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Encoding of Both Positive and Negative Reward Prediction
Errors by Neurons of the Primate Lateral Prefrontal Cortex
and Caudate Nucleus

Wael F. Asaad and Emad N. Eskandar
Rhodan Center for Nervous System Repair, Department of Neurosurgery, Massachusetts General Hospital, and Harvard Medical School, Boston,
Massachusetts 02114

Learning can be motivated by unanticipated success or unexpected failure. The former encourages us to repeat an action or activity,
whereas the latter leads us to find an alternative strategy. Understanding the neural representation of these unexpected events is therefore
critical to elucidate learning-related circuits. We examined the activity of neurons in the lateral prefrontal cortex (PFC) and caudate
nucleus of monkeys as they performed a trial-and-error learning task. Unexpected outcomes were widely represented in both structures,
and neurons driven by unexpectedly negative outcomes were as frequent as those activated by unexpectedly positive outcomes. More-
over, both positive and negative reward prediction errors (RPEs) were represented primarily by increases in firing rate, unlike the manner
in which dopamine neurons have been observed to reflect these values. Interestingly, positive RPEs tended to appear with shorter latency
than negative RPEs, perhaps reflecting the mechanism of their generation. Last, in the PFC but not the caudate, trial-by-trial variations in
outcome-related activity were linked to the animals’ subsequent behavioral decisions. More broadly, the robustness of RPE signaling by
these neurons suggests that actor-critic models of reinforcement learning in which the PFC and particularly the caudate are considered

primarily to be “actors” rather than “critics,” should be reconsidered to include a prominent evaluative role for these structures.

Introduction

Unexpected events drive learning (Rescorla and Wagner, 1972;
Pearce and Hall, 1980). Reinforcement learning models offer use-
ful accounts of behavioral plasticity that is generated by mis-
matches between predicted and unpredicted events (Sutton and
Barto, 1998). The difference between the actual outcome of a
situation or action and the expected outcome is the reward pre-
diction error (RPE). A positive RPE indicates the outcome was
better than expected while a negative RPE indicates it was worse
than expected; the RPE is zero when events transpire according to
expectations. Midbrain dopamine neurons exhibit activity that
conforms in many aspects to this predicted RPE signal (Holler-
man and Schultz, 1998; Waelti et al., 2001): many display phasic
activations consistent with positive RPEs and transient inhibi-
tions correlated with negative RPEs. The modulation of dopa-
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mine in downstream cortical and basal ganglia targets is thought
to promote neural plasticity and behavioral change (Reynolds et
al., 2001; Canales et al., 2002; Tsai et al., 2009).

There is no consensus regarding the extent and manner in
which positive and negative RPEs are represented by neurons in
these downstream areas targeted by dopamine. Studies directly
investigating the activity of single neurons in the lateral PFC,
which is thought to be critical for associative learning, have de-
scribed the influence of choice and reward history (Barraclough
et al., 2004; Ichihara-Takeda and Funahashi, 2006; Seo et al.,
2007; Histed et al., 2009). However, some of these have failed to
reveal evidence of RPEs in the lateral PFC (Matsumoto et al.,
2007; Kennerley and Wallis, 2009), whereas others have found
activity related to unexpected outcomes, but did not explore dif-
ferences between positive and negative RPEs (Seo et al., 2007).

Meanwhile, in the basal ganglia, despite the variety of
learning-related phenomena observed here (Schultz et al., 1993;
Tremblay et al., 1998; Brasted and Wise, 2004; Schmitzer-Torbert
and Redish, 2004; Barnes et al., 2005; Pasupathy and Miller, 2005;
Williams and Eskandar, 2006; Kimchi et al., 2009), the encoding
of RPEs by striatal neurons (and in particular, by the medium
spiny neurons that constitute the significant majority of striatal
neurons) has been reported as rare, if present at all (Schultz et al.,
1998; Kim et al., 2009; Oyama et al., 2010).

Therefore, we sought to examine the manner and extent to
which neurons in the lateral PFC and anterior caudate nucleus
represent positive and negative RPEs. We hoped to begin to elu-
cidate their potential mechanistic substrates by examining the
pattern of their corepresentation by individual neurons, and by
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investigating their relative timing, both within and across struc-
tures. We trained two monkeys to perform a learning task with
multiple reversals, and with a mnemonic component of the sort
known to activate these regions (Fuster and Alexander, 1971;
Kojima and Goldman-Rakic, 1982; Rainer et al., 1998). The task
was designed to employ simple and stable learning rules, but also
to promote the occurrence of unexpected positive and negative
outcomes. We then recorded the activity of individual lateral PFC
and caudate neurons while the animals performed this task.

Materials and Methods

Task. Two monkeys (“M1” and “M2”) performed a temporally delayed,
on-line learning task in which they had to determine by trial-and-error
which of four picture cues or spatial locations was currently rewarded
within a particular block. Object-learning and spatial-learning blocks
were interleaved in a pseudorandom fashion such that each of the four
cues or locations was designated correct before any were repeated, and so
that the number and type of transitions between tasks were balanced.
Trials requiring object learning were identical in all sensory and motor
respects to those requiring spatial learning. No explicit cue identified the
type of learning required, or when a block switch occurred. The monkeys
needed to learn both the type of feature that was rewarded (object or
location) and the particular exemplar (specific object or feature from
among the four possibilities in each class) simply by trial-and-error.

Each trial began with the acquisition and maintenance of central fixa-
tion for 1000 ms. Four cues were then presented simultaneously in the
corners of a visual display (lasting 500 ms), followed by a short delay
(1000 ms), followed by a “go” signal (extinguishing of the central fixation
dot) instructing them to choose one of those four locations by executing
a saccade to it. If the chosen location had contained the rewarded cue or
was the currently rewarded direction, then a generic, positive visual re-
inforcer was presented (a green circle for 500 ms), and then a juice reward
was delivered. If the chosen location was incorrect, a generic negative
reinforcer was presented (a red “x” for 500 ms), which was not followed
by reward delivery. Trials were separated by a 2000 ms intertrial-interval.

A learning criterion of four consecutive correct choices was used be-
cause the random probability of that event with four response options
was less than one percent (0.25* = 0.0039). Once the association was
learned, and the monkeys’ behavior had been allowed to plateau for an
additional number of correct trials (40), a new block began and the
identity of the rewarded cue was changed without any external signal to
the animal. At this point, each animal was required to abandon the pre-
viously learned association and learn a new one. At least 16 blocks were
completed in any recording session.

Each day, four new cues were selected pseudo-randomly from a pool of
50 naturalistic images, familiar to each animal, each subtending 2 degrees
of visual angle. The use of familiar stimuli allowed us to discount the
influence of perceptual learning on neural activity, and the use of a sizeable
pool of familiar images ensured that the same set of four objects was never
used more than once, so that the cue array was unique in each session.
During cue presentation, each picture was presented at a distance of 7 de-
grees of visual angle from fixation, at 45, 135, 225, or 315 degrees from the
horizontal. The particular configuration of the four cues among the four
positions was chosen pseudo-randomly on each trial (i.e., each of the 24
possible configurations was selected randomly without replacement, until
exhausted). Therefore, in object learning blocks, the rewarded location asso-
ciated with the correct cue varied randomly from trial to trial and could not
be used to predict reward. In spatial learning blocks, these same cue arrays
were irrelevant to determine the rewarded direction.

The behavioral task was executed using custom psychophysical soft-
ware (“MonkeyLogic”) running on a specially configured Windows XP-
based PC (Microsoft) in MATLAB (MathWorks). The adequate
temporal precision of this software has been confirmed and reported
(Asaad and Eskandar, 2008), and further temporal refinements had since
been made (see www.monkeylogic.org). Eye position was monitored at
120 Hz using an infrared optical eye-tracking system (iScan).

Subjects. Two male rhesus monkeys (macaca mulatta) weighing 6.5
and 4.5 kg were trained to perform the behavioral tasks using apple juice
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as reward. They were water restricted so that they received their daily
allotment of fluid (40 ml/Kg) only during task performance. They were
each implanted with a head bolt restraint to allow reliable optical tracking
of eye movements, and to permit stable single-unit neuronal isolation.
Once initial training was complete, they were implanted with recording
chambers positioned over the left lateral prefrontal cortex and the head of
the caudate nucleus using standard stereotactic coordinates (Paxinos et
al., 2000). Both animals were always handled strictly in accordance with
NIH policies and those of the Massachusetts General Hospital animal
care and use committee.

