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The mammalian cerebral cortex is characterized in vivo by irregular spontaneous activity, but how this ongoing dynamics affects signal process-
ing and learning remains unknown. The associative plasticity rules demonstrated in vitro, mostly in silent networks, are based on the detection
of correlations between presynaptic and postsynaptic activity and hence are sensitive to spontaneous activity and spurious correlations. There-
fore, they cannot operate in realistic network states. Here, we present a new class of spike-timing-dependent plasticity learning rules with local
floating plasticity thresholds, the slow dynamics of which account for metaplasticity. This novel algorithm is shown to both correctly predict
homeostasis in synaptic weights and solve the problem of asymptotic stable learning in noisy states. It is shown to naturally encompass many
other known types of learning rule, unifying them into a single coherent framework. The mixed presynaptic and postsynaptic dependency of the
floating plasticity threshold is justified by a cascade of known molecular pathways, which leads to experimentally testable predictions.

Introduction
Various forms of synaptic plasticity have been discovered and
characterized in the mammalian brain experimentally as well as
theoretically. One type of associative plasticity is based on the
relative spike timing between presynaptic and postsynaptic cells
(Levy and Steward, 1983; Bell et al., 1997; Markram et al., 1997; Bi
and Poo, 1998). This so-called spike-timing-dependent plasticity
(STDP) has been shown to produce an asymmetric and reversible
form of synaptic potentiation and depression depending on the
temporal order of presynaptic and postsynaptic cell spikes. Mod-
els have been proposed to capture such mechanisms and have
been very successful in accounting for the emergence of receptive
fields, hippocampal place cells, synaptic competition, and stabil-
ity (Gerstner et al., 1996; Song et al., 2000; van Rossum et al.,
2000; Song and Abbott, 2001; Gütig et al., 2003; Yu et al., 2008).
However, previous models suffer from an important limitation:
their sensitivity to spontaneous activity. Because cerebral cortex
is characterized by sustained and irregular spontaneous activity
(Softky and Koch, 1993; Shadlen and Newsome, 1998), classical
STDP models cannot be used to learn in such stochastic-like
activity states, leading to either a complete loss of memory or a
shift of the network dynamics toward a pathological synchronous
state (Morrison et al., 2007). Because of this “catastrophic-
forgetting” effect, memory retention in in vivo-like network states
seems inconsistent with STDP.

We investigate a natural way to circumvent this problem
through metaplasticity. Since early work on long-term potentia-
tion (LTP) and depression (LTD), the need for higher-order reg-
ulation of plasticity rules has been evident. This process, termed
metaplasticity (Deisseroth et al., 1995; Abraham and Bear, 1996),
has been shown to take place through various molecular path-
ways and to be critical for the stabilization of learned statistics
(Abraham, 2008). One major role of metaplasticity is to promote
in a conditional way (depending on the previous history of synapses)
persistent changes in synaptic weights during learning. A learning
rule with activity-dependent induction threshold, known as the
Bienenstock, Cooper, and Munro (BCM) theory, was introduced
previously (Bienenstock et al., 1982). The BCM model is considered
as a precursor form of metaplasticity and was shown to be consistent
with STDP (Senn et al., 2001; Izhikevich and Desai, 2003; Pfister and
Gerstner, 2006; Clopath et al., 2010). However, in these models, the
activity-dependent threshold was introduced artificially or its post-
synaptic dependency could not account for priming experiments
reported in the hippocampus (Huang et al., 1992; Christie and Abra-
ham, 1992; Mockett et al., 2002).

Thus, to our knowledge, no model has yet been proposed to
account comprehensively for the multiple scales on which plas-
ticity may occur and, in particular, the influence of previous pre-
synaptic activity patterns. We introduce here an STDP model
endowed with fast and slow induction processes that can, respec-
tively, account for STDP, short-term competitive interactions
(Sjöström et al., 2001; Wang et al., 2005) as well as long-term
plasticity regulation as observed in hippocampal priming exper-
iments. This metaplastic model of STDP, or mSTDP, provides a
possible solution to the catastrophic-forgetting problem.

Materials and Methods
The mSTDP model
Biological basis. The mSTDP model is based on a number of experimental
observations in vitro. First, important nonlinear interactions in STDP were
reported when spike pairings occur closely in time or if triplet protocols are
considered (Markram et al., 1997; Sjöström et al., 2001; Wang et al., 2005).
Second, priming experiments were conducted in classical LTP/LTD experi-
ments by stimulating the synaptic pathway to be conditioned before the
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LTP/LTD induction protocol with a high-frequency tetanus or a low-
frequency stimulation (Christie and Abraham, 1992; Huang et al., 1992;
Wang et al., 1998; Mockett et al., 2002). These studies demonstrated that
subthreshold preactivation of LTP or LTD mechanisms could impact their
reactivation. Based on these results, it appears that plastic processes occur-
ring at the same synapse through the same molecular pathways exhibit reg-
ulation on three distinct timescales that account, respectively, for the
temporal and order specificity to induce synaptic weight changes (STDP
rule), synaptic competition between paired and unpaired synapses (short-
term interactions), and metaplasticity (long-term interactions). We propose
here a unified phenomenological model in which the functional diversity of
the synaptic effects naturally emerges across these timescales. This mSTDP
model is based on putative biomolecular interactions between kinases and
phosphatases acting on the synaptic weights and is inspired by experimental
in vitro data on the effect of priming stimulations on LTP and LTD induction
in the hippocampus.

The mSTDP algorithm. To implement this as a learning rule, LTP and LTD
are treated separately such that the final synaptic weight change results from
a linear summation of the scaling contribution produced by these two pro-
cesses. Both LTP and LTD will be described through the action of two vari-
ables: a fast variable responsible for the direct action of these plasticity rules
and a slow variable that will act as an induction threshold for authorizing the
expression of plasticity. Both variables are computed on eligibility traces
resulting from a triplet rule (Pfister and Gerstner, 2006).

For LTP, every presynaptic spike followed by a postsynaptic spike will
increase the corresponding eligibility trace by an amount governed by the
STDP exponential curve. This eligibility trace then decays with a slower time
constant accounting for the triplet interaction. Both the fast and slow actions
of LTP are then computed directly with this eligibility trace. The fast action
will give rise to an instantaneous synaptic weight increase at the time of a
postsynaptic spike, whereas the slow action that is acting at the same instant
is a nonlinear function of the eligibility trace averaged over a long timescale
and across synapses. The latter will act as a threshold for plasticity induction
so that we only consider the positive amount of synaptic change resulting
from the difference between fast and slow variables. This will be computed by
considering a rectified function of their difference. The mechanism is iden-
tical for LTD except that the slow variable will be driven by the LTP eligibility
trace accounting for the concurrent changes in LTP and LTD induction
thresholds (Mockett et al., 2002). In the special case in which the slow vari-
ables are taken as constants, this model formally reduces to a learning rule
similar to a model introduced previously by Senn et al. (2001) in which LTP
and LTD are both subject to fixed induction thresholds. In this case, the
model exhibits plasticity induction thresholds reminiscent of the Artola,
Bröcher, and Singer (ABS) learning rule (Artola et al., 1990; Artola and
Singer, 1993). In that study, the authors reported that the depolarization level
of the postsynaptic neuron defines a plasticity threshold for LTD and a sec-
ond threshold for LTP at higher depolarization levels. When the postsynap-
tic membrane potential was clamped at values under these thresholds, LTD
and LTP were both absent. In the study by Senn et al. (2001), these thresholds
are defined at the suprathreshold level but obey the same induction crossing
order for LTD and LTP for increasing postsynaptic spiking activity.

For the LTP mechanism, and for a given synaptic connection, our
model posits that every presynaptic spike elicits instantaneous incremen-
tation of a variable rLTP, followed by exponential decay with a time con-
stant �LTP. This variable is used to detect pairing activity within the LTP
side of the STDP curve:

drLTP

dt
� �

rLTP

�LTP
� �

tpre

��t � tpre�. (1)

Once a postsynaptic spike is triggered, the current value of rLTP is used to
determine the instantaneous increment of the LTP eligibility trace �wLTP,
which decays with a time constant TLTP, slower than the STDP time
constant (�LTP):

d�wLTP

dt
� �

�wLTP

TLTP
� �

tpost

rLTP�t���t � tpost�. (2)

Note that, once Equation 1 is solved and used in Equation 2, the dynam-
ics of �wLTP depends on the correlation between presynaptic and post-
synaptic spiking activity through the product of these point processes.
The LTP eligibility trace �wLTP is used to define two different actions on
the synaptic weight. The instantaneous action of LTP takes place at the
postsynaptic spike time and results in an increase given by the value of
�wLTP right after the spike. We chose a linear relationship for the sake of
simplicity, but a monotonic nonlinear function involving more detailed
biophysical processes could be used as well.

The second component introduced in our model describes the down-
regulation on the amount of LTP with a slow time constant and thus
monitors the past history of a nonlinear function of �wLTP. We hypoth-
esize that this LTP downregulation term can be modeled as an exponen-
tial operator on �wLTP averaged over a long time interval T and over a
spatially distributed presynaptic ensemble, allowing some form of con-

textual regulation: �wLTP
th �t� � ��LTP

T
�

��

t d�e���t�/T e��wLTP����
pre

. The co-

efficient �LTP defines the impact of LTP downregulation relative to the
potentiation term, and � determines the rate of modulation of the LTP
downregulation. The average over a presynaptic ensemble determines
the nature (including heterosynaptic effects) and the spatial extent of
competition between presynaptic neurons. Unless stated otherwise, we
will consider for simplicity an average over all presynaptic neurons such
that the memory context is the same for all synapses, whether they are
stimulated or not, and all synapses share the same plasticity thresholds
(the slow variables �wLTP

th ). The slow variable is acting on �wLTP right
after each postsynaptic spike so that the complete synaptic increment at
time t is given by the integration over times preceding t of the rectified
difference between these two terms, such as

wLTP�t� � lim
�30�

	�
��

t

ds �
tpost

��s � tpost � ����wLTP�s�

� ��LTP

T �
��

s

d�e���s�/T e��wLTP����
pre

�
�

� lim
�30�

	�
��

t

ds �
tpost

��s � tpost � ����wLTP�s� � �wLTP
th �s���,

(3)

where 	 is the learning magnitude relative to the synaptic weight. In this
equation and in the following, the product of two identical point pro-
cesses for the postsynaptic or presynaptic activity is performed with an
infinitesimal difference 
 such that the value used for the weight update is
taken immediately after the spike.

