 4 Di).

In contrast to the compensating scenario, in the undercom-
pensating scenario the rate of decay of a potentiated synapse de-
pends nonlinearly on its strength. All synapses eventually drift
toward a single stable strength, but, because strong synapses are
less susceptible to plasticity, they decay more slowly than weak
synapses (Fig. 4 Bii,Cii). This relationship saturates only for very
strong synapses where plasticity events are uncommon and in-
trinsic fluctuations begin to dominate (Fig. 4Cii). As we increase
the amplitude of intrinsic fluctuations to extremely large values
(Fig. 4 Dii), synaptic retention time drops dramatically for syn-
apses of all strength, because fluctuations are so large that they
corrupt the synapse’s ability to remain potentiated. Importantly,
however, the retention time of undercompensating synapses is
always greater than that of compensating synapses (Fig. 4, com-
pare Di, Dii, time scales).

The overcompensating scenario causes the synaptic probabil-
ity distribution to drift either to the minimum or maximum
limit, depending both on neural activity and initial strength (Fig.
4 Aiii,Biii). Small excursions from the stable minimum or maxi-
mum strengths quickly disappear. If intrinsic fluctuations are
small, the synapse persists at the stable strengths indefinitely. If
fluctuations are large, random transitions between the strong and
weak states become likely. As a result, memory storage would be
degraded (Fig. 4E).

These results demonstrate that the effect of intrinsic fluctua-
tions on compensating synapses is independent of their size. In
contrast, undercompensation reduces the sensitivity of large
spines to intrinsic fluctuations, and overcompensation stabilizes
spines that are already close to their maximum or minimum size.
Thus, imperfect matching of Ca®" dynamics and spine size may
facilitate long-term storage of information by dendritic spines in
the presence of intrinsic fluctuations.
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Figure 5.

Undercompensation reproduces experimental synaptic
strength distributions

The shape of synaptic strength distributions can provide clues to the
form of synaptic memory storage (Barbour et al., 2007). However,
the consequences of spine structural dynamics for synaptic strength
distributions are unknown. The synaptic strength distributions
measured from hippocampus, neocortex, and cerebellum appear
qualitatively similar (Barbour et al., 2007). They are typically con-
tinuous, unimodal, and have a peak at a nonzero strength and a
long tail at high strengths. Although some electrophysiological
and light microscopy techniques have noise amplitudes that
make them likely to underestimate the prevalence of weak syn-
apses, we note that the qualitative feature of a unimodal distribu-
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Undercompensating synapses reproduce unimodal experimental synaptic strength distributions. The steady-state
synaptic strength distributions predicted by the compensating (left), undercompensating (middle), and overcompensating (right)
learning rules using a Fokker—Planck model. Only the undercompensating rule reproduces the central, unimodal synaptic strength
distributions reported experimentally.

tion with nonzero peak is also reproduced by studies employing
electron microscopy, where image resolution is beyond that nec-
essary to unambiguously measure synapses of all size (Harris and
Stevens, 1989; Schikorski and Stevens, 1997; Arellano et al., 2007;
Mishchenko et al., 2010).

To determine whether any of the three spine size-to-Ca**
influx scenarios described above could account for the in vivo
distribution of spine sizes or synaptic strengths, we calculate
equilibrium synaptic strength distributions reached after pro-
longed stimulation directly from the Fokker—Planck model intro-
duced above (see Materials and Methods). The three scenarios
lead to qualitatively different synaptic strength distributions (Fig.
5). Only the undercompensating case predicts a unimodal synap-
tic strength distribution with a central peak. If synapses com-
pensate or overcompensate, strength distributions are either
unimodal or bimodal with peaks at the minimum and/or max-
imum strengths but not at intermediate strengths. Hence, the
undercompensating scenario is the most consistent with ex-
perimental findings.