Neurophysiology. In each session, multiple single neurons were re-
corded simultaneously, extracellularly, from 616 individual electrodes
driven by a custom-built multielectrode microdrive system. We relied on
structural T1-weighted MRI scans with fiducial markers representing
potential electrode trajectories to position electrodes over the lateral
PFC, centered on the principal sulcus and angled slightly posteriorly to
allow deeper recordings from the anterior caudate nucleus. The total
lateral PFC recording area in each animal was ~2.2 cm* across the two-
dimensional surface tangent to the lateral cortical surface of the PFC.
Trajectories to the anterior caudate nucleus were limited to a smaller area
within a posterior subregion, encompassing ~1.0 cm 2. In each animal, a
clearly bimodal distribution of recording depths was obtained with no
overlap, corresponding to locations in the lateral PFC superficially and
caudate nucleus more deeply, as expected based upon trajectories
planned according to the MRI scans.

Electrodes were driven until well isolated single units were encoun-
tered, without regard to any behavioral correlation of activity. After iso-
lation, at least 2-3 h elapsed before behavior and data acquisition
commenced, to allow the signals to stabilize. On each channel, all wave-
forms surpassing a threshold voltage were sampled at 40 kHz and stored
for off-line spike sorting (Plexon). Spikes were classified as belonging to
individual neurons based upon an analysis of waveform features,
including maximum and minimum voltage, voltage range, and wave-
form principal components. Spike clusters that were not separable
from low-amplitude multiunit activity, or from other single-unit clus-
ters, were left unsorted and were not included in any analysis. A low
fraction of short-latency events on an interspike-interval (ISI) histogram
(< 0.5% <2 ms) was necessary but not sufficient for the grouping of
spikes into a single-unit. Taking into account all sorted spikes, <0.1% of
those assigned to single units had ISIs less than or equal to 1.5 ms.

Data and statistical analysis. Behavioral and neurophysiological data
were coregistered using digital codes sent from the behavioral computer
to the neurophysiology computer to time-stamp the occurrence of key
events. These data were then analyzed using MATLAB (MathWorks).

For this report, we focused on neuronal activity beginning with the
onset of the feedback cue, after each behavioral choice. We included
correct and incorrect trials, so long as those incorrect trials were techni-
cally successful in every other respect but for the correctness of the cho-
sen target (e.g., trials with failure to fixate, break fixations, or early
responses were excluded from analysis). We assigned each of these trials
to one of four categories, depending upon the outcome in the current
trial and the outcome in the immediately preceding trial: Correct trials
that followed a preceding correct trial were termed expectedly positive
(EP). Correct trials that followed a preceding incorrect trial were termed
unexpectedly positive (UP). Incorrect trials that followed a preceding
incorrect trial were expectedly negative (EN), and incorrect trials that
followed a preceding correct trial were unexpectedly negative (UN). This
method provided a straightforward, minimal-model method of evaluat-
ing the influence of expectation and outcome on neuronal activity with-
out including additional parameters (e.g., the number of trials to include
as part of the history, and the weighting given to each). Supporting this
approach, previous work has demonstrated that while the activity of
some lateral PFC neurons reflect outcomes at least two or three trials
back, the immediately preceding trial was indeed the most potent influ-
ence (Seo et al., 2007), and in any case the exact integration time is likely
to vary with the stability of any particular task (Sugrue et al., 2004; Ken-
nerley et al., 2006). We also present behavioral data in Results to demon-
strate the stationarity of the animals’ strategies, and their lack of reliance
on more extended trial histories.
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To determine reliable outcome-selectivity for each neuron, two sliding
receiver operating characteristics (ROCs) were calculated across the trial
(200 ms width moving in 50 ms steps), and the time between feedback-
onset and feedback-onset +1000 ms was considered. The first ROC re-
flected the difference in neuronal activity between unexpected and
expected positive outcomes (UP and EP), while the second reflected the
difference between unexpected and expected negative outcomes (UN
and EN). In neither ROC was the comparison confounded by immediate
differences in visual stimulation (the feedback cues were identical within
each pairing), or the presence versus absence of reward. The only factor
differentiating these trials was the outcome history as defined by the
single preceding trial. Sensory and motor features (cue arrangement,
saccade direction, and rewarded cue or location) were balanced within
each response category, and so did not differentially influence one over
another.

ROC areas-under-the-curve >0.5 (chance) indicated neuronal pref-
erences for the unexpected over the expected condition within each pair
(i.e., such neurons were UP- or UN-responsive), whereas areas <0.5
indicated the opposite (neurons were EP- or EN-responsive). To assess
the significance of these ROC areas, bootstrap tests were performed. For
each pair of conditions comprising an ROC value (UP-EP or UN-EN),
the trial-by-trial spike rates were shuffled and reassigned among the pair
of conditions 1000 times, followed by a calculation of the ROC area. This
created a distribution of randomized ROC areas from which the p value
of the actual ROC area could be obtained. This was repeated for each
ROC value in each 200 ms bin for each neuron. An « level of 0.05 was
used with a correction applied for multiple comparisons (Benjamini and
Hochberg, 1995); neurons with significant outcome-related responses
were first identified using a starting threshold of: &/(number of bins), or
0.05/20 = 0.0025. Similarly, to get an estimate of the total number of
outcome-responsive neurons across each population (i.e., within each
area in each animal), the lowest p value from each neuron was tested
against a starting threshold of: a/(total number of neurons in that pop-
ulation). For subsequent analyses, when multiple bins were found to be
significant for a particular neuron within a specific category of outcome-
related activity (UP, UN, EP, or EN), the average spike rate across these
bins was used.

To assess the contribution of a preceding trial #-k on neuronal activity
in trial n, we used an ROC analysis on spike rates sorted by preceding
outcomes. Specifically, this analysis calculated the area under the ROC
comparing the distributions of spike rates in trial # when the outcome on
trial n-k was correct versus incorrect. The independent contribution of
trial n-k was found by performing separate ROCs for each subset of trials
in which the outcomes on trials n-k+ 1 to n were held constant, and then
taking the mean. For example, the ROC at trial n-3 represents the ability
to discriminate the firing rates at trial n using the outcome at trial n-3
while holding constant the sequence of outcomes at trials 1, n-1, and n-2.
For each neuron, spike rates in significant time bins during the feedback
period were used, as found above.

We also used a linear regression to assess the contribution of the cor-
rectness of preceding trials on outcome-related neuronal activity. We
considered each of the four response types individually, and included
correct versus incorrect (1 or 0), chosen object (1-4), or chosen location
(1-4), in trials #-5 to n-1, as potential factors contributing to the ob-
served spike rate on trial n. Only time bins with significant outcome-
related activity—as determined by the initial ROC analysis—were used.
The population means of the resulting regression coefficients were then
compared with zero using two-tailed ¢ tests, with a correction applied for
multiple comparisons, as above.

To determine whether neurons were responding to the outcome of the
previous trial rather than that of the current trial, we calculated for each
neuron an index based upon the mean level of activity for each of the four
outcome types (UP, EP, UN, or EN) using the same time bins as for the
ROC analysis, above. The index equaled the following:

[UP — EP| + [UN — EN]
"\JUN = EP| + [UP — EN|

(1)

The numerator is derived from the absolute differences in neuronal ac-
tivity between pairs of trials that share an outcome on the current trial,
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but are preceded by trials of differing outcomes (UP and EP trials are
both correct trials, but the former is preceded by an incorrect trial and the
latter by a correct trial; likewise UN and EN trials are both incorrect, but
differ in the outcome of the preceding trial). Meanwhile, the denomina-
tor is derived from the absolute differences in activity between trials that
differ in the current outcome, but share a prior trial’s outcome (e.g., UN
and EP trials are both preceded by correct trials, but have different out-
comes on the current trial). Thus, when the outcome of the previous trial
was the major determinant of a neuron’s activity, the numerator would
be larger and so the natural log of this ratio would be greater than zero. In
contrast, a larger denominator reflects differences that are driven more
by the outcome of the current trial than by the previous one; in that case,
the log would be less than zero. The mean value of this index across time
bins was calculated for each neuron in either the pre-feedback period
(specifically, the fixation, cue, and delay periods) or in the post-feedback
period (feedback onset to feedback offset + 500 ms). Two-tailed ¢ tests
were then used to assess whether the means of each distribution differed
from zero. All neurons were used in this analysis, regardless of signifi-
cance on the ROC.