As mentioned above, the slow variable �wLTP
th is used as an induction

threshold by considering the net effect of LTP as the rectified difference
between the fast and slow variables at each postsynaptic spike. In the
absence of synaptic activity, the slow variable is equal to �LTP, which is
also the lower bound for this variable. As long as fluctuations of the fast
variable can overcome the impact of the slow variable, LTP can occur.
This induction threshold changes according to the past history of the
synapses and can eventually prevent any additional potentiation.

For LTD, each postsynaptic spike followed by a presynaptic spike elic-
its behavior governed by a set of equations similar to Equations 1 and 2:

drLTD

dt
� �

rLTD

�LTD
� ��

tpost

��t � tpost�. (4)

d�wLTD

dt
� �

�wLTD

TLTD
� �

tpre

rLTD�t���t � tpre�, (5)
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where � accounts for the asymmetric impact of the LTD and LTP sides
of STDP. The LTD eligibility trace �wLTD is hypothesized to have an
instantaneous effect on AMPARs that will act to reduce the net syn-
aptic weight of the synapse by �wLTD right after the presynaptic neu-
ron has fired. Moreover, the downregulation on the LTP variable is assumed
to lower the threshold for LTD. This will be accounted for by introducing an
additional term that is inversely proportional to the LTP downregulation
term averaged over the past history and the same presynaptic ensemble (as
shown by the sign change in the exponential term and its dependency on

LTP): �wLTD
th �t� � ��LTD

T
�

��

t d�e���t�/T e���wLTP(�)�
pre

. The coefficient �LTD

is the magnitude of facilitation of LTD that acts right after each pre-
synaptic spike. Therefore, the net depressive effect on the synaptic
weight at time t is given by the integration over times preceding t of
the rectified difference between these two terms:

wLTD�t� � lim
�30�

	�
��

t

ds �
tpre

��s � tpre � ����wLTD�s�

� ��LTD

T �
��

s

d�e���s�/T e���wLTP����
pre

�
�

� lim
�30�

	�
��

t

ds �
tpre

��s � tpre � ����wLTD�s� � �wLTD
th �s���.

(6)

The rectified difference creates plasticity induction thresholds for
LTP and LTD that are essential for stabilization of individual synaptic
weights. In the absence of synaptic activity, the resting value for the
slow variable is �LTD, which is also the upper bound for this variable.
Similar models could be obtained with other positive supralinear
functions. Altogether, the synaptic weight fluctuations are dictated by
the difference between LTP and LTD:

w(t) � wLTP(t) � wLTD(t). (7)

We will assume lower bounds (wmin � 0 nS), and, in the case of Figure
9, we will introduce realistic upper hard bounds to avoid the local
divergence of one or very few synaptic weights. This latter situation
seems unrealistic because it would require all the impact of the dis-
tributed synaptic competition to be restricted to the reinforcement of
a single synapse while forcing all other synapses to their lower bound
value. Note that both the mSTDP algorithm and the BCM rule pro-
vide asymptotic stability of the mean of the synaptic weight distribu-
tion, as will be shown below. The further addition of hard bounds in
the mSTDP model forbids the divergence of the weights of individual
synapses because of the stochastic nature of competition in this latter
model (which does not exist in rate-based models such as BCM).

A weight-dependent version of mSTDP could be obtained by add-
ing this dependency in Equation 7, as described by van Rossum et al.
(2000), Gütig et al. (2003), and Morrison et al. (2007), so that each
LTP and LTD synaptic weight update is modulated by the current
weight value.

From BCM plasticity to stochastic mSTDP
mSTDP without slow variables. Here, we formally describe the rela-
tionship between mSTDP and the BCM rule (Bienenstock et al., 1982)
for a simple model in which two neurons are connected through a
plastic synapse and follow independent Poisson processes. We will
first consider the case in which the slow variables �wLTP

th and �wLTD
th

have been set to a fixed value of 0 so that the rectification can be
neglected. In this setting, the model reduces to a triplet rule defined by
the fast variables �wLTP and �wLTD alone in Equations 3 and 6. The

computation of the mean synaptic variation as a function of presyn-
aptic and postsynaptic rate is straightforward and similar to (Pfister
and Gerstner, 2006)

d�w�t��
dt

� �pre�	�LTPTLTP�post
2 � 	�post��LTP � ��LTDTLTD�pre

� ��LTD)), (8)

� �pre	��post, �pre), (9)

where �pre and �post are, respectively, the presynaptic and postsynaptic
firing rates, and 	(�post, �pre) is a quadratic function of �post that crosses
the abscissa at 0 and another point given by

�LTD
0 �

��LTDTLTD

�LTPTLTP
�pre �

��LTD � �LTP

�LTPTLTP
, (10)

which is positive if

1

TLTD�pre � 1

 �

�LTD

�LTP
, (11)

a condition that is true for any �pre if �LTP 
 ��LTD. Otherwise, the
existence of a second positive crossing point will depend on the pre-
synaptic firing rate. Note that the dependence on the presynaptic
firing rate was not present in the description of the threshold in the
original BCM rule (Bienenstock et al., 1982). However, in the case in
which TLTD is very small or 0, the floating threshold dependence on
presynaptic firing rate disappears in our model. This scenario is for-
mally equivalent to the triplet rule found by Pfister and Gerstner
(2006) after fitting their model to in vitro data (Sjöström et al., 2001;
Wang et al., 2005).

mSTDP with fast and slow variables. One of the main ingredients of the
BCM theory in providing metaplasticity is that the threshold between
LTP and LTD for various postsynaptic firing rates can shift as a supralin-
ear function of the past activity of the postsynaptic neuron. We show here
that the slow variables linked to the LTP downregulation fulfill similarly
this role. However, they do so without the constraint of a supralinear
power relationship between the LTD–LTP transition threshold and the
mean postsynaptic activity introduced in an ad hoc manner in the BCM
model. The variation of the slow components in LTP and LTD can be
considered constant during measurement of the BCM curve because the
corresponding timescales are several orders of magnitude apart. Since we
can compute at least numerically the expected asymptotic values of �wLTP

th

and �wLTD
th for a given presynaptic and postsynaptic firing rate, we can

derive the relationship between the BCM threshold and the postsynaptic
firing averaged over the past history. We can thus write the mean synaptic
weight derivative as

d�w�t��
dt

� 	� �
tpost

��t � tpost���wLTP�t� � �wLTP
th ����

�	� �
tpre

��t � tpre���wLTD�t� � �wLTD
th ����, (12)

where the 
 term is omitted in the notation for the sake of simplification.
The first averaged term in Equation 12 can be computed through the
joint probability distribution of the postsynaptic spike times {tpost} and
the stochastic process �wLTP(t): P(�wLTP, tpost). The average can then be
performed on the rectified function using this joint distribution. More-
over, by using the conditional probability definition and the Poisson
stationarity, we can write P(�wLTP, tpost) � P(�wLTP�tpost)P(tpost) �
P(�wLTP�tpost)�ost.. A similar expression can be obtained for LTD such
that we can write Equation 12 as
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d�w�t��
dt

� 	�
�wLTP

th

�

d�wLTP�postP��wLTP�tpost���wLTP � �wLTP
th �

� 	�
�wLTD

th

�

d�wLTD�preP��wLTD�tpre���wLTD � �wLTD
th �. (13)

We will consider three asymptotic cases for LTP and LTD to study the
effect of the slow variables. In the linear regime (��w� �� �wth), the
threshold–linear function is approximated by a linear function so that a
simple average can be performed in Equation 13. In the threshold regime
(��w� 

 �wth), the linear–threshold function is almost always equal to 0
so that we can neglect the corresponding integrals in Equation 13. Finally,
we will also consider the case in which the distribution is close to the
threshold (��w� 	 �wth). In Equation 13, the term for LTP can be writ-
ten as follows (an identical computation can be done for LTD):

d�wLTP�t��
dt

� 	�post���wLTP�tpost
� �wLTP

th � FLTP��wLTP
th ��, (14)

where

FLTP��wLTP
th ) � �

��

�wLTP
th

d�wLTPP��wLTP�tpost���wLTP � �wLTP
th ),

(15)

is a function of the LTP threshold and � … �tpost is a conditional average
over the postsynaptic spike times. In this special case when the mean of
the fast variable is assumed to be close to the threshold, FLTP (�wLTP

th ) can
be expanded around the mean value of the distribution P(�wLTP). We
will assume that the scale of synaptic weight changes 	 is very small
compared with the postsynaptic and presynaptic mean firing rates so that
the distributions P(�wLTP�tpost) and P(�wLTD�tpre) in Equation 13 can be
approximated by Gaussian probability distributions (diffusion approxi-
mation). The general form of such an expansion for a Gaussian distribu-
tion P(x) of mean value m and variance � 2 is given by

F�c� � �
��

c

dxP� x�� x � c� � �
�


2�
�

1

2
�c � m�

� ���c � m�2�. (16)

The LTP contribution can therefore be written as

d�wLTP�t��
dt

� 	�post�1

2
��wLTP�tpost

�
1

2
�wLTP

th �
�(�wLTP)tpost


2�
�.