A dynamic biophysical hippocampal spine model predicts
stable and undercompensating synapses

It is not clear whether biological dendritic spines follow the com-
pensating, undercompensating, or overcompensating scenario.
To address this issue, we construct a dynamic model of a CA1
pyramidal neuron spine using available physiological data on
spine morphology, and the number and type of spine ion chan-
nels and synaptic receptors.

Dendritic spine Ca** handling has been intensively studied in
CAl pyramidal neurons. The main source of Ca®" influx from
synaptic activation is GluNs (Sabatini et al., 2002). GluN number
has been found to be either independent or weakly dependent on
spine volume (Takumi et al., 1999; Racca et al., 2000; Nimchinsky
et al., 2004; Noguchi et al., 2005; Sobczyk et al., 2005). In the
simulations we describe here, we assume GluN conductance to be
independent of spine volume, but similar results are obtained if
GluN number is weakly dependent on spine volume (data not
shown). In contrast, GluA conductance is directly proportional
to spine volume (Nusser et al., 1998; Takumi et al., 1999; Matsu-
zaki etal., 2001; Noguchi et al., 2005) (Fig. 6 B) (see Materials and
Methods). In the spine model, we also include four types of
voltage-gated Ca*" channels: Ca 3.1 (T-type), Ca,2.3 (R-type),
Ca,1.2/1.3 (L-type), and Ca,2.2 (N-type). Together, these chan-
nels can account for Ca*™ influx through CaVs to hippocampal
spines (Bloodgood and Sabatini, 2007).
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Figure 6. A biophysical spine model predicts that CA1 pyramidal synapses undercompensate. 4, The spine model includes electrical
dynamics (left)and Ca>* dynamics (right). B, The spine’s GluA and GluN conductances as a function of spine head volume. Colored symbols
indicate spine volumes chosen for simulations presented in D—F. , The peak spine head Ca®" concentration obtained during burst
stimulation is plotted as a function of spine head volume. Postsynaptic holding potentials of —30and —50 mV are in light
and dark green, respectively. D, E, GluA conductance of three synapses of different initial strength following a tetanic stimulus for
postsynaptic potentials of —50mV (D) and —30 mV (E). The small, medium, and large synapses had initial spine head volumes of
0.01,0.05,and 0.15 um >, respectively. F, Final synaptic strength (GluA conductance) for the small, medium, and large synapses
following a tetanic plasticity-inducing stimulus for a range of postsynaptic potentials. G, Relative change in synaptic strength for
same data as F.
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Most CAl pyramidal dendritic spine
heads have volumes of ~0.01-0.06 wm?,
but the largest can have volumes of at least
~0.3 wm? (Harris and Stevens, 1989; Mish-
chenko et al., 2010). We select three spine
sizes spanning this distribution: 0.01, 0.05,
and 0.15 wm? (Fig. 6 B). We subject the syn-
apses on these spines to a typical experimen-
tal protocol used to induce long-term
potentiation and spine head enlargement:
presynaptic stimulation (100 pulses at 100
Hz) coupled with postsynaptic depolariza-
tion (Kauer et al., 1988; Cummings et al.,
1996; Ngezahayo et al., 2000; Harvey and
Svoboda, 2007). Varying the postsynaptic
potential regulates the amount of Mg™
block of the synaptic GluNs (Jahr and Ste-
vens, 1990), and therefore the amount of
Ca*" influx to the spine. Synaptic plasticity
is triggered by the Ca** influx during the
induction protocol (Fig. 6 D, E).

At a moderate holding potential of
—50 mV, the small synapse potentiates,
the medium synapse depresses, and the
large synapse does not change (Fig. 6D).
Importantly, the small and medium syn-
apses converge to the same final strength,
as expected for an undercompensating
synapse (Fig. 2Aii). The Ca’* concentra-
tion in the large spine does not reach the
threshold for LTD, making it resistant to
this induction protocol.

