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It seems immediately obvious that the ap-
ple in my hand is the same apple I just
picked up from the table. How can my
brain recognize an object despite substan-
tial variation in its location, size, and con-
text? In a series of cortical areas known as
the ventral stream, the brain performs so-
phisticated computations that allow us to
select things we need to know for object
identity (selectivity) while ignoring varia-
tions that do not matter (invariance). The
brain’s capacity to achieve both selectiv-
ity and invariance simultaneously re-
mains a fundamental mystery in systems
neuroscience.

We understand selectivity and invari-
ance early in the ventral stream better
than in its later stages. Cells in primary
visual cortex (V1) show selectively for
simple image features like orientation and
spatial frequency, and some complex cells
in V1 also show invariance, or insensitiv-
ity, to position. Because V1 is closest to the
input, this simple (quasilinear) filtering of
the input successfully describes the func-
tion of V1 cells, and cells can be well char-
acterized by measuring responses to
random white noise stimuli (Rust et al.,
2005; Chen et al., 2007).

Further along the ventral stream,
through areas V2, V4, and inferior tempo-
ral cortex (IT), neural populations gradu-

ally combine the simple features from V1
to represent more complicated patterns
and objects. In the process, cells become
selective for increasingly specific image
features and invariant to increasingly
complex transformations. Consequently,
linking any particular cell’s response to
the input becomes more difficult. How
should experimenters choose stimuli to
characterize these cells? Stimuli used to
study V1 (white noise) are insufficient be-
cause they rarely contain the special fea-
tures that drive these cells to respond—a
million white noise images will rarely in-
clude an apple. So-called natural images
more likely contain such features. But the
number of available natural images is
nearly infinite, and even when a cell re-
sponds to a particular image, the feature
that triggered the response may be un-
knowable because our capacity for mod-
eling the structure of natural images
remains incomplete (Simoncelli and Ol-
shausen, 2001).

Rather than search for the features that
drive each individual cell’s particular re-
sponse, we can instead assess the response
of a population of cells, and replace a bar-
rage of random natural images with a set
of well defined image manipulations. The
geometrical intuition behind this ap-
proach is to imagine a population of cells
as carving up the set of all possible images
into subsets, or manifolds (DiCarlo and
Cox, 2007). Each manifold might, for ex-
ample, correspond to images of some par-
ticular object, but contain many possible
variations of that object (Fig. 1). A popu-
lation of cells can discriminate among ob-
jects if objects from different manifolds

consistently yield distinguishable patterns
of neural responses. Starting with a natu-
ral object image, we can characterize a
manifold by manipulating the image and
asking whether the manipulated image is
or is not still on the manifold. To opera-
tionalize “still on the manifold,” we deter-
mine whether a population of cells can
still discriminate an image from other im-
ages despite the manipulations. Manipu-
lations that impair performance take us
off the manifold, identifying directions of
selectivity. Manipulations that do not af-
fect performance keep us on the manifold,
identifying directions of invariance. Rust
and DiCarlo (2010) used this approach
with impressive rigor to characterize
both selectivity and invariance in areas
V4 and IT.

To examine selectivity, Rust and DiCarlo
(2010) presented scrambled versions of nat-
ural images. Scrambling preserved many
low-level features, but disrupted complex
feature conjunctions and destroyed object
identity. The IT population robustly dis-
criminated among different intact images,
but poorly discriminated among scrambled
images, demonstrating that scrambling dis-
rupted features that IT neurons used to dis-
criminate images. In contrast, the V4
population was better able to discriminate
among the scrambled images, suggesting
that neurons in V4 tend to encode features
that were unaffected by scrambling.

To examine invariance, Rust and Di-
Carlo (2010) analyzed population responses
to complementary transformations that
preserved object identity, such as transla-
tion, scaling, and added background con-
text. IT was reliably able to decode object

Received Nov. 27, 2010; revised Dec. 11, 2010; accepted Dec. 14, 2010.
J.F. and C.M.Z. are supported by National Science Foundation Graduate

Research Fellowships. We thank Elisha Merriam and Michael Landy for
helpful comments on earlier drafts.

Correspondence should be addressed to Jeremy Freeman, Center for
Neural Science, New York University, 4 Washington Place, New York, New
York, 10003. E-mail: freeman@cns.nyu.edu.

DOI:10.1523/JNEUROSCI.6191-10.2011
Copyright © 2011 the authors 0270-6474/11/312349-03$15.00/0

The Journal of Neuroscience, February 16, 2011 • 31(7):2349 –2351 • 2349



identity across a range of transformations,
whereas the V4 population performed
poorly. Although demonstrations of com-
plex feature selectivity and invariant repre-
sentations in V4 and IT already exist
(Pasupathy and Connor, 2002; Zoccolan
et al., 2007), these results provide the first
systematic comparison of matched popu-
lations across the two different visual ar-
eas, documenting an increase in both
selectivity and invariance.