The number of neurons responding to more than one category of
outcome was represented using an overlap fraction. This was simply the
number of neurons responding to both of a pair of categories divided by
the sum of neurons responding to either of the pair, alone or in combi-
nation with the other. It varied from zero to one, corresponding to strict
absence of combined responses to exclusive presence of combined re-
sponses. Because this measure varies according to the individual frequen-
cies of each category, we also calculated a distribution of expected overlap
values for each of the six possible pairs of categories, for each animal and
for each recorded area (PFC or caudate). This was done by reassigning
the observed number of significant responses for each category randomly
across neurons, and recalculating the overlap fraction 10,000 times. In
other words, to create the random distributions, the frequency of each
response was maintained but the particular neuronal assignments were
shuffled. The resulting two-tailed p value was then derived by comparing
the actual overlap fraction against the associated random distribution.

Because certain categories of outcome represent opposite polarities
of the same analysis (UP-EP or UN-EN), it was inherently less likely
that a neuron would represent both types of outcome from a given
pair because time spent signaling one category (say UP) leaves less
time available for a neuron to represent the opposite type of outcome
(here, EP). Indeed, we found that in most cases neurons were less
likely to show both UP and EP activity, or to show both UN and EN
activity (see Fig. 8, Table 3). These findings were therefore expected
and considered artifacts. Instead, we focused on the potential associ-
ation or dissociation of UP and UN responses.

The latencies to appearance of UP or UN activity were based on ROCs
calculated in 50 ms time bins stepped 5 ms across the 500 ms feedback
period (feedback-onset to feedback-offset). The significance of each
ROC area-under-the-curve was determined with a bootstrap analysis as
above. The first significant time bin (if any) with UP or UN activity was
found for each neuron, and the cumulative latency curves of these
ascending-sorted values were then calculated. These curves were scaled
to account for the differing numbers of neurons across groups that would
otherwise distort the results due to sampling bias by normalizing with
respect to the relative sizes of the populations being compared (along the
x-axis) and by the total area of each distribution (on the y-axis). Cumu-
lative distributions are shown because they are particularly sensitive to
the higher moments of each distribution of latencies (such as skew),
which could reveal differences in the timing of information arrival. Sig-
nificant differences in the underlying (non-normalized) distributions of
first-significant-bin latencies that gave rise to these cumulative latency
curves were assessed with two-sample, two-tailed Kolmogorov—Smirnov
tests.

To examine the association of neuronal activity with behavior, we
performed a form of reverse correlation of the latter with the former. We
hypothesized that trial-by-trial variations of neuronal activity might be
correlated with different levels of influence on the behavioral output
(here, the animal’s choice). Thus, if UP- and UN-related neuronal activ-
ity were linked to behavior, a relatively higher level of neuronal activity
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Behavioral task and recording areas. 4, A schematic representation of the behavioral task (see Materials and Methods). B, A typical recording session is shown with trial number along

the x-axis and behavior (calculated using a 10-trial moving average) along the y-axis. Correct trials are represented by the green area, and incorrect choices are shown in red. The other colors
represent procedural errors; neuronal activity from these latter trial types, reflecting technical errors rather than decisional ones, was not used in any analysis. The vertical lines represent reversals
between blocks, and the numbers at the bottom of each block represents the particular cue (1-4) or direction (5— 8) that was designated correct during that block. €, T1-weighted MRIs with fiducal
markers placed within the recording chambers to demonstrate a subset of trajectories into the left lateral prefrontal cortex of each monkey, M1and M2. PS, Principal sulcus. D, Fiducial markers within
the posterior portion of the same recording chambers demonstrate sample electrode trajectories into the anterior caudate nucleus.

on a UP trial (by UP-responsive neurons) should more likely be associ-
ated with selection of the same behavioral response on the subsequent
trial, whereas for those neurons responding to UN outcomes, a higher
level of activity on UN trials should more likely be associated with selec-
tion of a new behavioral response on the subsequent trial. Therefore, we
used the binary factor (new vs same choice on the subsequent trial) to
sort neuronal activity corresponding to either UP or UN trials. Then, for
each neuron, we subtracted the mean spike rate in those trials followed by
“same” choice behavior from the mean spike rate in the remaining trials
that were followed by “new” choice behavior. This difference provided a
simple measure to assess how trial-by-trial variations in neuronal re-
sponse within an outcome category (UP or UN) were linked to subse-
quent behavior. Only the first three trials from each block were used
(though the results are insensitive to the exact number), because a spa-

tially based choice strategy was evident most strongly in earlier trials
within each block (later, subjects tended to adopt an object-based strat-
egy if the correct feature appeared to be an object rather than a location);
this allowed us to use selection of a new or same direction as the behav-
ioral key.

Results

Behavior

Animals learned the spatial task (Fig. 1) more quickly than they
learned the object task (Fig. 2A, B). This was due, at least in part,
to a default reliance on a spatial strategy. In other words, when a
correct outcome was encountered after a prior trial had been
incorrect (i.e., after an unexpected positive, or “UP” trial), they
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Figure 2. Behavioral performance and strategy. 4, B, Percentage correct as a function of trial number within a block for subjects M1 and M2, is plotted separately as a function of learning rule
(“object” or “spatial”). The shaded area bounds the mean = SE. Animals learned more quickly in spatial learning blocks than in object-learning blocks. €, D, Behavioral strategy following a UP trial
is shown. If subjects were using a spatial strategy, then the occurrence of an UP outcome should lead them to repeat the chosen direction, regardless of the object that had cued that direction (i.e.,
“repeat spatial”). If they were using an object-based strategy, they should instead “follow the object” that had cued the correct location just chosen, wherever it appears on the subsequent trial
(“repeat object”). The initial strategy used by each animal (based on the first 3 occurrences of UP trials in each block) was influenced by the type of the preceding block, but was generally biased
toward a spatial strategy. This dependency on the preceding block type weakened as the number of trials into a block increased, although it was still evident across the entire block (data not shown).
The probability of selecting the same direction or object by chance was 0.25 (indicated by the dashed line). A three-way ANOVA with main factors of (1) previous block type (spatial vs object); (2)
current block-type; and (3) strategy (i.e., repeat spatial vs repeat object) revealed a significant main effect of strategy (M1: p << 0.0001; M2: p < 0.0001), and a significant interaction between
previous block type and strategy (M1: p = 0.0057; M2: p = 0.0014). No other main effects or interactions were significant in either subject. E, F, Behavioral strategy after UN trials is plotted as a
function of trial number within a block. The chance probability of reselecting either the same object or direction was 0.4375 (indicated by the dashed line). For each subject, performance returned
approximately to chance after any incorrect trial, regardless of its timing within a block. Over all trials, M1 was slightly less likely to repeat the same object or direction after an error (p = 0.025),
whereas the pattern of choices made by M2 did not differ from chance (p = 0.402). G, The likelihood of a correct choice after n-consecutive incorrect trials is plotted for each subject. Subject M1 was
slightly more likely than M2 to make a correct response after anincorrect response (likely related to this subject’s slightly greater tendency to avoid reselecting a previously chosen object or direction,
as shown in E). However, there was no large variation in performance as a function of the number of consecutive incorrect choices for either subject, suggesting they relied predominantly on a
guessing strategy, rather than accumulate information from each consecutive incorrect response.

tended to reselect the chosen direction of that correct trial on the  spatial-learning blocks, 52.7% (M1) and 54.0% (M2) of errors
subsequent trial, rather than “follow the object” thathad cued the ~ could be attributed to an object-based strategy (reselecting the
chosen location. This bias was evident in the types of errors made ~ same object after a correct trial, resulting in an incorrect choice).
by each animal within each block type: in object-learning blocks, The degree of reliance on a spatial rather than object strategy
75.0% (subject M1) and 73.2% (subject M2) of errors could be ~ was biased by the type of preceding block (Fig. 2C,D); when the
attributed to a spatial strategy (i.e., reselecting the same location ~ preceding block employed a spatial rule, use of a spatial strategy
after a correct trial, resulting in an incorrect choice), while in ~ was most pronounced. However, when the preceding block em-
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sequences of correct (labeled “1”) and incorrect (“0”) outcomes is arranged along the y-axis in order of frequency. The proportion of all 6-trial segments corresponding to that pattern is shown on
the x-axis, to the right (in blue). The total fraction represented by the first bar (indicated by an asterisk) was 0.61and 0.66 for M1 and M2, respectively. The red bars to the left reflect the number of
transitions between correct and incorrect trials contained in each sequence. For example, the sequence “110110” has 3 transitions (trials 2—3, 3—4, and 5— 6). The inset plots the frequency of these
different patterns according to the numbers of transitions they contain. These plots provide a measure of behavioral stability, and also would reflect reliance on idiosyncratic strategies that depend
upon particular sequences of outcomes. The simplest sequences are most common. Therefore, most unexpected responses occur in regimes of relatively stable behavior.

ployed an object rule, the bias toward a spatial strategy was re-
duced or abolished (but not reversed).