Upon repeating the experiment at a
more depolarized postsynaptic holding po-
tential of —30 mV, all three synapses con-
verge to the same strength (Fig. 6E). The
final stable synaptic strength is greater than
for the —50 mV holding potential, as pre-
dicted for undercompensating synapses
(Fig. 2Cii). The large synapse’s depression
demonstrates how strong persistent syn-
apses could still be reset under this scheme
when given a suitably strong stimulus. We
repeat the simulations for a large range of
postsynaptic holding potentials (Fig. 6 F, G).
The weakest synapse is plastic over the entire
stimulus range, while the strongest synapse
is mostly resistant to change. Notably, an
identical stimulus can result in different
plasticity outcomes depending on the initial
synaptic strength (Fig. 6G). Our model
therefore suggests that CA1 pyramidal neu-
ron spines undercompensate.

Because the simulation results we pres-
ent are for only one set of parameters, we
also test cases where GluN number, GluA
number, CaV number, buffer concentra-
tion, buffer off rate, pump efficacy, spine
neck diameter, and spine neck length are
both doubled and halved. For all parameter
variations, the model retains the qualitative
features of undercompensation (data not
shown).
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Spine volume can influence A
nanodomain Ca’* signaling

In the models used for simulations above,

we assume that the volume-averaged
Ca*" concentration in the spine is the sig-

nal read by the Ca**-sensing molecules.

This does not account for the possible roles

of local Ca** signaling either near the pore

of single channels (nanodomains) or near
small clusters of channels (microdomains)
(Augustine et al., 2003). Evidence support-

ing this assumption includes findings that B
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some forms of synaptic plasticity (Hoff-
man et al., 2002; Yasuda et al., 2003; Lee et
al., 2009). This possibility might pose a
significant problem for the theory we pro-
pose because, if synaptic plasticity were
found to be dependent on nanodomain
Ca®" signaling, then spine size changes
might not influence the process. Hence, it
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by spine volume, can affect Ca** concen-
tration changes near the pore of individ-
ual CaVs.

To address this issue, we use a previ-
ously published molecular-level model of
a hippocampal CAl-pyramidal neuron
dendritic spine (Fig. 7A) adapted from
Keller et al. (2008). Nanodomain signal-
ing was tested as follows. Initially, we ele-
vate [Ca’"] throughout the bulk of the
spine by opening multiple GluNs. Then, a
single Ca,1 (L-type) channel is allowed to
open and close stochastically (with an
open probability of 0.1) in addition to the
continually open GluNs (Fig. 7B). We
choose the L-type CaV because it is the only CaV that has been
implicated in local postsynaptic Ca>" signaling involved in syn-
aptic plasticity (Yasuda et al., 2003; Lee et al., 2009). When the
CaV is open, it influxes Ca®" ions at a rate of 3.3 X 10°s™",
rapidly causing a localized elevation of Ca*>* concentration near
the channel pore, where Ca** buffers are not in their equilibrium
binding state (Fig. 7C). We repeat the stochastic simulation 10
times and measure the mean Ca*"* concentration while the chan-
nel is open as a function of distance from the channel for a range
of spine volumes (Fig. 7D, E). Decreasing the spine volume in-
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Figure7. SpinesizeinfluencesCa** nanodomain signalingin amolecular model of a CA1 pyramidal neuron dendritic spine. 4,
Schematic diagram of molecular spine model (MCell simulator). Shown are Ca 2% jons, calbindin, calmodulin, and a fastimmobile
endogenous buffer. L-type Ca™ channel at top of spine, Ca " transparent patch (gray mesh) at bottom allowing Ca " escape to
spine neck and dendrite. Not shown are 20 GluNs (distributed randomly across top surface of spine), PCMA Ca > pumps, NCXs, and
leak Ca2™ influx channels (distributed randomly across entire surface of spine). B, State of the L-type Ca®™ channel (open or
closed) as a function of time for 10 different trials. Note that the channel open and closes stochastically. €, Mean Ca* concentra-
tion throughout the spine as a function of time for the same 10 trials depicted in B. When the L-type Ca>* channel opens, [Ca
is rapidly elevated. D, Local Ca2* concentration as a function of distance from an open L-type Ca™ channel. Each curve represents
adifferent spine volume. Error bars are =+ SD. E, Local Ca®* concentration as a function of spine volume at various distances from
anopen L-typeCa®™ channel. Same dataasin D. Bulk, indicates mean Ca ™ concentration over the entire spine volume. Error bars