What is the relationship between the
properties of single cells and the capacity
for selectivity and invariance at the popu-
lation level? In the case of selectivity, Rust
and DiCarlo (2010) focused on the prop-
erty of receptive field size; they identified
subpopulations of cells with specific recep-
tive field sizes and measured the discrimina-
tion performance of these subpopulations.
In both areas, populations of cells with big-
ger receptive fields were more sensitive to
scrambling, probably because these cells en-
code large, spatially extended image struc-
tures that scrambling disrupts. Although the
IT population as a whole was more sensitive
to scrambling than the V4 population, sub-
populations of V4 and IT cells with similarly
sized receptive fields were similarly affected
by scrambling, suggesting that those V4 and
IT cells were in fact selective for similar
kinds of image structures. Does this result
then contradict the traditional view that se-
lectivity qualitatively changes across visual
areas? It may in fact only reflect a limitation
of the scrambling manipulation. Much in-
formation is lost through scrambling; sensi-
tivity to scrambling shows that cells use
some or all of that information to discrimi-
nate intact images, but it cannot identify ex-
actly what information cells use.

Rust and DiCarlo (2010) also exam-
ined single-cell properties that were im-
portant for invariance. One particularly
interesting property they identified is the
degree to which an individual cell’s pref-
erence for some objects over others is
maintained across various transforma-
tions; i.e., whether a cell’s object prefer-
ence is independent of how the object is
presented. For example, if a cell prefers
apples to oranges when the fruit is pre-
sented on the left, does it also prefer apples
to oranges when the fruit is on the right?
At the single-cell level, stability of object
preference across transformations was
more common in IT than V4, and this dif-
ference contributed to the IT population’s
ability to decode object identity across a
range of transformations.

The stability of object preference across
transformations is clearly crucial for in-
variant object recognition. Using pref-

erence stability to characterize a cell,
however, is more like building a lookup
table than a functional model. A lookup
table catalogs the response to each of sev-
eral specific stimuli, whereas a functional
model operates directly on images and
predicts the response to an arbitrary in-
put. For a cell in V1, we could of course
construct a lookup table by measuring the
response to different orientations and po-
sitions, but we already have the more
powerful functional model, which cap-
tures the response to these, and many
other, stimuli. However, building func-
tional models for areas deep in the ventral
stream, far from the input, is challenging.
Although the lookup table approach al-
lows the demonstration of clear differ-
ences between areas, we should not think
of the lookup table itself as a characteriza-
tion of how a cell encodes the input, but
rather a catalog of the cell’s capabilities,
and thus a guide to formulating proper
functional models.

Like many studies of IT, this study
used stimuli and manipulations with ob-
vious behavioral relevance. An object does
not look the same when it is scrambled,
but does when it changes in location, size,
or context. Object recognition is clearly a
goal of the visual system, and it is likely to
be realized at the top of the ventral stream,
closest to areas involved in memory.
Thus, it makes sense to use our intuitions
about behavioral relevance when picking
stimuli, but the reliance on such intu-
itions renders the conclusions somewhat
IT-centric. The present paper demon-
strates a robust difference between V4 and
IT, but we primarily learn about things
that IT can do and V4 can not, and learn
less about the specific capabilities of V4.

How then can we probe areas where
our intuition founders? Two related ap-
proaches are worth considering. One is to
study a given stage of the ventral stream by
using our knowledge of the previous
stage. If we have a functional model for

Figure 1. The geometry of selectivity and invariance. The three axes are three image dimensions (e.g., the values of three
pixels in an image). Real images require several thousand dimensions, but we use three for simple visualization. Any point in the
space corresponds to a different image. The gray surface represents a continuous subset, or manifold, of images of a particular
object. If a hypothetical neural population effectively encodes this object’s identity, all object images from this manifold will yield
patterns of neural responses that are distinguishable from the patterns of responses induced by other sets of images. Moving
along the surface of the manifold changes the image itself but maintains the ability of the neural population to discriminate the
image from others. This is a direction of invariance. Moving away from, or orthogonal to, the surface of the manifold changes the
image in a way that prevents the population from effectively discriminating. This is a direction of selectivity. The manifold shown
here corresponds to a set of population responses that are selective for proboscis monkeys, not just for image patches with similar
color and texture, but are also invariant to changes in size (near vs far) and context (face only vs face and body). Photo used with
permission, courtesy of Paul Huggins (http://www.paulhugginsphotography.com/).
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what cells in a given area represent, we can
characterize a cell in a hierarchically higher
area by showing stimuli that span the space
represented by the cells in the lower area.
Given our current knowledge, this tech-
nique may work well in areas immediately
after V1 (Rust et al., 2006; Willmore et al.,
2010), but not beyond. A second, more ar-
bitrary approach is to construct a parame-
terized set of features, such as angles for V2
or shape and curvature for V4, and charac-
terize how cells respond to their systematic
variation (Pasupathy and Connor, 2002; Ito
and Komatsu, 2004). No normative theory,
however, constrains the choice of features
from among the vast array of possibilities. A
final approach, yet to be fully explored, is to
study statistical properties of natural images
and to use normative theories, like efficient

coding, to identify stimulus dimensions that
the midlevel visual system ought to encode
(Karklin and Lewicki, 2009). As our under-
standing of the structure of natural images
improves, theory, rather than intuition, can
help choose the stimuli we use to investigate
the murky middle of the ventral stream.
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