It was possible that the stage of learning (approximately, num-
ber of trials into a block) influenced behavioral strategy. For ex-
ample, subjects might more readily explore alternative options
after an incorrect trial early in a block, whereas they might persist
in choosing that same incorrect option after learning had oc-
curred, due to a recent history of successive positive reinforce-
ment. Furthermore, they could perhaps expect that, after many
trials, a reversal is imminent, and so again be more willing to
explore after an incorrect trial. In actuality, examining the ten-
dency to reselect the same object or direction after an incorrect
trial, we found that performance essentially returned to chance
whenever a negative outcome was encountered, regardless of the
number of trials into a block (Fig. 2 E, F). This rapid unlearning is
very similar to the behavior observed in another learning task
with multiple reversals (Fusi et al., 2007), and likely reflects be-
havioral adaptation to an unstable task environment.

If subjects’ behavior were optimal, each successive incorrect
choice would lead to the accumulation of information, con-
straining subsequent choices to the remaining, unexplored alter-
natives. Therefore, a correct outcome encountered after four
consecutive incorrect choices should be less surprising than one
encountered after two consecutive incorrect choices. However,
examining the likelihood of a correct choice after n consecutive
incorrect choices (Fig. 2G) revealed that there was relatively little
variation above chance (especially compared against theoretically
optimal behavior, in which there would be no sequence of trials
or strategy that would require >7 incorrect choices to achieve
100% correct performance, given four locations and four objects,
sampled independently). Therefore, the animals’ experience did

not provide a basis for differential expectation after particular
sequences of incorrect trials; again, they appeared to rely in large
part on random guessing, ignoring the potential information
available from consecutive incorrect choices.

The relative stationarity of these performance measures al-
lowed us to apply a simplified analysis framework to examine the
neuronal data. Specifically, each trial was assigned to one of four
outcome categories based solely on the outcome of the immedi-
ately preceding trial: A correct trial that followed an incorrect trial
was termed a UP outcome, whereas a correct trial that followed
another correct trial was termed an EP outcome; likewise, an
incorrect trial that followed a correct trial was UN, and one that
followed another incorrect trial was EN. Thus, when comparing
UP to EP trials, the visual cues and delivery of reward were iden-
tical. Only the previous trial differed across these conditions.
Similarly, a comparison of UN and EN trials was not confounded
by immediate events, as the negative visual feedback and absence
of reward were identical. Furthermore, the visual cues and re-
sponse directions were balanced across these conditions, such
that they did not differentially influence any of these four out-
come categories.

In essence, we assumed that an animal’s expectation for the
current trial was set primarily by its experience on the immedi-
ately preceding trial. The advantage of this method is that it is a
simple, almost model-free way of determining expectation. How-
ever, there may be times when a subject’s performance is unsta-
ble, vacillating between correct and incorrect trials so frequently
as to confound any sense of expectation. Alternatively, a compli-
cated sequence of outcomes could reflect a rational strategy that is
overlooked by considering only the immediately preceding trial:
For example, if a subject is using a spatial strategy (i.e., “reselect a
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Figure 4. Single neuron examples. 4, Top, This caudate neuron demonstrated a feedback-related response to unexpectedly positive outcomes. A slight depression of activity was seen for both
expected and unexpected negative outcomes. Activity was less modulated by expected positive outcomes. This neuron recapitulated the pattern of activity described by others for midbrain
dopamine neurons. Neuronal activity was smoothed with a sliding Gaussian kernel with o~ = 50 ms. The left-side portion of the figure is aligned to the cue onset (at 0 ms); fixation onset occurred
at —1000 ms and cue offset occurred at 500 ms, both marked by vertical lines. The right-side portion of the figure is aligned to the onset of visual feedback (at 0 ms), while offset of visual feedback
occurred at 500 ms, coincident with the onset of reward delivery in correct trials. Green, UP; black, EP; blue, UN; red, EN. Middle, A sliding ROC comparing UP and EP responses. Deviations >0.5
indicate the UP response was greater than the EP response; those <<0.5 reflect greater activity for the EP than for the UP condition. Each bar is color-coded to represent the p value calculated from
a bootstrap distribution created for each 200 ms bin, slid in 50 ms steps. Bottom, The sliding ROC comparing UN and EN responses. Deviations 0.5 indicate greater activity in UN trials whereas
deviations <<0.5 reflect greater activity in EN trials. Conventions in B—G are as for A. B, This caudate neuron showed greater activity, beginning during visual feedback, for UN outcomes. €, A PFC
neuron that showed greater activity for EN outcomes. D, A PFC neuron that exhibited greater activity on trials with EP outcomes. This neuron also had a small selective response on UN trials. E, This
caudate neuron displayed brief phasic responses of approximately similar magnitude to both UP and UN outcomes. F, This PFC neuron had a larger, earlier response to UN outcomes followed by a
smaller response to UP outcomes. It also had greater activity earlier in the trial around the time of the cue and early delay period, when the previous trial was correct, as suggested by the slight
separation between UN and EP trials (which are preceded by correct trials) from UP and EN trials (which are preceded by incorrect trials), similar to what has been reported previously by others (Seo
etal., 2007; Histed et al., 2009). G, A PFC neuron that displayed a small early response to EN outcomes, but a larger and more sustained response to UP outcomes. This neuron also demonstrated
slightly increased firing rates during the delay period when the previous trial was incorrect.
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correct location, regardless of object”) in an object-learning
block, it may by chance make a correct choice, followed subse-
quently by an incorrect choice when the correct object shifts to a
new location, followed again by a correct choice when the subject
infers that it had been the object rather than the location that led
to the first correct outcome in this sequence. Here, one could
justifiably argue that the last correct trial in this 0-1-0-1 sequence
(where “0” is an incorrect trial and “1” is a correct trial) is com-
pletely expected, and therefore should not be assigned to the UP
category.

Therefore, to assess the prevalence of such patterns and to
examine the local variability of behavior, we tabulated the fre-
quency of all combinations of correct and incorrect outcomes
over six trial sequences. The resulting distribution of frequencies
for each of the 2° possible sequences is shown for each animal in
Figure 3. The simplest sequences, basically corresponding to the
most straightforward and stable behavior, were the most com-
mon. Specifically, only ~10% of sequences contained >2 transi-
tions. Furthermore, even if a higher-order strategy were in use, it
was unlikely to be evident in all of these more complicated se-
quences; rather, it likely would have manifested as only some
subset of that ~10%. These behavioral data therefore supported
our approach of inferring expectation from the immediate his-
tory of outcomes, as it was much less likely that these category
assignments were drawn from regimes of unstable behavior de-
void of expectation, or that more complicated sequences, such as
that hypothesized above (containing at least three transitions be-
tween different outcomes), contributed significantly to the ani-
mals’ experience.

Of course, it is possible that in any isolated instance the prior
trial did not make the inferred impression, or that a particular
sequence of outcomes did contribute uniquely to expectation.
However, these analyses demonstrate that subjects did not tend
to rely on such higher-order behavioral strategies; neuronal re-
sults sorted according to the four simple outcome categories de-
fined above are therefore unlikely to be significantly biased by
such factors.

Neuronal population

We recorded 635 single neurons from the lateral PEC (M1 n = 394;
M2 n = 240) and 233 neurons from the anterior caudate nucleus
(M1 n = 139; M2 n = 94) of two monkeys while they performed this
task (sample electrode trajectories are shown in Fig. 1C,D). In the
caudate, we excluded the small number of cells that had firing char-
acteristics typical of tonically active neurons (Aosaki et al., 1995) (11
in M1 and 7 in M2, representing 7.91% and 7.45% of all recorded
caudate neurons in each animal). Our caudate population there-
fore consisted of neurons most likely to be striatal projection
neurons, a.k.a. medium spiny neurons. We did not prescreen
neurons in either area for task-related responses.