(17)

From the definition of the fast variable in Equation 3, it can be shown
that the last term grows as �post

2 for Poisson processes (the variance of
the corresponding compound shot noise process grows as �post

4 ).
Therefore, the overall form of the BCM curve is unchanged. Note,
however, that this equation is only valid in the limit of the diffusion
approximation. If the thresholds are set to 0, the mean should also be

close to 0 and the diffusion approximation is not valid anymore.
These different asymptotic cases are summarized in Table 1. In
particular, �post��wLTP�

tpost
� �LTPTLTP�pre�post

2 � �LTP�pre�post and
�pre ��wLTD�tpre

� ��LTDTLTD�post�pre
2 � ��LTD�pre�post such that

	(�post��wLTP�tpost
� �pre��wLTD�tpre

) � �pre	��post, �pre�. This last re-
lation corresponds to the curve of Equation 9 found in the case in
which the slow variables are neglected. In the situation in which slow
variables are taken into account, more complex behavior can be ex-
pected from the synaptic weights depending on the definition of the
presynaptic ensemble sharing the same slow variables, and this can be
explored by introducing a new function 	1(�post, �pre). This function
is derived from the reference BCM curve (case without slow variables
in our model) with a shift in the floating threshold proportional to

�wLTP
th

�pre
, where �wLTP

th is an exponential function of the presynaptic

activity averaged over time and over the presynaptic ensemble. This
specific presynaptic dependence will be responsible for the various
forms of synaptic competition observed in our simulations. In par-
ticular, when all synapses share the same slow variables (identical

�wLTP
th for all synapses), the ones that are targeted by presynaptic

neurons with higher firing rates tend to express a lower LTD–LTP
transition threshold. Conversely, when thresholds are assumed to be
independent across synapses, a high presynaptic firing rate results in
higher floating threshold because of the exponential term. This will be
illustrated in the following simulations.

Because the LTP and LTD thresholds depend on the past history of the
synapse and on the coefficients �LTP and �LTD, any combination of the
terms in Table 1 can occur during the learning process. However, from
the definition of these thresholds as exponential functions of the post-
synaptic and presynaptic activities (Eqs. 3, 6), it can be shown that the
BCM sliding threshold always increases with the postsynaptic and pre-
synaptic firing rate past histories and that �post � 0 is always a crossing
point. In particular, because of the induction thresholds, there is a post-
synaptic domain including 0 (null activity level) where no plasticity can
take place, which corresponds to rare coincidences between presynaptic
and postsynaptic spiking activities: the “zero domain.” Note that this
plateau domain differs from the origin singularity at 0 in the BCM model,
because it is not limited to the 0 point but encompasses a postsynaptic
activity domain that is similar to the dead zone assumed in the ABS
model. Beyond this stable domain, three regimes can be outlined for
increasing past synaptic activity. In the pure LTP regime, the BCM curve
is entirely positive and only potentiation can occur. This scenario can
happen when the past synaptic activity was very low and the correspond-
ing slow variables could not shift the curve downward. For higher past
synaptic activity, the slow variables �wLTP

th and �wLTD
th have reached values

high enough to define a non-null BCM-like floating threshold. In this
particular regime, LTD or LTP will be observed depending on the current
level of postsynaptic firing rate. Finally, in the pure LTD regime, the LTP
threshold has completely overtaken the fast variable so that the BCM
sliding threshold has increased to infinity and only depression can occur.
In this last situation, the zero domain will shrink to the single point at 0
because of the decreasing LTD threshold. Altogether, these terms pro-
duce, for increasing past postsynaptic activity, the desired supralinear
shift of the BCM sliding threshold toward higher values. This behavior is
further illustrated in Figure 4.

Table 1. LTP and LTD asymptotic behaviors

LTP LTD

��w� 

 �wth 0 0

��w� 	 �wth 	�post�1

2
��wLTP�tpost

�
1

2
�wLTP

th �
���wLTP�tpost


2�
� � 	�pre�1

2
��wLTD�tpre

�
1

2
�wLTD

th �
���wLTD�tpre


2�
�

��w� �� �wth 	�post���wLTP�tpost
� �wLTP

th � � 	�pre���wLTD�tpre
� �wLTD

th �
The middle and last columns contain the asymptotic expression of LTP and LTD terms for the three possible regimes corresponding to the cases in which the fast variables are well below ��w� 

�wth, close to ��w� 	 �wth, or well
above ��w� �� �wth the slow variables. Depending on the past activity of the synapse and on the parameter set, any combination of these LTP/LTD terms can occur and describe the current plasticity pattern.
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Neuron model
We consider leaky conductance-based integrate-and-fire neurons, with
membrane time constant �m � 20 ms, and resting membrane potential
Vrest � �70 mV. When the membrane potential V reaches the spiking
threshold Vthresh � �54 mV, a spike is generated and the membrane
potential is held at the resting potential for a refractory period of duration
�ref � 5 ms. Synaptic connections are modeled as conductance changes:

�m

dV�t�

dt
� �Vrest � V�t�� � gexc�t��Eexc � V�t��

� ginh�t��Einh � V�t��, (18)

where the reversal potentials are Eexc � 0 mV and Einh � �70 mV. The
synaptic activation is modeled as an instantaneous conductance increase
followed by exponential decay:

�exc

dgexc�t�

dt
� � gexc�t� � Sexc�t�, (19)

� inh

dginh�t�

dt
� � ginh�t� � Sinh�t�, (20)

with time constants �exc � 5 ms and �inh � 5 ms. Sexc/inh(t) are the
synaptic spike trains —point processes— coming from the excitatory
and inhibitory populations, respectively.

Constraining the model from in vitro data
The data of Sjöström et al. (2001) and Wang et al. (2005) shown in Figure
2 were used to constrain the model with a least-squares fit, similar to the
one described by Pfister and Gerstner (2006). The time constants for the
STDP time windows were fixed to �LTP � 20 ms and �LTD � 25 ms, and
parameters found by the model are TLTP � 845 ms, TLTD � 995 ms, and
� � 0.46. In all the other simulations, the two parameters TLTP and TLTD

were set to 1 s.

Priming simulations
For the LTP/LTD priming protocols (see Fig. 3) corresponding to Huang
et al. (1992) and Mockett et al. (2002), respectively, we used a two-
neuron model. Synaptic weights are chosen such that weak presynaptic
tetanic bursts are able to elicit some spikes in the postsynaptic neuron
(winit � 50 nS and wmax � 100 nS). The strong values of those weights
could be reduced if more than two neurons were considered. Parameters
for the plasticity rule were � � 0.15, �LTP � 15, and �LTD � 2. For LTP
priming, the presynaptic neuron received 10 weak tetanic bursts (20
spikes/s for 250 ms each), with an interburst interval of 1 s. Then, 10 s
later, it received a strong burst at 100 spikes/s for 200 ms. The learning
rate was fixed to 	 � 5 � 10 �3 and T � 50 s. For LTD priming, the
presynaptic neuron receives a low-frequency stimulation at 15 spikes/s
for 40 s. Then, 40 s later, the exact same stimulation occurs. The learning
rate was fixed to 	 � 0.8 � 10 �4, and T � 100s.

Feedforward convergence simulations
In feedforward convergence simulations (see Figs. 4 –9), the network was
composed of 1000 excitatory and 250 inhibitory neurons connected to a
postsynaptic neuron. Only excitatory connections are subject to the
mSTDP learning rule, and parameters for the plasticity were � � 0.15,
�LTP � 2.5, �LTD � 2.3, and T � 5 s. The initial weight for the presynaptic
population was winit � 0.3 nS. The ratio between excitatory and inhibi-
tory weights is such that winh � 33 � wexc. Every neuron in the presyn-
aptic population had a constant firing rate of 8 spikes/s, and the learning
rate was fixed to 	 � 2.5 � 10 �6. For Figure 9, presynaptic neurons are
stimulated with wrapped Gaussian profiles of rates vi � 1 � 50 �
exp(�(i � �) 2/2� 2) spikes/s, the center � being shifted randomly every
50 ms over all possible positions i � {1, …, 1000} and with � � 80. Here
an upper bound for the synaptic weights was set to wmax � 0.5 nS, and the
learning rate was divided by 2 to avoid strong fluctuations near the
boundaries.

Network model
The network was composed of Nexc � 63 � 63 excitatory and Ninh �
31 � 31 inhibitory neurons, arranged on a two-dimensional grid of
artificial size 1 mm 2. Because of the rather small neuron density, the
metric unit used to describe the network can be considered arbitrary, but
we will assume, for the sake of comparability between stimulation pro-
tocols and for establishing realistic propagation delays, that 1 mm corre-
sponds to 
1° of visual angle in cat primary visual cortex V1. The grid has
periodic boundary conditions to avoid any border effects. Each neuron
was sparsely connected with the rest of the network with a connection
probability that depended on the distance �ij between neurons according

to a Gaussian profile pij � e�
�ij

2

2�2 with a spatial spread of � � 0.1 mm.
For each neuron, K � 
(Nexc � Ninh) incoming connections were drawn
by randomly picking other neurons in the network that will or will not
create a projection according to a rejection method based on the Gauss-
ian profile. The connection density was 
 � 0.1, and self-connections
were discarded.

The network was set to an asynchronous irregular (AI) state (Brunel,
2000) with a population rate of 
7 spikes/s and with the mean coefficient
of variation of the interspike interval (ISI CV) of 1. Initial synaptic
weights were drawn from Gaussian distributions with mean values:
�gexc � 5 nS and �ginh � 50 nS. The SDs of the Gaussian distributions are
one-third of their mean values. Every neuron received an additional
Poisson input at 500 spikes/s in Figure 10 and 300 spikes/s in Figure 11.
To reproduce lateral propagation along horizontal connections, as
supported by in vivo intracellular evidence (Bringuier et al., 1999) and
voltage-sensitive dye imaging (Benucci et al., 2007), synaptic delays
are considered as being linearly dependent on distance, i.e., if �ij is the

distance between two neurons, we have dij � dsyn �
�ij

v
, where dij

is the delay between the two neurons, dsyn � 0.2 ms is the minimal
delay attributable to synaptic transmission, and v is the velocity of
dendritic conduction. In all simulations, v � 0.2 mm/ms, in agree-
ment with biological measurements (Bringuier et al., 1999), i.e., de-

lays in the network are in the range �0.2 ms, 0.2 �

2

2v
� 3.7 ms�,

where 
2/ 2 mm is the longest possible connection in the network.
In all simulations, only recurrent excitatory connections are subject to

plasticity, and the learning scale is set to 	 � 1.5 � 10 �6. For Figure 11,
an external layer of stimulating neurons driven by Poisson processes is
added on top of the recurrent network. All external neurons project
locally to all neurons of the recurrent network within a radius of 0.3 mm,
with synaptic weights gexc � 5 nS. In this external layer, moving bars were
modeled as linear wave fronts with a profile described by a half-Gaussian
function. The bars were 0.2 mm large and 0.1 mm long, with a peak rate
amplitude of 4 spikes/s. This pattern of activity originated every 100 ms at
random places and propagated perpendicularly to the wave front in a
random direction �, with a constant speed s � 10 mm/s (that would
correspond to 10°/s in the visual field according to the chosen metric to
which cells in V1, and mostly secondary visual cortex V2, will respond).
In the unbiased case, values of � are drawn from a uniform distribution
ranging from 0 to 2�, whereas in the biased case, they are drawn from a
wrapped Gaussian distribution centered on 0 with variance � 2 � �/4.