2+]

creased the Ca®" concentration at all distances from the channel,
because the bulk Ca>* concentration was large enough to sub-
stantially add to the local Ca®>" concentration. The effect was
greatest for small spine volumes <0.05 um®. Therefore, nanodo-
main signaling is sensitive to changes in spine volume at hip-
pocampal synapses.

In addition to the mechanism described above, there are two
further mechanisms through which spine size could regulate lo-
cal Ca*" signaling events. First, because small spines have a
greater surface-to-volume ratio than large spines, any mobile
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Ca**-sensing molecules are statistically more likely to diffuse
closer to membrane-bound Ca** sources in smaller spines than
in larger spines. This mechanism likely exists at dendritic spines
in all brain regions. Second, the bulk Ca®" concentration sets the
level of endogenous buffer saturation. Hence, if bulk Ca** con-
centrations are sufficiently elevated, there is less free buffer avail-
able to restrict the Ca** influxing through the channel pore, so
elevating microdomain Ca** signals—a mechanism originally
proposed to explain activity-dependent presynaptic facilitation
(Neher, 1998). Because this mechanism exists only in situations
where buffers are relatively close to saturation, it had only negli-
gible effect in our simulations of hippocampal spines (data not
shown). Future experimental data may clarify whether this mech-
anism exists at dendritic spines in other brain regions. Impor-
tantly, both of these additional mechanisms are consistent with
the prediction from our earlier simulations, that hippocampal
spines undercompensate (Fig. 6).

In summary, our simulation results (Fig. 7) support the view-
point that even if synaptic plasticity relies on nanodomain or
microdomain Ca”" signaling, spine volume will still implement
undercompensation as smaller spines experience larger nanodo-
main Ca*" signals than large spines.

Discussion

Our results introduce several new and general conclusions. First,
we provide a framework for understanding the functional conse-
quences of spine structural plasticity by delineating the three sce-
narios of Ca®" overcompensation, undercompensation, or exact
compensation (Fig. 1). Second, we demonstrate the conse-
quences of these three scenarios for the form of synaptic infor-
mation storage (Fig. 2), the long-term retention of synaptic
strength (Figs. 3, 4), the robustness of memory storage to intrin-
sic synaptic strength fluctuations (Fig. 4), and the distributions of
synaptic strength (Fig. 5).

Biophysical simulation of a hippocampal CA1 pyramidal neu-
ron spine suggests that synapses onto these neurons likely under-
compensate (Fig. 6). This prediction unifies several disparate
pieces of evidence: (1) GluN immunoreactivity (Takumi et al.,
1999; Racca et al., 2000; Ganeshina et al., 2004) and GluN EPSC
amplitude (Nimchinsky et al., 2004; Noguchi et al., 2005; Sobczyk
etal., 2005) are not correlated with spine size; (2) focal glutamate
uncaging causes larger Ca®" fluorescence transients in small
spines than in large spines (Nimchinsky et al., 2004; Noguchi et
al., 2005; Sobczyk et al., 2005); (3) synapses on small spines are
easier to potentiate than synapses on large spines (Matsuzaki et
al., 2004); (4) weak synapses potentiate more than strong syn-
apses (Larkman et al., 1992; Bi and Poo, 1998; Debanne et al.,
1999); (5) potentiated synapses become “locked in” at high
strength (O’Connor et al., 2005); (6) repeated LTP saturates
(McNaughton et al., 1978; Dudek and Bear, 1993; O’Connor et
al., 2005); (7) spine size and synaptic strength distributions are
unimodal with a nonzero peak (Harris and Stevens, 1989; Sayer et
al., 1990; Schikorski and Stevens, 1997; O’Brien et al., 1998; Ya-
sumatsu et al., 2008; Enoki et al., 2009; Minerbi et al., 2009;
Mishchenko et al., 2010; Loewenstein et al., 2011); and (8) longi-
tudinal studies in hippocampal cultures find a negative correla-
tion between momentary synaptic strength and the subsequent
change in synaptic strength (Yasumatsu et al., 2008; Minerbi et
al., 2009; Loewenstein et al., 2011). Nevertheless, the prediction
of our model is strongly dependent on the assumed relationship
between spine head volume and GluN number. Future data on
the relationship between spine size and GluN number, CaVs,