Neuronal representation of expected and unexpected positive
and negative outcomes

For this report, we focused on neuronal activity beginning at the
time of visual feedback onset, near the end of each trial. For each
neuron in the PFC or caudate, we examined firing rates reflecting
the immediate outcome in each trial (correct or incorrect) as a
function of the prior trial’s outcome.

A sliding ROC analysis was performed on the outcome-
related activity of each neuron with a bootstrap control to deter-
mine significance (see Materials and Methods). Neurons were
considered to code for a particular type of outcome if an ROC
area comparing UP and EP trials or comparing UN and EN trials
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Figure5.  Prevalencesand magnitudes of the four types of outcome-related responses. 4, This bar

graph depicts the fraction of neurons within the lateral PFC (black) or caudate nucleus (gray) of subject
M1 that exhibited each category of outcome-related response. A neuron was counted as responding
toa particular outcome category if it had at least one time bin (after feedback onset) that was signif-
icant in the relevant ROC analysis (see Materials and Methods). Fractions sum to greater than one
within each area because neurons could display more than one response type. Numerical values are
included in Table 1. B, Data from subject M2 displayed in the same manner asin A.

Table 1. Prevalences of neurons exhibiting significant responses to particular
outcome types (related to Fig. 5)

Subject M1 PFC  Subject M1 caudate

Subject M2 PFC  Subject M2 caudate

(n=394) (n=128) (n = 240) (n=287)
up 274 (69.5%) 98 (76.6%) 177 (73.8%) 61(70.1%)
UN 305 (77.4%) 111 (86.7%) 192 (80.0%) 79 (90.8%)
UPandUN 211 (53.6%) 85 (66.4%) 140 (58.3%) 56 (64.4%)
UPorUN 368 (93.4%) 124 (96.9%) 229 (95.4%) 84 (96.6%)
EP 100 (25.4%) 11(8.6%) 30 (12.5%) 16 (18.4%)
EN 47 (11.9%) 4(3.1%) 68 (28.3%) 12 (13.8%)
EPandEN  11(2.8%) 1(0.8%) 13 (5.4%) 6 (6.9%)
EPorEN 136 (34.5%) 14 (10.9%) 85 (35.4%) 22(25.3%)

Numbers and associated percentages are shown separately for the PFC and caudate populations for subject M1 and
M2. The percentages are based upon the total number of neurons in each anatomical area, in each animal. The “UP
and UN” and “EP and EN” rows reflect the number of neurons with combined responses, and the associated fraction
is with respect to the total number of neurons (i.e., this is not equal to the “overlap fraction” shown in Fig. 8 or Table
3). The “UP or UN" and “EP or EN" rows reflect the total number of neurons responding to at least some form of
unexpected or expected outcome, respectively.

significantly differed from chance in any time bin during the 1000
ms beginning at feedback onset (the direction above or below
chance indicated which of the pair more strongly activated the
neuron). These particular pairings formed the basis of the ROC
analysis because a comparison restricted to positive trial out-
comes (UP or EP) was not confounded by immediate events, nor
was a comparison of negative trial outcomes (UN or EN). There-
fore, a significant ROC during the feedback period reflected a
difference in expectation, as set by the previous trial’s outcome,
rather than a difference of visual cue or reward.

Consistent with the importance of unexpected events as mo-
tivators of learning, we found that many neurons in both the PFC
and the caudate were preferentially activated by unexpected (UP
or UN) outcomes (Fig. 4 A, B). Fewer neurons were preferentially
activated by expected (EP or EN) outcomes (Fig. 4C,D). In both
the PFC and caudate populations, responses to unexpected out-
comes were strikingly more common (Fig. 5; Table 1). In fact,
>90% of neurons in each animal responded selectively to at
least one of the two valences of unexpected outcome. Ran-
domly allocating the total number of significant responses
across the four outcome categories (UP, EP, UN, or EN) dem-
onstrated that the probability the top two categories (UP and
UN) would show the observed separation from the bottom
two (EP and EN) simply by chance was very low (p << 0.0001
in each area in each subject).
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Contribution of more distant outcomes A

to neuronal activity 0.65
To assess our method of relying on the

outcome of only the immediately preced- 0.6
ing trial as a determinant of neuronal ac-
tivity, we analyzed the ability to
discriminate spike rates as a function of
the outcome of a given preceding trial in a
sequence leading up to the current trial.
The independent contribution of each
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discriminability provided by trial n-2 and 045
the other preceding trials (Fig. 6). This is
consistent with the behavioral evidence,
above, which demonstrated that the ani-
mals did not rely on higher-order,
multiple-trial sequences of outcomes to
guide behavior.

As a cross-validation of this result, a
linear regression was performed to assess
the contribution of the correctness of pre-
ceding trials to outcome-related neuronal
activity, as well as the potential contribu-
tion of the chosen objects or spatial loca-
tions on those preceding trials (Fig. 7). We found that, using this
method as well, the correctness of the immediately preceding trial
was indeed the most potent factor driving outcome-related neu-
ronal activity, with less-consistent and smaller contributions of
earlier trials. The chosen objects or locations did not significantly
contribute to outcome-related neuronal activity (regression co-
efficients were nearly uniformly <0.1, and none were
significant).

Figure 6.

Lack of modulation of RPE-related activity by task context or
chosen features
While neurons that exhibit RPE-related activity (i.e., UP- or UN-
selective) could in principle also convey information about par-
ticular task features that led to the observed outcome, the linear
regression described above did not find a significant influence of
chosen object or location. To more directly test for the possible
influence of these factors, we now explicitly considered only the
most- or least-preferred objects or locations for each neuron, and
also considered the task context (object learning or spatial learning).
We sorted spike rates for all UP- or UN-selective neurons (on
UP or UN trials, respectively, and using only significantly mod-
ulated bins, as determined earlier) according to object versus
spatial task, most- versus least-preferred object, or most- versus
least-preferred direction. Two-tailed ¢ tests were then applied to
reveal significant differences, with post hoc correction for multi-
ple comparisons (Benjamini and Hochberg, 1995). The results,
shown in Table 2, demonstrate that RPE-related activity was not
significantly modulated by any of these parameters, consistent

-=r eee

0.45 5 3 n 5

3
N-Back Trial N-Back Trial

M1 M2

4 5

The independent contributions of preceding trials to spike rates. 4, The discriminability of spike rates by ROCin a given index
trial, n, afforded by the outcome of a preceding trial (n-1 through n-5) is plotted (see Materials and Methods). ROCs for activity correspond-
ing to each of the four categories of outcome are plotted separately. Here, the contributions of preceding trial outcomes to neuronal activity
are shown for the PFC of subject M1. Most of the ability to discriminate spike rates was indeed found in the outcome of the immediately
preceding trial. The colored dots identify which points were significantly above chance for the population. B—D, The contribution of
preceding trials to spiking activity in the PFC of M2 (B), the caudate of M1 (C), and the caudate of M2 (D) were similar. Note that it was
possible that the neural responses to different outcome categories could have been differently influenced by preceding outcomes; however,
after correcting for the number of pairwise comparisons, no such differences were found to be significant.

with the notion that RPEs are generic signals reflecting only the
overall quality of an outcome, regardless of specific task elements
(Sutton and Barto, 1998).