For the quantification of the preferred direction, we considered, for each
neuron, the centered map of its afferent presynaptic weights. In this neuron-
centered reference frame, an incoming input originates from a position
identified by its polar coordinates (r, �), such that the map value at (r, �)
corresponds to the weight w of the projection. Angular positions of all the
afferent connections were then gathered and weighted by their correspond-
ing synaptic weights. The peak value of this weighted histogram is used to
define the structural direction preference of the neuron, i.e., the angular
direction along which the composite synaptic contribution of all synaptic
weights recruited by the bar is the strongest.

Simulator
All simulations were performed using a modified version of the NEST 2.0
simulator (Gewaltig and Diesmann, 2007), allowing updates of the syn-
aptic weights at each time step of the simulation, controlled with the
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PyNN interface (Davison et al., 2008). The integration time step of our
simulations was 0.1 ms.

Results
Biophysical correlates of the mSTDP model
The working assumption of our mSTDP model is based on electro-
physiological in vitro results reported previously (Wang et al., 2005),
showing evidence that LTP and LTD are elicited by calcium influx
through distinct dedicated channels, NMDA and L-type, respec-
tively. For LTP, and for every pre–post pairing, calcium enters the
cell through NMDA channels and activates second-messenger-
dependent molecular processes leading to potentiation (presumably
through calmodulin binding and subsequent activation of kinases;
see Lisman, 1989, 1994). For LTP, we consider that the STDP win-
dow is defined by an exponential curve that dictates the instanta-
neous amount of Ca2�/calmodulin that will be formed at the time of
the postsynaptic spike. In a recent work by Faas et al. (2011), the
authors have shown that the binding of calmodulin with calcium
takes place over a very short timescale, in accordance with our phe-
nomenological description of this process as an instantaneous rise of
the corresponding variable at the time of postsynaptic spikes. This
variable will be labeled �wLTP. The action of this variable is twofold.
On a very short timescale, the corresponding molecule will activate a
kinase K that will phosphorylate AMPA receptors, thus increasing
the excitatory synaptic conductance, acting as a phenomenological
substrate for LTP, as in previous biophysical models (Senn et al.,
2001; Shouval et al., 2002; Badoual et al., 2006; Pfister and Gerstner,
2006; Graupner and Brunel, 2007; Clopath et al., 2010). On a slower
timescale, it will also activate another pathway, resulting in a nonlin-
ear downregulation of the kinase activation. This additional hypo-
thetical slow molecular pathway is critical in this model and has not
been taken into account in previous models of calcium-dependent
kinase kinetics that usually rely on positive regulation of the kinase
(Lisman, 1989, 1994; Okamoto and Ichikawa, 1994; Lisman et al.,
2002; Graupner and Brunel, 2007).

In our phenomenological model, these fast and slow actions
were implemented through two different operators. The rapid
Ca 2�/calmodulin action is modeled as an instantaneous update
of synaptic weight given by the value of �wLTP at the time of the
postsynaptic spike. The long-lasting LTP downregulation acts as
an induction threshold during these postsynaptic events and will
be modeled as an average of exp(��wLTP) over the past history
and over a presynaptic ensemble. This function accounts for the
strong nonlinear increase in the LTP threshold when weak tetanic
priming stimulations are used before a strong tetanic induction
in hippocampal slices (Huang et al., 1992). Unless stated other-
wise, the presynaptic ensemble will be averaged over all previ-
ously active synapses projecting on the postsynaptic neuron such
that they all share the same slow variables. Note also that the fast
variable does not need to exhibit an instantaneous rise but can
also have a finite rise time as long as the timescale is significantly
faster than that of the slow variables. The net effect on the synap-
tic weight is proportional to the kinase concentration, thus re-
sulting in the rectified difference between these two terms (see
Materials and Methods). This LTP mechanism is depicted in Fig-
ure 1A and obeys Equation 3 for instantaneous weight changes
induced by LTP: wLTP.

Note that other types of ensemble average can be considered
for the slow variables. For instance, the sharing of the slow vari-
ables by synapses can be done on a local basis (restricted to a
specific domain of the neurite) and not on a global basis as de-
scribed above. This could correspond to local groups of synapses
located in the same dendritic branch and sharing some of the

proteins through local diffusion. This will result in different
learning rules, as described in later sections.

Regarding LTD, it has been shown that priming stimulations can
facilitate LTD induction with low-frequency stimulation (Christie
and Abraham, 1992; Wang et al., 1998; Mockett et al., 2002). Al-
though the direct action of LTD is assumed to be conveyed by cal-
cium influx through dedicated L-type channels (Graef et al., 1999;
Wang et al., 2005), the priming effect has been shown to occur
through NMDA channels and to covary with the metaplasticity ob-
served for LTP (Mockett et al., 2002). Indeed, LTD facilitation and
LTP suppression are both elicited in priming experiments that acti-
vate NMDA receptors. We assumed that the direct action of “pre
after post” pairing results in the binding of an independent Ca2�/
calmodulin (variable �wLTD) to a phosphatase that will be responsi-
ble for rapid AMPA receptor dephosphorylation and endocytosis.
Moreover, we hypothesized that this process can be facilitated by the
Ca2�/calmodulin-dependent LTP downregulation generated
through NMDA channels that will make more Ca2�/calmodulin
molecules available for the phosphatase. This is modeled as a buffer-
ing term acting at the presynaptic spike times and that is inversely
proportional to the slow LTP action exp(��wLTP), averaged over the
past history and over the same presynaptic ensemble. This LTD
mechanism is depicted in Figure 1B and obeys Equation 6 for instan-
taneous weight changes induced by LTD: wLTD. The time evolution
of the synaptic weight is given by the time integral over the synaptic
changes (Eq. 7).

Thus, one of the main consequences of these mechanisms is that
the LTP or LTD changes to be expressed will have to cross a plasticity
induction threshold. This by itself is similar to a previously proposed
plasticity model (Senn et al., 2001), except that the threshold here is
moving as a function of the past activity attributable to the dual
timescale interactions that we propose to underlie metaplasticity.
Changes in thresholds in this model result from short-term upregu-
lations and downregulations of purely presynaptic vesicle release
probability at individual synapses through nonlinear messenger in-
teractions. In contrast, the mSTDP model offers the possibility of
studying several scenarios, ranging from learning rules with a single
shared postsynaptic floating threshold (as in BCM) to multiple and
purely presynaptic plasticity induction thresholds (as in the study by
Senn et al., 2001).

The mSTDP model can be more readily compared with the
BCM hypothesis, because the two learning rules produce a float-
ing plasticity threshold driven, respectively, by presynaptic and
postsynaptic activity (mSTDP) or shared by all the synapses
(BCM) and evolving on a very slow timescale. Note that these two
features are absent in the model of Senn et al. (2001), in which the
sliding feature of the threshold arises from kinetic equations reg-
ulating the vesicle release probability. However, this adaptive
threshold is driven by the same time constant causing the synap-
tic weight changes. Therefore, this model does not account for the
multiple plasticity timescales necessary to reproduce in vitro
priming experiments, neither does this rule incorporate plasticity
induction thresholds shared among all synapses critical to ensure
synaptic competition in the BCM framework. More recently,
models based on triplet interactions were introduced that repro-
duce some features of the BCM rule (Pfister and Gerstner, 2006;
Clopath et al., 2010). However, the slow sliding threshold in these
models was introduced as an ad hoc homeostatic process govern-
ing the amplitude of depression (Clopath et al., 2010) or poten-
tiation (Pfister and Gerstner, 2006), without a structural
relationship with the plasticity algorithm. The induction thresh-
olds for LTP and LTD are therefore kept fixed in these models.
We will show further in the text that our biochemical scenario can
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account for the classic “floating plasticity threshold” found in
previous experimental and theoretical BCM-like studies of syn-
aptic plasticity, but in this case, the “floating feature” is an emer-
gent property of the model.