J. Neurosci., November 9, 2011 - 31(45):16142-16156 * 16153

extrusion mechanisms, and endogenous buffers can be used to
refine the model to make more quantitative predictions.

There is no known mechanistic reason why spine structural
plasticity should necessarily be tethered to synaptic plasticity. The
two processes are mediated by signaling pathways that are at least
partly independent from one another (Cingolani and Goda,
2008), suggesting that they are coregulated for functional rea-
sons. Our results suggest that the spine size-to-synaptic efficacy
relationship is maintained to imprint a strength dependence on
the synaptic plasticity rule that preferentially stabilizes some syn-
aptic strengths. Although this mechanism helps to prevent run-
away synaptic plasticity, it is not homeostatic. Homeostatic
plasticity typically entails a feedback mechanism that returns
neural activity to a set point (Davis, 2006), while here there is no
such feedback.

What is the relevance of different Ca*"-permeable channel
types for the framework we describe here? In our biophysical
spine model (Fig. 6), we include one generic GluN type and four
different CaV types. Different GluNs and CaVs can have different
neurotransmitter affinities, voltage dependences, and time courses
of activation/inactivation. This implies that each channel type will
respond differently to a given presynaptic and postsynaptic activity
pattern. How this feature impacts our scenarios of undercom-
pensation, overcompensation, or exact compensation will de-
pend on how the number of channels of each individual type
scales with spine size. For example, consider a hypothetical case
where Ca,3 (T-type) number is proportional to spine volume,
but Ca,1 (L-type) number is fixed and independent of spine vol-
ume. Because Ca,3s are activated at relatively modest potentials,
whereas Ca,ls are activated only at very depolarized potentials
(Magee and Johnston, 1995), this configuration would make
Ca’” influx behave as if in the compensating scenario for stimuli
that result in modest depolarizations, but in the undercompen-
sating scenario for stimuli that induced large depolarizations.
Hence, a single spine might simultaneously belong to multiple
scenarios, depending on the type of stimuli it is subject to.

The plasticity induction protocols we employ in this study
were designed to mimic classic LTP and LTD induction protocols
where repeated presynaptic stimulation is accompanied by post-
synaptic depolarization (Artola et al., 1990; Dudek and Bear,
1992; Mayford et al., 1995; Ngezahayo et al., 2000; Cho et al.,
2001; Ismailov et al., 2004; O’Connor et al., 2005). An interesting
future extension of our model would be to explore the effects of
undercompensation and overcompensation for STDP protocols,
where fine time-scale differences between presynaptic and post-
synaptic events determine the direction of plasticity (Caporale
and Dan, 2008). However, at present no theoretical model of
Ca**-dependent synaptic plasticity can fully account for the data
from STDP experiments (for a discussion, see Shouval et al.,
2010). Should future experiments resolve this issue, the general
framework of exact, under-, and overcompensation we introduce
here could be readily applied to the problem.