Representation of the current versus previous outcome in the

feedback period

Because a comparison of UP-versus-EP trials, or UN-versus-EN
trials, is based upon a difference in the outcome of the previous
trial, it was possible that feedback-period differences in a cur-
rent trial simply reflected a difference in the prior trial’s outcome,
rather than being driven by the immediate outcome and its
expectation. Indeed, many neurons (including those in Fig.
4C,D,F) did show significant ROCs earlier in a trial that must
have reflected the prior trial’s outcome, because the current trial’s
outcome was yet unknown. Therefore, to measure the degree to
which activity was driven by the previous trial outcome rather
than the current one, we calculated an index for each neuron that
cast the differential contribution of the prior versus current trial
as a ratio (see Materials and Methods). This index was positive
when a neuron’s activity was more closely related to the previous
trial’s outcome and negative when it was more a function of the
current trial’s outcome. As expected, the indices calculated before
feedback onset tended to be greater than zero (M1 and M2: p <
0.0001 by two-tailed ¢ test; Fig. 7), suggesting a larger contribu-
tion of the previous trial, while the indices calculated after feed-
back onset tended to be less than zero (M1 and M2: p < 0.0001),
consistent with a greater contribution of the current trial’s out-
come. The ROC differences beginning at feedback onset, there-
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The contribution of behavioral factors on preceding trials to neuronal activity. The contribution of the correctness, the chosen object, and the chosen spatial location on preceding trials

to outcome-related neuronal activity was assessed with multiple linear regression. In neither area and in neither animal were chosen object or location significant regressors on any preceding trial.
Plotted here are the regression coefficients for each type of outcome-related response, as a function of the correctness of the N-back trial. A, The data for PFC neurons in subject M1. Positive
deflections indicate a positive contribution of a preceding correct trial at that lag, and negative deflections indicate a positive contribution of an incorrect trial at that lag. Therefore, UP and EN
responses, which are by definition based upon a preceding incorrect trial, both deflect negatively; meanwhile UN and EP responses, which are identified based upon a preceding correct response,
both deflect positively. In this animal, the UP and EN activity of PFC neurons tended to be significantly influenced by outcomes several trials into the past, but the largest contributor was the
immediately preceding trial (n-1). B, The data for caudate neurons in subject M1. , The data for PFC neurons in subject M2. The contribution of more distant trials was not replicated in this animal.
D, The data for caudate neurons in subject M2. In all cases, as for the independent ROC method (Fig. 6), the immediately preceding trial was indeed the most potent influence on outcome-related

neuronal activity.

Table 2. RPE activity is not modulated by task, chosen object, or chosen location

PFC (Caudate
UP cells UN cells UP cells UN cells
Subject M1
Object vs Spatial Task 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%)
14(5.1%)°  28(9.2%)° 4 (4.1%)° 4(3.6%)"
Best vs Worst Cue Object 1(0.4%) 0(0.0%) 0(0.0%) 0(0.0%)
60 (21.9%)° 44 (14.4%)°  16(16.3%)° 10 (9.0%)¢
Best vs Worst Direction 2(0.7%) 0 (0.0%) 0 (0.0%) 0 (0.0%)
19(6.9%)° 20 (6.6%)° 4 (4.1%)° 5 (4.5%)"
Subject M2
Object vs Spatial Task 1(0.6%) 1(0.5%) 0 (0.0%) 0 (0.0%)
7 (4.0%)° 8 (4.2%)" 1(1.6%)’ 2 (2.5%)"
Best vs Worst Cue Object 0 (0.0%) 0 (0.0%) 4 (6.6%) 0 (0.0%)
29 (16.4%)° 29 (151%)" 15 (24.6%)  8(10.1%)"
Best vs Worst Direction 2 (1.1%) 0 (0.0%) 0 (0.0%) 0 (0.0%)
22 (124%)° 19 (9.9%)" 4 (6.6%)° 2 (2.5%)"

The RPE activity of very few neurons was influenced by the task (object vs spatial learning), the chosen object,
or the chosen location. Neurons with significant UP or UN activity were assessed for significant modulation of
this activity across tasks or most- versus least-preferred (“best versus worst”) features using two-tailed ¢ test.
The values in bold reflect the numbers and percentages of neurons showing significant differences after
correction for multiple comparisons, using & = 0.05. The numbers immediately beneath these, within each
cell, are the uncorrected values, using the same alpha level. The results for subject M1 and for M2 are shown
separately.

Un = 274).
b(n = 305).
“(n=98).
In=11).
¢(n=177).
n=192).
9(n = 61).
hin =79).

fore, were not simply the persistence of pre-feedback activity
reflecting the previous trial’s outcome, but rather reflected the
current outcome as a function of the expectation set by the prior
outcome.

Overlap of outcome representations in single neurons
Surprisingly, the outcome-related activity of individual neurons
did not exclusively adhere to one particular category of response
(Fig. 4E-G): Many individual neurons were observed to have
separate epochs within a trial exhibiting different types of
outcome-related activity. We wondered whether particular types
of outcome-related activity were more or less likely to be found in
conjunction with specific other types of activity within single
neurons. Specifically, we were interested to know whether UP
and UN responses were derived from a common substrate re-
flecting unexpected events, and were therefore more likely to be
observed together within individual neurons. Therefore, we cal-
culated the percentage overlap for each of the six possible pairings
of the four different outcome categories (UP, UN, EP, or EN),
where overlap was defined as the number of instances in which a
given pair is found within single neurons divided by the sum of that
number plus the total number of instances in which either member
of the pair is found in isolation from the other. Thus, if each of the
types within a pair never overlapped with the other within sin-
gle neurons, the overlap fraction would be zero; if, on the other
hand, they only ever were observed as paired within single neu-
rons, the overlap fraction would be one. A bootstrap analysis was
used to determine whether the observed incidence of pairings was
more or less likely than expected by chance, given the underlying
distributions (see Materials and Methods).
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Figure8. Relative contributions of the prior versus the current trial's outcome on neuronal activity. A, A positive index reflected neuronal activity that was driven primarily by the prior trial's outcome, whereas

a negative index reflected activity that was more related to the current trial’s outcome (see Materials and Methods). Here, the data from subject M1 is shown. A scatter plot is shown depicting the mean
pre-feedback-onset and post-feedhack-onset indices for each neuron. Population histograms depicting these preindices and postindices are shown along the x- and y-axes, respectively, with the mean of each
distribution depicted by a solid black line. The means of these distributions were 0.12 and —0.26, respectively, each differing significantly from zero (p << 0.00001 in each case, by two-tailed t test). B, The data
from subject M2is plotted asin A. The means of the pre-feedback-onset and post-feedback-onset index distributions were 0.17 and —0.18, respectively. These also significantly differed from zero (p << 0.00001
in each case). Splitting the data to consider neurons recorded from either the PFCalone or from the caudate alone (independently for each subject) did not change the pattern or significance of these results.

This analysis revealed that in neither the PFC nor the caudate of
either animal was the frequency of UP-UN association within indi-
vidual neurons higher or lower than predicted by their individual
incidences across the population (p > 0.2 in all cases; Fig. 8, Table 3).
This suggests that information about unexpectedly positive events
and unexpectedly negative events was independently distributed
across each neuronal population.

Relative timing of UP and UN activity

Because the time of appearance of UP or UN selectivity might
provide insight into the underlying circuit mechanisms that gen-
erate these signals, we calculated the latencies to the appearance
of significant UP or UN activity, defined as the earliest time bin
during the feedback period with a significant ROC for each type of
activity (see Materials and Methods). Next, we plotted the cumula-
tive latencies to the appearance of UP and UN activity for each
recorded area in each animal (Fig. 9). Significant differences between
these latency curves were then assessed with a Kolmogorov—Smir-
nov (KS) test. We found that, in the PFC of one animal and the
caudate of both animals, UP activity did appear with a significantly
shorter latency than UN activity (KS test comparing distributions
across neurons of latencies to first significant bins: M1 PFC: p <
0.001; M1 caudate: p = 0.003; M2 PEC: p = 0.232; M2 caudate: p =
0.033), consistent with the notion that extra processing may be
required to detect or invert a negative signal relaying a negative pre-
diction error. No difference in the latency of appearance of UP or
UN activity was observed between the PFC and caudate (p > 0.3 in
all four cases).

Trial-by-trial variations in single neuron activity and
behavioral strategy

We next sought to determine whether the activity of the UP- and
UN-selective neurons—representing non-zero reward predic-
tion errors—was linked to subsequent behavioral decisions. Op-

Table 3. Numerical overlap fractions and associated p values (related to Figure 8)

up EP UN EN

(A) Subject M1 PFC

up 1

EP 0.16 (0)** 1

UN 0.57 (0.336) 0.24 (0.611) 1

EN 0.13 (0.901) 0.08 (0.306) 0.06 (0)** 1
(B) Subject M1 caudate

up 1

EP 0.07 (0.095) 1

UN 0.69 (0.401) 0.08 (0.158) 1

EN 0.03 (0.234) 0.07 (0.663) 0.02 (0.013** 1
(C) Subject M2 PFC

up 1

EP 0.05 (0)** 1

UN 0.61 (0.222) 0.13 (0.590) 1

EN 0.26 (0.504) 0.15 (0.045)** 0.22 (0.006)** 1
(D) Subject M2 caudate

up 1

EP 0.12 (0.013)** 1

UN 0.67 (0.557) 0.16 (0.039)* 1

EN 0.16 (0.757) 0.27 (0.006)***  0.12 (0.072) 1

(A) Subject M1 PFC: The overlap fractions across pairs of outcome-type representations in single neurons in the PFC
of subject M1 are shown in bold. The bootstrapped p value for each is shown adjacent, in parenthesis.