Single-cell STDP experiments
Before considering the mSTDP with the fast and slow variable
actions, we first compared our model with plasticity protocols

occurring at a fast timescale so that the slow variables can be
considered constant. In particular, to determine whether this
phenomenological model is consistent with STDP experiments,
we show that its predictions reproduce the plasticity effects
reported for first- and second-order interspike interactions. In
Figure 2 A, the biexponential STDP curve was obtained using a
pairing protocol at 1 Hz. Triplet interactions were obtained in
Figure 2, B and C, for a given set of parameters chosen to

Figure 1. Schematic description of the model of mSTDP. A, Mechanism of LTP with a fast potentiation action and slower downregulation of the instantaneous amount of potentiation
at the postsynaptic spike times. The plasticity rule used for LTP is inspired by putative molecular pathways depicted on the left. A pairing protocol between presynaptic and postsynaptic
spike trains is illustrated on the right with the time evolution of each variable of the model. The slowly increasing threshold (�wLTP

th , blue curve) progressively reduces the effect of fast
potentiation (�wLTP, pink curve) on the synaptic weight (wLTP, thick red lines) at subsequent postsynaptic spike times. The pairing time difference �t is relative to the presynaptic spike
time (�t � tpost � tpre). B, Mechanism of LTD with a fast depression action and a facilitation produced by LTP downregulation at the presynaptic spike times. The plasticity rule used for
LTD is inspired by putative molecular pathways depicted on the left. On the right, a triplet protocol illustrates how the progressive lowering of the LTD threshold (�wLTD

th , blue curve)
produced by repeated pre–post pairings can increase the functional impact of fast depression (�wLTD, pink curve) produced by previous post–pre pairings, resulting in larger depression
of the synaptic weight (wLTD, thick blue lines) at the presynaptic spike times.
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qualitatively match the data reported by Sjöström et al. (2001)
and Wang et al. (2005) and with the slow variables set to 0 for
the sake of simplicity. Note that these results are conserved
even in the presence of slow variables (data not shown). Pre-
vious studied plasticity models have also succeeded in repro-
ducing these data (Pfister and Gerstner, 2006; Clopath et al.,
2010) or other similar datasets (Senn et al., 2001) with gener-
alized short-term interactions. In the study by Senn et al.
(2001), the short-term interaction is produced by regulation
of presynaptic vesicle release probability. Here, the short-term
interaction is inherited from the assumption that the Ca 2�/
calmodulin-bound concentration decays slowly compared
with the STDP time constant. Figure 2 B displays the synaptic
changes for different patterns of presynaptic and postsynaptic
spike triplets (Wang et al., 2005). In pre–post–pre firing pat-
terns, for instance, the synapse displays virtually no plasticity,
whereas significantly larger potentiation is obtained for post–
pre–post patterns that would produce comparable synaptic
changes if short-term interactions were neglected. Moreover,
when simulating L-type channel blockade (“nimo” applica-
tion condition) by forcing �wLTD to 0, we obtained a compa-
rable potentiation between pre-post-pre and post-pre-post
patterns, a prediction in accordance with experimental data.
In Figure 2C, plasticity curves are plotted for fixed pairing
intervals (�t � �10 ms) occurring at various frequencies. In
particular, for post–pre pairings, the synapse first experiences
depression followed by potentiation at higher frequencies, as
reported by Sjöström et al. (2001). The main features of the
model responsible for this frequency-dependent effect are the
extra time constants added by the binding of Ca 2� with inde-
pendent calmodulin molecules (variables �wLTP/LTD). These
time constants, similar to those of the triplet model by Pfister
and Gerstner (2006), are able of capturing not only pairwise
interactions within pre–post pairings but also higher-order
interactions. Note that these high-order plasticity rules were
also shown to naturally emerge from the dynamics of kinase/
phosphatase interaction with calcium and glutamate in a pre-
vious biophysical model (Badoual et al., 2006).

Priming experiments
We next considered experimental data involving timescales in
which the action of the mSTDP slow variables is critical. To con-
firm that the mSTDP model faithfully reproduces the dynamics
of metaplasticity as reported in vitro, we replicated priming ex-
periments that were shown to either inhibit LTP or facilitate LTD.
In Figure 3A, the protocol used by Huang et al. (1992) was repro-
duced in a two-neuron model. When weak tetanus priming stim-
ulations were used before subsequent strong tetanus stimulation,
the resulting synaptic weight change was considerably lower than
the change elicited by the strong tetanus stimulation alone. Pre-
activation of LTP increases its induction threshold and then de-
creases the amount of LTP obtained during the strong tetanus
stimulation. Conversely, LTD induction by low-frequency
stimulation was significantly facilitated when a previous low-
frequency priming stimulation was used (Fig. 3B). This result is
in accordance with LTD facilitation reported by Christie and
Abraham (1992), Wang et al. (1998), and Mockett et al. (2002).
Low-frequency stimulation of the LTD pathway decreases the
induction threshold for LTD and therefore increases the amount
of depression compared with a control situation without prim-
ing. Moreover, in the study by Mockett et al. (2002), it was shown
that this facilitation occurs through NMDA channels and is con-
current with LTP downregulation, which is in accordance with
our definition of the slow variables both depending on �wLTP.
Note that the results shown in Figure 3 were obtained with a set of
parameters different from that used for the rest of the study to
mimic the protocols used in vitro. To avoid excessively long sim-
ulations, time constants smaller than those observed experimen-
tally were used in the rest of the study. Nevertheless, similar
results on priming experiments can be obtained with our choice
of parameters if the timescale and burst amplitude of each pro-
tocol are properly scaled.

Relation with BCM
The dependence of LTP and LTD induction thresholds on the
past synaptic activity in mSTDP introduces new interesting func-
tional properties that can ensure stable learning as well as synap-

Figure 2. Reproduction of STDP experiments in vitro. Data shown in gray have been used to fit the mSTDP model parameters for STDP and short-term interactions (with the slow variables set to
0). A, Typical biexponential STDP curve, linking the relative amplitude of the synaptic change (positive for LTP, negative for LTD) with the tpost � tpre interval and obtained with a simulated pairing
protocol. Gray error bars in the graph are taken from Wang et al. (2005) recorded in hippocampal neurons for �t ��10 ms. B, Relative synaptic changes induced by triplet protocols (denoted Tri)
compared with experimental data obtained by Wang et al. (2005) (top, pre–post–pre; bottom, post–pre–post). Gray bars correspond to the original recordings for each protocol in the abscissa (with
time intervals between each spike). Black bars correspond to the prediction of the model. The last set of columns represents the condition in which L-type calcium channels are blocked with nimo,
a specific L-type calcium channel antagonist. C, STDP dependence on the pairing frequency for �t � �10 ms. In gray are original data obtained for visual cortex neurons by Sjöström et al. (2001)
for this protocol.
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tic competition. We thus further studied
the relationship between mSTDP and the
original BCM plasticity rule first intro-
duced to endow plasticity with stable con-
vergence through synaptic competition
(Bienenstock et al., 1982). Previous theo-
retical studies have succeeded in repro-
ducing some aspects of the BCM rule by
considering nonlinear interactions be-
tween presynaptic and postsynaptic spike
patterns in STDP (Senn et al., 2001;
Izhikevich and Desai, 2003; Burkitt et al.,
2004; Pfister and Gerstner, 2006; Clopath
et al., 2010). This correspondence was
achieved either by assuming first-
neighbor interactions between spikes
(Izhikevich and Desai, 2003; Burkitt et al.,
2004) or short-term interactions involv-
ing slower variables (Senn et al., 2001;
Pfister and Gerstner, 2006; Clopath et al.,
2010). However, these models were un-
able to account for one salient feature of
the BCM rule: the floating plasticity
threshold shared among all synapses inte-
grating the impact of mean postsynaptic
activity changes on slow timescales, which
was either included as an ad hoc mecha-
nism or was absent (Bush et al., 2010). The
sliding plasticity threshold was originally
assumed to be a supralinear function of
the past postsynaptic firing rate history
and was introduced to ensure nontrivial
convergence and to avoid weight diver-
gence in the plasticity algorithm (Bienen-
stock et al., 1982). In Figure 4A, we first
plotted the amplitude and sign of plasticity for various presynap-
tic and postsynaptic firing rates in a model consisting of a pair of
neurons linked by an ideal synapse and firing as Poisson pro-
cesses. Figure 4B shows two BCM curves that correspond to se-
lected lines in the diagram of Figure 4A. These curves were
computed in the absence of slow variables and are compared with
theoretical predictions (Eq. 9). The depression domain and thus
the BCM threshold increases with presynaptic firing rate as ex-
pected from the model definition (see Materials and Methods).
This dependence is absent from the original BCM rule and creates
differential plasticity changes between synapses originating from
neurons with different firing rates as reported previously (Burkitt
et al., 2004). This form of synaptic competition usually requires
fine tuning of the model parameters and produces unstable dis-
tributions of synaptic weights because no homeostatic regula-
tion is present in the absence of slow variables to ensure a
normalization of the overall synaptic weight impact on the post-
synaptic neuron. Moreover, in the parameter regime of the triplet
rule used in Figure 4A, regions of anti-Hebbian learning exist in
which an increase in the presynaptic firing rate results in a de-
crease of the corresponding synaptic weight. When the value of
TLTD is decreased, the presynaptic dependence progressively
disappears until a fixed BCM threshold is observed indepen-
dently of any change in the presynaptic rate when TLTD � 0. In
Figure 4C, we illustrate several plasticity rules for different values
of the triplet parameters TLTD and �. In particular, for TLTD � 0
and � � 0.46, only LTP can occur. The choice of parameters in
the last panel is formally similar to that found by Pfister and

Gerstner (2006) when fitting their triplet model to the data of
Sjöström et al. (2001) and Wang et al. (2005); in their studies, as
well as in this particular parametric case of our mSTDP model,
the BCM threshold is constant and shared by all synapses.

We then studied the role of the slow variables �wLTP
th and

�wLTD
th in modulating the LTD–LTP transition plasticity BCM

threshold with the past postsynaptic firing rate history, as origi-
nally used by Bienenstock and colleagues to simulate the effect of
rearing conditions (dark rearing vs normal visual experience) on
visual cortical plasticity. Measuring this relationship directly
from the model requires the decoupling of slow and fast variables
such that the past history of the postsynaptic activity is not af-
fected during the measurement of the “instantaneous” BCM
threshold. Therefore, we assumed that the slow time constant T is
slow enough compared with other time constants to be consid-
ered infinite during the BCM curve measurement. Moreover, we
also assumed that the presynaptic average is carried over all syn-
apses. In this asymptotic regime (T3 �), all synapses share com-

mon LTP and LTD thresholds described by the coefficients �wLTP
th

and �wLTD
th of Equations 3 and 6 that act as constant thresholds

defined by the past activity regime. The new BCM plasticity
curves and thresholds can thus be computed for any pair of fixed
LTP and LTD thresholds. Figure 4D shows the plasticity thresh-
olds obtained for different values of these coefficients. Note that
the existence of an LTD induction threshold was absent from the
original BCM rule (Bienenstock et al., 1982) but was introduced
at the subthreshold level in the ABS rule (Artola and Singer, 1993)
and at the suprathreshold level by Senn et al. (2001). However, in