The consequences of certain weight-dependent synaptic plas-
ticity rules for long-term synaptic strength dynamics have been
considered previously (van Rossum et al., 2000; Rubin et al.,
2001; Gutig et al., 2003; Zou and Destexhe, 2007; Billings and van
Rossum, 2009). However, these phenomenological models often
predict that strong synapses are the least stable (but see Shouval,
2005), whereas experimental data suggest that strong synapses
and large spines are the most stable (Grutzendler et al., 2002;
Trachtenberg et al., 2002; Holtmaat et al., 2005; Zuo et al., 2005;
Knott et al., 2006). This stability is successfully explained by the
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mechanisms from spine structural plasticity that we propose
here.

A second class of models of synaptic strength stability relies on
intricate molecular cascades with multiple stable states (Lisman
and Zhabotinsky, 2001; Hayer and Bhalla, 2005; Graupner and
Brunel, 2007). However, the model we propose has an advantage
over these previous models. Although spines in vivo can exist
stably for many months (Grutzendler et al., 2002; Trachtenberg
et al., 2002; Holtmaat et al., 2005; Zuo et al., 2005; Knott et al.,
2006), the spine and PSD are tiny devices (volume <1 fl), imply-
ing that the molecular reactions at the synapse involve a small
number of particles and may therefore be noisy (Franks and Se-
jnowski, 2002; Keller et al., 2008). When LTP cascades are mod-
eled stochastically, spontaneous transitions are found to occur
between states that are stable in an equivalent deterministic
model (Bhalla, 2004). Changing parameters to reduce the spon-
taneous transitions also makes the system insensitive to stimuli
(but see Miller et al., 2005). In contrast, undercompensating and
overcompensating synapses can both override the effects of noise
on stability (Fig. 4).

The framework we propose makes specific experimental pre-
dictions. Undercompensating synapses should show the follow-
ing properties collectively: (1) stable strong synapses but plastic
weak synapses; (2) synaptic retention time should increase dra-
matically with synaptic strength; (3) a plasticity-inducing stimu-
lus should drive all stimulated synapses toward a single common
strength; (4) the stable synaptic strength should be an increasing,
continuous function of stimulus strength; (5) the stable strength
can be varied by enhancing or reducing Ca** influx to the spine;
and (6) the distribution of synaptic strengths should be unimodal
with a central nonzero peak. Overcompensating synapses, in con-
trast, should show collectively the following: (1) individual syn-
apses should be most stable at a maximum or minimum strength,
but not at intermediate strengths; (2) a plasticity-inducing stim-
ulus should potentiate all synapses with a strength greater than a
certain threshold and depress all synapses with a strength weaker
than the same threshold; (3) the threshold should be a continu-
ously increasing function of stimulus strength; (4) the threshold
can be varied by enhancing or reducing Ca** influx to the spine;
(5) there should be some additional mechanism to limit synaptic
strength at its maximum and minimum values; and (6) synaptic
strength distributions should appear bimodal.

A powerful approach to test the predictions of our model will
be by pharmacological or genetic dissociation of spine size from
synaptic strength (Zhou et al., 2004; Wang et al., 2007). For ex-
ample, manipulations that permit synaptic plasticity while block-
ing spine structural plasticity would make synapses behave as if in
the compensating mode where our model predicts the following:
(1) individual synaptic strengths drift at an elevated rate that is
independent of synaptic strength; (2) potentiated synapses rap-
idly decay to naive strengths; and (3) synaptic strength distribu-
tions spread. A further critical experiment would be the tracking
of individual synaptic strengths over time in vivo. Correlating
spine and synaptic strength changes with physiological activity
patterns could uncover strength-dependent plasticity rules.

In summary, our findings provide a general theoretical frame-
work for understanding how dendritic spine structural plasticity
actively regulates synaptic learning rules to stabilize some synap-
tic strengths over others. This mechanism allows synapses to re-
tain both the features of rapid plasticity and of persistent
information storage without precise tuning of the molecular syn-
aptic plasticity cascade.
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