(B) Subject M1 caudate: The overlap fractions for caudate neurons in subject M1, as shown for PFC neurons in (A).
(C) Subject M2 PFC: The overlap fractions for PFC neurons in subject M2.

<mc> (D) Subject M2 caudate: The overlap fractions for caudate neurons in subject M2. In subject M2 there was an
unreplicated trend for expected responses of the same valence (EP and EN) to overlap more often than expected by
chance. The decreased frequency of overlap for UP-EP and UN-EN pairings s likely an artifact of the analysis structure
(see Materials and Methods).

*Overlap fractions that were significantly below expected (cc = 0.05), given the independent prevalence of each
type of outcome representation. **Overlap fractions that were higher than expected. “p Values that remained
significant after correction for multiple comparisons; these are also indicated by color (green for less frequent than
expected by chance, red for more frequent than expected).
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Figure9.  Overlap fractions between pairs of outcome types. The overlap fraction between each pair is shown by the thickness of the
lines connecting them (as indicated by the thickness scale and numerical values in Table 3). The significance of these values, factoring in
the baseline frequencies of each outcome type, is depicted by the color of the lines. A, The overlap fractions for outcomes in the PFC of M1.
B, The overlap fractions for the outcomes in the PFC of M2. C, The overlap fractions for the outcomes in the caudate of M1. D, The overlap
fractions for the outcomes in the caudate of M2. There was no evidence for an increased or decreased tendency for UP- or UN-selective
responses to be found in the same neurons. Note that the decreased tendency for UP-EP and UN-EN pairingsis a consequence of the analysis

structure (see Materials and Methods).

timally, a UP outcome on a given trial should lead to reselection
of the same choice on the following trial, whereas a UN outcome
should lead to selection of a new choice on the next trial. Because
directly comparing behavior against neuronal activity in re-
sponse to UP versus UN outcomes would be confounded by dif-
ferences in the feedback cue and reward delivery, a different
within-outcome-category measure was needed. Therefore, we
examined trial-by-trial variations of neuronal activity in response
to a single type of outcome (UP or UN) in relation to subsequent
behavioral choice. We hypothesized that these trial-by-trial fluc-
tuations in outcome-related neuronal activity could be linked to
the animals’ subsequent behavioral strategy, such that higher UP
or UN activity would be associated with more optimal response
selection. For example, if an animal responded appropriately to a
UP outcome in a given index trial by reselecting that correct
response on the subsequent trial, outcome-related activity in
the index trial should have been higher than in those instances
when an UP outcome was followed less appropriately by se-
lecting a different response. Likewise, higher UN-related ac-
tivity should be associated with subsequent selection of a
different response, whereas lower UN-related activity might
be associated with suboptimal selection of the same incorrect
response on the next trial.

Specifically, we assessed neuronal activity as a function of
whether the next trial’s chosen direction was the same or different
asin the index (UP or UN) trial. We used the earliest trials in each
block when a spatial strategy was most evident. For each UP- or
UN-activated neuron, we subtracted the average activity associ-
ated with a subsequent “same” response from the average activity
associated with a subsequent “new” (different) response. If the
prediction holds, the population of UP activity differences should
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be shifted to the left (higher activity for
“same” direction trials), whereas the pop-
ulation of UN response differences should
be shifted to the right (higher activity for
“new” direction trials). Indeed, over the
respective neuronal populations (UP- and
UN-selective neurons), we found this pre-
diction to be true in the PFC, but not the
caudate (UP PFC: p = 0.024; UN PFC:
p = 0.010; UP and UN caudate: p > 0.1,
by t test), although the absolute magnitude
of this effect was quite small (Figs. 10, 11).
While this difference may reflect an inher-
ently weaker link between caudate RPEs and
subsequent behavioral choice—similar to
the lack of tight correlation observed be-
tween midbrain dopamine neuron RPEs
and behavior (Bayer and Glimcher,
2005)—it may simply reflect a lack of suffi-
cient statistical power in the smaller caudate
dataset to replicate the effect seen in the
PFC.

Performing this same analysis assum-
ing an object-based, rather than spatially
based, strategy revealed no significant link
between trial-by-trial neuronal activity
fluctuations and subsequent choice be-
havior (UP PFC: p = 0.992; UN PEC: p =
0.459; UP caudate: p = 0.052; UN cau-
date: p = 0.368). This is unsurprising,
given the clear reliance on a spatial strat-
egy early within each block (Fig. 2C,D).

An average of 53 trials in subject M1 and 44 trials in M2 was
used for each neuron for this analysis. Examining the activity
fluctuations of individual neurons for subsequent significant
choice-predicting behavior revealed no significant correlation for
any single cell, after correction for multiple comparisons. The
subtle link between neuronal activity fluctuations and subse-
quent behavior was evident only across the entire population of
neurons.

0.01

0.1

More Frequent —>

P-value

0.1

0.01

<€— Less Frequent

Discussion

We observed clear evidence of positive and negative RPEs in a
large proportion of lateral PFC and caudate neurons, whereas
many prior studies had not seen strong evidence of RPEs in these
structures (Matsumoto et al., 2007; Kennerley and Wallis, 2009;
Kim et al., 2009; Roesch et al., 2009; Oyama et al., 2010). The
influence of outcomes, regardless of expectation, has been described
in the lateral PFC and caudate (Histed et al., 2009). Other work has
provided evidence of RPEs in the lateral PFC, but did not specifically
consider differences between positive and negative RPEs (Seo et al.,
2007). Meanwhile, neurons in the striatum have been described as
encoding reward expectation, but specifically not the deviation of
actual reward from expectation, that is, the RPE (Schultz etal., 1998).
That some studies failed to see evidence of RPEs may be due at least
in part to the types of behavioral paradigms used. Ours was a tem-
porally delayed, on-line instrumental learning task with multiple
reversals, requiring selective visual attention to process the periph-
erally presented cues; any or all of these components may have been
essential to achieving strong neuronal activation. Indeed, some
forms of short-term memory and reversal learning may depend crit-
ically upon the lateral PFC (Fuster and Alexander, 1971; Kubota and
Niki, 1971; Kojima and Goldman-Rakic, 1982; Funahashi et al.,
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1993; Dias et al., 1996; Asaad et al., 1998),
and therefore tasks that engage these fea-
tures might be expected to produce greater
and more selective neuronal activation.

It has been a matter of some debate
whether positive and negative prediction
errors are processed by separate, parallel
neural systems, or by the same circuit.
Several human functional imaging studies
have suggested that positive and negative
outcomes might be processed in separate
brain regions (Ramnani et al., 2004; Nieu-
wenhuis et al., 2005; Yacubian et al., 2006;
Liuetal., 2007; Seymour et al., 2007). Oth-
ers did find overlap, but observed opposite
responses to positive versus negative RPEs
(McClure et al., 2003; D’Ardenne et al.,
2008). In addition, several imaging stud-
ies report evidence for RPEs in the ventral,
but not dorsal striatum (O’Doherty et al.,
2004; Abler et al., 2006; Hare et al., 2008),
contributing to the notion that the dorsal
striatum may be the “actor” whereas the
ventral striatum is the “critic,” such as in
actor-critic models of reinforcement learn-
ing. In contrast to these reports, our single-
unit data demonstrate that both types of
signal do indeed coexist—even at the sin-
gle-neuron-level—in both the lateral PFC
and caudate nucleus of the nonhuman pri-
mate, and that a positive representation pre-
dominates for both positive and negative
RPEs.