Figure 3. Reproduction of priming experiments using the mSTDP rule. A, Simulation of an LTP priming experiment inspired by
Huang et al. (1992), in which weak tetanus stimulation can elicit LTP suppression. The top shows the time evolution of fast and slow
LTP variables with a priming stimulation, and the bottom shows the control condition without priming (with �wLTP

th also illustrated
in light red in the top). The postsynaptic spike times corresponding to the weight updates are depicted below each graph. The
histograms on the right are the resulting synaptic weight changes relative to their initial value for the two conditions. B, Same as
A but with a protocol inspired by Mockett et al. (2002) in which previous low-frequency stimulation can elicit LTD facilitation for
subsequent low-frequency stimulations. Slow variables are drawn in blue. The presynaptic spike times corresponding to the
weight updates are depicted below each graph.
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the ABS model, LTP and LTD thresholds were considered as fixed
values. In the model by Senn et al., the effective floating threshold
was not shared among synapses, contrary to the mSTDP rule. The
slow variables are nonlinear functions of the postsynaptic activity
history through the eligibility traces �wLTP and �wLTD in Equa-
tions 3 and 6 that are functions of the past postsynaptic activity
for Poisson processes. For a given parameter set (�LTP, �LTD) and
for a finite time constant T � 10 s and presynaptic rate of 10
spikes/s, successive stationary postsynaptic firing rates resulted in
effective stationary variables �wLTP

th and �wLTD
th that are plotted as

trajectories in Figure 4D. The white cross corresponds to a qui-
escent past postsynaptic activity, and the arrow indicates the
floating plasticity thresholds for higher past activities. Figure 4E
shows the plasticity curves as a function of the past postsynaptic
firing rate (assumed constant during each protocol) for the tra-
jectories drawn in Figure 4D. As described in Materials and
Methods, two curve-axis crossing points can be highlighted: the
first point at the origin of the postsynaptic activity axis, and the
second point at the transition between pure LTD and LTP do-
mains (BCM-like threshold). The corresponding two regimes are
illustrated in Figure 4E (inset). The stable zero domain around
the origin is usually large enough to operate as a “dead zone” and
supports a static integrative mode with fixed synaptic weights. In
this domain, no synaptic weight change will occur as long as the

level of presynaptic and postsynaptic coincidence remains small.
This domain can be shrunk after high past synaptic activity
(LTD-only regime). However, the second point, the LTD–LTP
transition BCM threshold, increases with increasing past synaptic
activity as described in Table 1. Figure 4F shows the BCM thresh-
olds for increasing postsynaptic past activity corresponding to the
different curves in Figure 4E. This relation is supralinear as re-
quired by the formal demonstration of stability conditions dur-
ing competitive BCM learning (Bienenstock et al., 1982). The
increase rate of this function as a function of the past synaptic
activity is driven by the parameter � that describes the rate of LTP
downregulation (Eq. 3). It is worth noting that the floating BCM
threshold is a singular operating point that can only guarantee the
convergence of the mean synaptic weight. The stochastic nature
of neuronal firing creates a residual competition that slowly dif-
fuses changes in the synaptic weights around the mean self-
stabilized operating point. Thus, only the zero domain
guarantees both individual and mean synaptic stability, allowing
the cell to operate reliably in a passive (non-adaptive) integrative
mode.

Stable competition of mSTDP during ongoing activity
To show that the mSTDP model produces stored weight patterns
that are robust to ongoing activity, we investigated several net-

Figure 4. Relationship between mSTDP and the BCM plasticity rule. A, Mean synaptic change �dw/dt� (LTP in red, LTD in blue) as a function of presynaptic and postsynaptic firing rates in a
two-neuron model with Poisson-process firing statistics and in the absence of slow variables. The oblique dotted line represents the crossing point of the plasticity curve between LTD and LTP. B, Two
BCM-like plasticity curves, linking synaptic change with mean postsynaptic activity, correspond to the gray dashed lines in A, respectively, for a presynaptic firing rate of 20 spikes/s (red arrow) and
50 spikes/s (black arrow), with the LTD–LTP transition threshold marked by an open circle. Theoretical predictions are shown in bold gray. C, Same as in A for different TLTD and � values. Note that
� has been set to 0.46 in the first three panels and � � 5.00 in the last panel. D, Values of the LTD–LTP transition threshold (BCM) are plotted as a function of asymptotic (constant) slow variables
�wLTP

th and �wLTD
th , corresponding to an infinite T. The black curve represents a trajectory obtained for a presynaptic firing rate of 10 spikes/s and different postsynaptic firing rates when T � 10 s

and for (�LTP,�LTD) � (5, 1.15). E, BCM-like plasticity curves obtained along the black trajectory with the same color code as in D. In the inset, a representative curve depicting the singularity around
the floating threshold (BCM) and the zero domain of stability at the origin. F, Supralinear dependence of the floating plasticity threshold on the past postsynaptic firing rate history corresponding
to the curves shown in E. In dashed black, the same curve when TLTD � 0 ms. The input rate-dependent region in which only LTP can occur is indicated by an asterisk.
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work models, namely feedforward and recurrent network mod-
els. In the feedforward model, we considered a presynaptic
population of 1000 excitatory and 250 inhibitory neurons pro-
jecting to a postsynaptic neuron, in which only the excitatory
synapses were subject to plasticity. To mimic the stochastic on-
going activity observed in vivo, each presynaptic neuron followed
a Poisson process with a mean rate of 8 spikes/s. The parameters
�LTP and �LTD were chosen such that no synaptic changes were
observed in this regime, considered as the normal operating point
of the network. One important issue, common to all models of
synaptic plasticity, concerns the operating point of the synapses.
In the ABS and Senn et al. (2001) models, the implicit reference is
the quiescent network state: as soon as the postsynaptic activity
increases, the lower plasticity threshold crossed by synapses is
that of LTD induction. In contrast, the BCM and mSTDP models
were proposed to account for the in vivo case. In this situation, the
presence of ongoing activity differs from the absence of firing at
rest in vitro. For BCM, the bending of the covariance rule, so that
it converges to the origin, the “zero-activity” point was proposed
only to ensure mathematical stability. Note that a pure covari-
ance product rule (Sejnowski, 1977) would lead to instability and
change in the sign of the synaptic weight (if allowed) near the
origin. In our model, however, the “fixed” regime below LTP and
LTD thresholds guarantees that individual synaptic weights re-
main fixed during ongoing activity. This stable information
transmission domain may be thought to correspond to the basal
level of network spiking correlation during spontaneous activity,
which has been reported to be low in vivo (Renart et al., 2010) or
during sparse evoked activity during natural scene viewing (Vinje
and Gallant, 2000). However, both zero-domain and “crossing”
(floating threshold of transition between LTD and LTP) points
can be used to stabilize the mean synaptic weight, although the
singular nature of the floating threshold still allows for a residual
competition. This singularity has a possible functional drawback
because competition of infinite duration will induce a progressive
increase in the variance of the weight distribution without affect-
ing its mean (first-order stability remains valid), as will be shown
in the following. This second-order instability can be seen as a
correlate of synaptic competition but in the long term results in a
synaptic weight distribution in which a single weight overtakes all
the others. Alternatively, our model could have been parameter-
ized in such a way as to create a stability domain around the
LTD–LTP crossing point, similar to the zero domain at the ori-
gin. This second stability domain would stabilize the full synaptic
weight distribution at the operating point between LTP and LTD.
Such a second stability domain was proposed on the basis of the
experimental validation of the BCM rule (Frégnac et al., 1988), as
an operating domain matching the dynamical range of evoked
sensory and ongoing activity (Frégnac, 2002). These differences
in the working state of the synapse will be the focus of future
developments of the mSTDP model. In the following, we consid-
ered different heterogeneous presynaptic firing patterns to study
the evolution of synaptic weights produced by mSTDP.

We first studied the case in which the presynaptic ensemble
average of slow variables is made over all synapses, thus defining
common LTP and LTD thresholds shared among all synapses as
required by the BCM rule. We separately considered the effect of
heterogeneous presynaptic firing rate (detailed in Figs. 5, 6) and
synchrony (detailed in Fig. 7) within the presynaptic neuron pop-
ulation (see illustration in Fig. 5A). The nonlinear interspike in-
teractions responsible for the BCM-like features of the plasticity
curve can create competition between groups of neurons with
different firing rates further stabilized by the slow variables. We

thus increased the mean firing rate of half the presynaptic excit-
atory neurons and, as expected, observed a rapid separation of
their synaptic weights from those of neurons with unchanged rate
(Fig. 5B). In particular, because of the strong impact of the LTP
fast variables compared with LTD (� � 0.46) and our choice of
presynaptic rates (8 and 16 Hz), the synaptic weights of popula-
tion 2 were increased when the mean firing rate of population 2
got higher. This change was accompanied by a simultaneous de-
crease in the synaptic weights fed by population 1, whose firing
rate was kept unchanged. This effect is expected from the BCM-
like competition feature of the plasticity algorithm, which tends
to keep the average synaptic weight and thus the postsynaptic
firing rate constant. The floating plasticity threshold dependence
on the past postsynaptic activity is illustrated for both input pop-
ulations in Figure 5C, with lower floating thresholds for synapses
fed by population 2 as expected from the BCM threshold presyn-
aptic dependence discussed in Materials and Methods. In these
conditions, population 1 experiences depression and population
2 potentiation.

Eventually, when all synaptic weights of population 1 reached
their lower bound at 0, the average synaptic weight correspond-
ing to population 2 became stabilized so that the postsynaptic
firing rate reached a new stationary regime. If the stimulation
pattern was maintained, the variance of the global synaptic
weight distribution would slowly increase because of the residual
competition. To avoid weight divergence of individual synapses
(stability is guaranteed by the mSTDP model for the mean but
not for the variance of the synaptic weight distribution), this
plasticity phase was then followed by a phase in which presynap-
tic firing rates were relaxed to their original values, resulting in an
inactivation of LTP and LTD. Variables �wLTP and �wLTD for
both populations returned under their respective thresholds
�wLTP

th and �wLTD
th corresponding to the zero domain of stability

(Fig. 5D). The resulting postsynaptic firing rate was comparable
with its original value, and the synaptic weights remained con-
stant in this new ongoing regime (Fig. 5B). Therefore, spatially
heterogeneous distribution of presynaptic firing rates elicits, at
the level of the common postsynaptic target cell, synaptic weight
scaling of a competitive nature. Ensuring that the fast variables
return under their respective thresholds thus results in a segrega-
tion and stabilization of individual synaptic weights. This result
does not depend on the initial weights as can be concluded from
similar simulations in which the initial values were drawn from a
Gaussian distribution (data not shown).