Recent work has demonstrated that
the dorsal anterior cingulate cortex also
exhibits positive signals for both positive
and negative unexpected events (Hayden
et al., 2011). Combined with our work,
this suggests increased activation for both
positive and negative RPEs may be a gen-
eral phenomenon across the corticostria-
tal system. Those results were attributed
to a “surprise” signal. Similarly, it may be
tempting to construe our findings as re-
flecting a more general surprise signal re-
lated to the occurrence of any unexpected
event. However, the data show that in the
lateral PFC and caudate, at least, positive
and negative unexpected events had inde-
pendent, though sometimes overlapping,
representations; a common substrate, such
as surprise, should have caused these signals
to coincide more often than expected by
chance, but this was not observed. Outputs
from these UP- and UN-driven neurons
may converge onto downstream targets to
provide a more generic surprise signal, but
their independence in the lateral PFC and
caudate would facilitate the contrasting in-
fluence errors of opposite valence should
have on behavior. In other words, while the
purpose of a combined surprise signal may
be to increase arousal or attention generally,
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Neuronal Population Fraction

Latencies to the appearance of UP or UN activity. 4, The cumulative latencies to the first time bin during the feedback

period at which significant UP or UN activity was detected are plotted for the PFC neuronal population in subject M1 (see Materials
and Methods for details). Lower values indicate lower latencies. UP activity tended to arrive earlier than UN activity (p << 0.001).
B, The cumulative latencies for UP and UN activity in the caudate of M1 are plotted. Again, UP activity tended to arrive earlier than
UN activity (p = 0.003). ¢, No difference between the latencies of arrival of UP activity across the PFC and caudate were observed
(p=10.700). D, No difference was observed between the latencies of arrival of UN activity across the PFCand caudate (p = 0.638).
E—H, The same data are shown for subject M2. A significant difference was observed between the latencies for UP and UN activity
in the caudate (F: p = 0.033), but not in the PFC (E: p = 0.232). Again, there were no differences observed across areas (G: p =

0.374 for UP activity; H: p = 0.602 for UN activity).
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Figure 11.

0.5 in both cases).

the particular behavioral modification required by a positive or neg-
ative RPE is distinct: the former should reinforce the action or strat-
egy just undertaken, whereas the latter should drive behavior in
an alternate direction.

Indeed, we observed a small but significant tendency for fluc-
tuations of UP or UN activity in the PFC to be differen-
tially linked to upcoming choice behavior (namely, repeating the
same vs selecting a new option, respectively). This analysis was
based on the notion that if the observed neuronal activity were
relevant to decision making, even small trial-by-trial variations in
single-neuron firing rates might be reflected in gross behavior.
Simply assessing the effects of positive versus negative RPE activ-
ity on subsequent choice would have been confounded by the
visual feedback stimuli and reward that differentiated these con-
ditions. For this reason, examining the subtle variations within a
condition (UP or UN, not UP vs UN) was necessary to avoid that
pitfall. The magnitude of the observed effect, therefore, is of less
interest than its mere presence as a marker of the link between
neuronal activity and subsequent behavior. Furthermore, it is
possible that the strength of the correlation between neuronal
activity and subsequent choice depended on the stage-of-learn-
ing; because our assessment of this correlation was limited to the
earliest trials within a block, where one particular strategy pre-
dominated, a stronger (or weaker) correlation in subsequent tri-
als may have gone undetected. Nevertheless, that we were able to
observe such a link between the “noisy” fluctuations of individual
neurons and gross behavior was remarkable, and may imply a
more robust correlation between outcome-related activity and
consequent decisions more generally.

B PFC: Unexpected Negative Outcomes

Caudate: Unexpected Negative Outcomes

- -0.5 w.‘ HHlh
A spikes / sec

Association between neuronal activity and subsequent behavioral choice. 4, This histogram plots the difference in
PFCneuronal activity (A spikes/s) between UP trials that were followed by a new behavioral choice (i.e., chosen direction) minus
UP trials followed by the same behavioral choice (see Materials and Methods for details). Data from both subjects were included.
The y-axis shows the number of neurons with the specified difference in neuronal activity indicated on the x-axis. If the activity of
these UP-selective neurons was linked to behavior, greater activity on UP trials should more often lead to appropriate repetition
of the same behavioral response, and so the plotted differences should generally be negative across the population. The slight
leftward shift here (UP-then-new << UP-then-same) is consistent with this notion. The red line is the population mean (p = 0.024
by two-tailed  test). B, Here, the difference between UN trials followed by a new behavioral choice minus UN trials followed by the
same choice is plotted for neuronal activity in the PFC of both subjects. Greater activity on UN trials should be associated with the
more appropriate selection of a new choice on the subsequent trial. The population’s small rightward shift here (UN-then-new >
UN-then-same) is consistent with thisidea (p = 0.010 by two-tailed t test). C, D, There was no significant association between the
level of neuronal activity on UP or UN trials in the caudate and subsequent behavioral choice, as shown in Cand D, respectively (p >
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Our results concur with previous work
by others that found immediately preced-
ing outcomes were the most potent driv-
ers of neuronal activity (Seo et al., 2007).
This is unsurprising given the behavioral
strategies used by the animals: they tended
to repeat a spatial response that had led to
an unexpected positive outcome, and un-
expected negative outcomes led to a
“guessing” strategy which did not accu-
mulate counterfactual information from
particular incorrect choices. Therefore,
this simplified, local behavioral strategy
is compatible with the short-sightedness
of the neuronal representations (Fig. 6).

We did not observe an influence of task
context (object- or spatial-learning) or
specific task features (chosen object or
chosen location) on the outcome-related
activity of lateral PFC or caudate neurons.
This conforms to the reinforcement
learning notion that the RPE would be in-
sensitive to particular behavioral details,
but rather should serve to convey a
broader evaluation of the general success
of ongoing behavior.

The absence of dopamine may signal
negative RPEs (Hollerman and Schultz,
1998; Frank et al., 2007). Consistent with
this notion, patients with depleted levels
of dopamine due to Parkinson’s disease
showed a bias to learn relatively more
from negative RPEs rather than from pos-
itive RPEs; this bias was reversed when
dopamine was repleted with medication (Frank et al., 2004).
However, the limited range of less-than-baseline activity has led
some to argue that dopamine may be a less potent messenger for
unexpectedly negative events. Some recent work has found there
may be midbrain dopamine neurons that, rather than being in-
hibited by negative events, increase firing rate in response to both
positive and negative outcomes (Joshua et al., 2008; Matsumoto
and Hikosaka, 2009). In addition, there may be other ascending
neuromodulatory systems that complement the dopaminergic
system by preferentially signaling unexpectedly negative out-
comes (Daw et al., 2002).

We found that the latency to the appearance of positive RPEs
tended to be shorter than the latency for negative RPEs in both
the PFC (of one subject) and caudate nucleus (of both subjects).
This is consistent with an extra processing step required to invert
a negative signal, perhaps such as that provided by lower-than-
baseline dopaminergic activity. Or it may reflect extra time
needed to detect this inhibition, as the absence of a few spikes
relative to low baseline activity is less immediately evident than
the presence of a phasic burst.

The similarities between the representation of RPEs by the
lateral PFC and the caudate were striking. Only one prior study
had directly compared outcome-related activity across these two
structures in the nonhuman primate (Histed et al., 2009); in that
case, caudate neurons on average conveyed more information
about the absolute correctness of an outcome, but no analysis of
RPEs (correctness as a function of expectation) was reported.
Our results demonstrate that RPE prevalence (Fig. 5), magnitude
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(Fig. 6), and timing (Fig. 8) were essentially indistinguishable
across these structures.

A negative RPE reflecting the absence of reward may not have
the same neural substrate as a negative RPE reflecting the pres-
ence of an aversive outcome. To what extent this distinction has
influenced the heterogeneity of results reported in the literature is
difficult to disentangle from the wide variety of tasks and meth-
odologies used. In our behavioral paradigm, a negative RPE cor-
responded to the unexpected absence of an appetitive stimulus.
Further experiments, using both appetitive and aversive learning,
would be required to determine whether an aversive stimulus
produces similar results in the lateral PFC and caudate nu-
cleus, and whether aversive stimuli engage different or addi-
tional circuits.

In summary, we found that most neurons within the lateral
PFC and caudate nucleus were significantly modulated by trial
outcomes, and particularly by unexpected outcomes. Both posi-
tive and negative unexpected outcomes were represented primar-
ily by increases in firing rates, and these, in-turn, were linked to
behavior in a predictable fashion that would facilitate learning.
The delayed appearance of negative RPEs relative to positive
RPEs provides clues about the underlying circuitry that conveys
these critical signals to drive learning.
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