However, as discussed in Figure 4A–C in the case of a single
presynaptic source, the presynaptic dependence of the LTD–LTP
transition threshold can invert the outcome of competition be-
tween the input populations, when presynaptic firing rates are
chosen so as to produce LTD instead of LTP in the absence of
slow variables. If, for instance, the presynaptic firing rates are
chosen to be 20 spikes/s for population 1 (instead of 8 spikes/s in
Fig. 5) and 50 spikes/s for population 2 (instead of 16 spikes/s in
Fig. 5), a depression is predicted by Figure 4A for both synaptic
sets, the larger the higher the presynaptic rate. Consequently, the
synaptic weights corresponding to population 2 will become
smaller than for population 1 (Fig. 6A). Indeed, in the singular
BCM regime (around the LTD–LTP threshold), the floating plas-
ticity threshold of population 1 is smaller than that of population
2, thus inverting the pattern of competition (Fig. 6B). Note that
this presynaptic dependence is lost when TLTD is very small or
equal to 0. In Figure 6D–F, the same simulation was run with
TLTD � 50 ms and resulted in synaptic weight distributions com-
parable with those in Figure 5, with stronger weights for popula-
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Figure 6. Effect of the time constant TLTD on the presynaptic dependence of the floating plasticity threshold. A–C, Same as B–D in Figure 5 but with a mean firing rate of 20 spikes/s for population
1 and 50 spikes/s for population 2. Here, as in Figure 5, TLTD � 1000 ms. D–F, Same as in A–C but with TLTD � 50 ms.

Figure 5. Firing rate-based competition produced by mSTDP. A, Illustration of the feedforward model (only excitatory cells are shown). B, Time evolution of firing rates (top) and synaptic weights
(bottom) in a feedforward model with presynaptic Poisson processes. In this protocol, the postsynaptic neuron receives Poisson input from two presynaptic populations. After 500 s, presynaptic
neurons in population 2 double their firing rates from 8 to 16 spikes/s (black curve), whereas the other population remains unchanged (gray curve). The firing rate of the postsynaptic neuron is shown
in green. The bottom plot represents individual synaptic weights in light gray, as well as the mean weight of population 1 in dark gray and population 2 in black. After 4000 s, the firing rate of
population 2 is relaxed to its initial value. The dashed bar indicates the onset, offset, and duration of the stimulation. C, Floating plasticity threshold dependence on the past postsynaptic firing rate
for both populations. The green arrow indicates the stable postsynaptic firing rate during the competitive learning protocol, before population 1 weights reach their lower bound at 0. The dashed
green line indicates identity. D, Time evolution of the fast variables �wLTP and �wLTD (black curves), as well as the corresponding slow variables �wLTP

th (red) and �wLTD
th (blue).
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tion 2. This can be seen in particular in the dependence of the
floating plasticity threshold on the past postsynaptic activity (Fig.
6E), which shows smaller values for population 2, corresponding
to potentiation in the singular BCM regime.

We next considered the case of correlated Poisson processes of
variable synchrony with a fixed mean firing rate. As reported by
Song and Abbott (2001), if half of the presynaptic neurons are
driven by synchronous inputs while the other half are randomly
activated, heterosynaptic competition occurs between the syn-
chronized and unsynchronized sets of synapses and produces two
separate synaptic weight distributions corresponding to each in-
put population. In Figure 7A, during a first phase, half the pre-
synaptic neurons (population 2) were driven by correlated
Poisson processes (correlation coefficient of 0.25 for 200 s). The
resulting synaptic weight distribution after the rapid learning
phase is separated into two distinct sharp unimodal distributions.
If the synchronous firing of population 2 were to last longer, the
synaptic weights of population 1 would eventually reach 0 and
the average synaptic weight of population 2 would become stable
as in Figure 5 (data not shown). Instead, this phase was then
followed by a stationary phase of 100 s, during which the spiking
activity of both populations was decorrelated. Fast variables were
brought back below their induction thresholds (Fig. 7B), result-
ing in a stabilization of individual synaptic weights. To show that
these changes are not irreversible and that homogeneous distri-
butions can be recovered with appropriate synaptic inputs, we
then inverted the two population spiking patterns for the same
stimulation duration. The weight distribution self-organized into
a unimodal distribution in which the synaptic weights of the two
populations were indistinguishable. The combined effect of these
alternated patterns of correlated stimulations induced a global

potentiation of the mean synaptic weight, each set of synapses
benefiting more from LTP than LTD, as can be seen in the time
evolution of all variables (Fig. 7B). From this result, we concluded
that presynaptic populations can be segregated based on both
first-order (mean rate) and second-order (synchrony) input sta-
tistics, thus resulting in efficient synaptic competition mecha-
nisms that rely on different aspects of the mSTDP rule.

mSTDP with independent slow variables
We also considered the case in which synapses do not share a
common plasticity threshold. Interestingly, new forms of synap-
tic competition can arise in this situation. We first replicated the
stimulation protocol of Figure 5 where two presynaptic popula-
tions fire with different mean rates. In Figure 8A, the increase in
postsynaptic firing rate elicits a fast and strong change in popu-
lation 2 synaptic weights. However, instead of being potentiated
as in Figure 5, these weights are strongly depressed. Indeed, the
increase in slow variables (Fig. 8C) produced by the strong pre-
synaptic and postsynaptic firing rate only affects the synapses of
population 2, resulting in a shift toward depression for the cor-
responding weights until the fast variables return below their
respective thresholds. Eventually, individual synaptic weights settle
at constant values and the postsynaptic firing becomes stationary.
Although this pattern of competition resembles that observed in
Figure 6A–C, this effect is not the result of the presynaptic depen-
dence of the LTD–LTP transition threshold. Indeed, the protocol
is identical to that illustrated in Figure 5, and the singular LTD–
LTP transition BCM point still keeps the same form of depen-
dence on the past synaptic activity (Fig. 8B) for small TLTD. The
homeostatic regulation acts in this latter case on each synapse
independently and therefore produces a strong depression to

Figure 7. Synchrony-based competition produced by mSTDP. A, Time evolution of firing rates (top) and synaptic weights (bottom) in a feedforward model with presynaptic Poisson processes.
In this protocol, population 2 neurons are synchronous Poisson processes (correlation coefficient of 0.25) between 50 and 250 s (black crosshatched bar), and population 1 neurons are synchronous
Poisson processes between 350 and 550 s (gray crosshatched bar). Outside these synchrony periods, the synaptic inputs are uncorrelated. B, Time evolution of the fast variables �wLTP and �wLTD

(black curves), as well as the corresponding slow variables �wLTP
th and �wLTD

th .
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compensate for the increase in presynaptic firing rate and keep
the postsynaptic mean rate constant. Therefore, different forms
of learning rules can arise based on the spatial extent of synaptic
interactions within the same neurite.

This synaptic weight segregation can arise from functional
competition but can also result from structural specificity. If the
coefficients �LTP are drawn from a bimodal distribution, two
distinct populations of synaptic weights emerge for a fixed and
homogeneous presynaptic firing rate (Fig. 8D–F). These popula-
tions correspond respectively to each mode of the bimodal distribu-
tion. Population 1, having smaller LTP induction thresholds,
experiences an increase in the synaptic weights, whereas popula-
tion 2 synaptic weights are dominated by depression. If synapses
interact only locally, synaptic weight distributions can be spon-
taneously segregated as a result of structural differences that may
be related, for instance, to different dendritic branching
morphologies.

Emergence of receptive fields with mSTDP
To illustrate the emergence of receptive fields in a simplified reti-
notopic feedforward model, we next considered an additional
protocol in which retinotopically organized presynaptic neurons
were driven by Poisson processes with mean rate following spatial
Gaussian profiles (Song and Abbott, 2001; Pfister and Gerstner,
2006). Every 50 ms, the center of the Gaussian stimulation profile
was randomly drawn among the presynaptic neurons with peri-
odic conditions. After an initial phase of 
500 s, the postsynaptic
firing rate reached a stationary regime (Fig. 9A) and a sharp and
localized receptive field emerged in the presynaptic population
(Fig. 9B,C) 
500 s later. After 
2000 s, the synaptic weights
reached their upper (wmax � 0.5 nS) or lower (wmax � 0 nS)

bound, and the receptive field stayed stable for the rest of the
simulation. If the synaptic weight is unbounded, the excessive
competition between synapses could shrink the receptive field
to a single winner-take-all synapse. To avoid this anomalous
trivial weight distribution, some additional constraint must be
used, such as imposing weight dependency or hard bounds, as
in Figure 9.

Apart from the general issue of local versus global (mean)
stability that we already discussed at length, these simulations
demonstrate that mSTDP is well suited for the creation of stable
functional maps during development. In this model in which
synapses can be ordered with a spatial arrangement based on the
stimulation patterns, we studied the effect of spatial spread of
LTP and LTD thresholds (slow variables). Instead of averaging
these slow variables over all synapses at each time step, we as-
sumed that the focally induced slow variable changes �wLTP

th and
�wLTD

th are convolved with a sharp Gaussian function every milli-
second to mimic a spatiotemporal diffusion. The corresponding
diffusion process was characterized by a diffusion coefficient D
given by the ratio between the Gaussian variance and the elemen-
tary time step (D � 10 3 units 2/s, where the spatial unit is the
elementary distance between two neighboring neurons). The
simulation shows that, in this scenario, the postsynaptic neuron
settles in a regime in which a bimodal receptive field emerges (Fig.
9D–F). Although this bimodal receptive field can spontaneously
emerge at any position from one simulation to another, the two
modes are always equidistant in both directions because of the
periodic conditions. For a finite diffusion coefficient, local com-
petition can produce more complex structures than global com-
petition mediated by threshold values shared by all synapses. We
hypothesize that this local competition, caused by the depen-

Figure 8. Synaptic weight dynamics for mSTDP rules with independent slow variables. A, The time evolution of the firing rates of the presynaptic and postsynaptic neurons is shown in the top
and the synaptic weight distributions of populations 1 and 2 in the bottom. Population 2 neurons increase their firing rate during the period delimited by the dashed black bar. B, Floating plasticity
threshold dependence on the past postsynaptic firing rate for both populations. C, Time evolution of the fast and slow variables of both populations 1 and 2. The color code is identical to that of Figures
5–7. D–F, Same as in A–C but for a uniform increase in firing rate and for a bimodal distribution of coefficients �LTP with means of 2.3 and 2.7, corresponding to populations 1 and 2, respectively.
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dence of slow variables on the presynaptic firing activity, could
occur independently in each dendritic compartment in biological
neurons. For very small diffusion coefficients, slow variables are
not shared among synapses so that no competition can take place
between nearby synapses and no spatial structure emerges after
stimulation. From a functional point of view, local competition
increases the sensitivity of the postsynaptic neuron to the presyn-
aptic ensemble by creating multiple segregated receptive fields in
the stimulus space, possibly resulting in synapse clustering on
distinct dendritic regions of the same neuron (Jia et al., 2010).

Stable learning in a recurrent network with
stochastic-like regimes
We next considered the difficult problem of synaptic plasticity in
recurrent networks displaying in vivo-like spontaneous activity.
In this case, synaptic weights directly change the network dynam-
ics and vice versa (Lubenov and Siapas, 2008). For appropriate
parameters, balanced networks of integrate-and-fire neurons can
display asynchronous irregular (AI) states (Brunel, 2000; Vogels
and Abbott, 2005; Kumar et al., 2008; El Boustani and Destexhe,
2009; Marre et al., 2009) that produce spike discharge patterns
similar to those reported in awake animals (Steriade, 2001; El
Boustani et al., 2007). Recurrent neuronal networks have been
studied with weight-independent STDP rules (Izhikevich et al.,
2004; Morrison et al., 2007; Kang et al., 2008; Lubenov and
Siapas, 2008; Gilson et al., 2010). It has been reported that these
rules usually disrupt the ongoing regime by strengthening coact-
ive neurons, thus producing strong synchronous volleys of firing
(Morrison et al., 2007).

It was also shown that the addition of homeostatic mecha-
nisms and axonal delays can stabilize the dynamics and partially
abolish the pathological regimes by creating multiple subpopula-
tions of synchronized neurons (Izhikevich et al., 2004) or by
setting the network dynamics into a mixed state with episodic
synchronous firing (Lubenov and Siapas, 2008). However, in the

latter state, the network loses the memory-retention property
usually expressed by weight-independent STDP rules. If en-
dowed with a weight-dependent STDP rule, such networks can
sustain AI regimes with stable synaptic weight distributions
(Morrison et al., 2007). However, individual synaptic weights are
subject to strong fluctuations as a result of the ongoing spiking
activity. Consequently, changes in the weight distribution are
always transient because synaptic weights relax to their stable
stationary distribution. There is therefore a fundamental tradeoff
(catastrophic forgetting) with classical STDP rules between
maintaining the stability of network dynamics or stabilizing the
traces of the learning process (memory retention). We compared
a weight-dependent STDP rule (van Rossum et al., 2000) and the
mSTDP rule in a topological network with lateral propagation at
finite speed, displaying an AI regime with a stable synaptic weight
distribution for weight-dependent STDP rules. For 1000 s, these
networks were subject to their spontaneous activity and synaptic
weights converged to their equilibrium distribution. Then a cir-
cular area of the network with radius r � 0.2 mm (network side
length L � 1 mm) was stimulated with an additional external
input of 250 spikes/s while mean firing rates and mean afferent
synaptic weights coming from the stimulated and unstimulated
regions were monitored (Fig. 10A). In these simulations, plastic-
ity was authorized only within recurrent connections and exter-
nally driven synapses were kept fixed. When the network was
stimulated, the mean intracortical synaptic weights projecting to
(afferent) or sent by (efferent) the cortical neurons in the stimu-
lated region were strongly affected by the increase in firing rate
(Fig. 10B.2, mSTDP). Only synaptic weights involving a direct
lateral connection with the stimulated region were affected (“lat-
eral receptive field”).

The resulting stable pattern of synaptic weights displayed two
distinct but complementary regions inscribed within the part of
the receptive field corresponding to the trained lateral connectiv-
ity in which mean afferent weights per neuron had been either

Figure 9. Emergence of receptive fields with random and sparse activation of a spatially Gaussian distributed stimulation. A, Time evolution of the mean presynaptic (black) and postsynaptic
(green) neuron firing rates. B, Time evolution of individual synaptic weights with hard upper bounds. These simulations were done by averaging slow threshold variables over all synapses. C,
Emergence of a unimodal receptive field (one-dimensional mapping on the neuronal sheet). Synaptic weights are color coded and illustrated over the whole stimulation period. The Gaussian profile
of the stimulation is shown in gray. D–F, Same as in A–C but with finite slow variables diffusion coefficient (D � 10 3 units 2/s).
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potentiated or depressed (Fig. 10B, mSTDP). The inhomoge-
neous changes within the lateral receptive field are presumably
caused by the local connection distribution for each neuron fol-
lowing a Gaussian profile with SD of 0.1 mm and the propagation
delays allowing a strong local competition in the stimulated re-
gion. The resulting firing rate at the end of the stimulation was

considerably increased inside the spatial domain defined by the
lateral receptive field, whereas the AI state of the network (Pear-
son’s coefficients and ISI CV) observed before the stimulation
was conserved after the stimulation has been removed (Fig. 10C).
Therefore, mSTDP allowed the network to remain in its ongoing
stochastic-like regime while displaying long-lasting memory re-

Figure 10. Stable learning in a topographically organized recurrent two-dimensional neuronal network with in vivo-like spontaneous activity. A, Time evolution of the unstimulated population
(gray curve) and stimulated population by an external drive within a circular area (black curve). The mean afferent synaptic weights for each neuron in the network are displayed as snapshots in the
course of time above the graph. The mean afferent weights fed by neurons inside the stimulated region, outside the stimulated region, and from all neurons are plotted in the first, second, and third
rows, respectively. B, From left to right, The columns labeled by circled numbers correspond, respectively, to the stable spontaneous regime (1), the end of the stimulation epoch (2), and the
relaxation ongoing regime 1000 s after the stimulation (3). Network snapshots of the mean afferent and efferent synaptic weight per neuron are plotted in the two first rows for mSTDP. In the last
two rows, the mean firing rates for each neuron in the network are plotted for the mSTDP and the weight-dependent STDP rules. Circled numbers at the top of each column refer to the same phases
described in A and B. C, Network firing statistics before, during, and after stimulation: top, firing rate distribution; middle, ISI CV; bottom, mean Pearson’s coefficient computed over 2000 distinct
neuron pairs.
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tention. These modifications did not last in the classical STDP
model (Fig. 10B.3, STDP) because of the spontaneous network
activity. We also tested this paradigm for a weight-independent
STDP rule. Although the network synaptic weights kept track of
the stimulation, the dynamics settled in a pathological regime of
synfire explosions (Morrison et al., 2007) (data not shown). This
catastrophic-forgetting tradeoff was avoided by the mSTDP
model, which induced stable synaptic changes in a stable network
state through the existence of a floating plasticity threshold (Fig.
10B.3, mSTDP). In this case, the system operates in a stable do-
main of activity (see zero domain above).

Finally, we considered a stimulation paradigm in which the
whole network was stimulated using “moving bars” of activity
and in which the lateral connectivity adapts to the conditioning
experience through mSTDP. The conditioning bars are typically
one-third the length of the network size and can start from any
point and propagate in any direction (see Materials and Meth-
ods). Each receptive field is defined by the spread and strength of
connected afferents relative to the postsynaptic cell. The impact
on the receptive field is measured by potentiation or depression
of afferent synapses: STDP favors potentiation of synaptic links in
which the presynaptic cell is “hit” by the bar before the target cell.
STDP depresses synaptic links in which the postsynaptic cell fir-
ing is evoked before the presynaptic one. We first used an isotro-
pic distribution of stimulus directions by drawing values from a
uniform polar distribution between 0 and 2�. After stimulating
for 1500 s, structured domains of polar asymmetry bias emerged
across the network (Fig. 11A, unbiased directional stimulation).
Results show that these asymmetric structures in the spatial dis-
tribution of afferent presynaptic cells, observed in different target
cells for every possible direction, were preserved once the moving
bars were no longer presented and the network settled to a new
level of spontaneous activity. These patches tended to form uni-
directional preference domains at a more mesoscopic level. In a
second phase, the same network was stimulated using moving
bars strongly biased toward one direction value (� � 0; Fig.
11A,B, red arrow) using a wrapped Gaussian distribution. The
direction domains were consequently strongly affected and re-
flected the new conditioning stimulus preference after 1500 s of
learning (Fig. 11A,B, biased stimulation). This sharp directional
bias in the synaptic weight distribution is visible when looking at
the individual spatial profiles of receptive fields that are all
strongly biased toward directions opposite to the stimulus bias,
i.e., which are stimulated on the path ahead of the postsynaptic
receptive field location. (Fig. 11C). The simulations showed that
the receptive fields are biased in two halves: one corresponding to
a set of presynaptic cells whose synaptic impact has been poten-
tiated, the other to presynaptic cells whose synaptic contribution
has been depressed. The demarcation line between the “potenti-
ated” and “depressed” presynaptic sources goes through the post-
synaptic cell position and is cross-oriented to the motion path of
the stimulus. Such asymmetric effects have been ascribed to
STDP in the visual system by Fu et al. (2002, 2004) and to the
place cells in hippocampus by Mehta et al. (2000). Interestingly,
the network firing statistics after biased and unbiased stimula-
tions were similar and significantly different from the initial state
(Fig. 11D). In particular, the mean Pearson’s correlation coeffi-
cient measured over 2000 distinct neuron pairs decreased to al-
most 0 after learning, although nearby neurons shared similar
functional properties. As demonstrated by this model, stable and
flexible learning can take place in recurrent networks expressing
sustained and irregular patterns of spontaneous activity.

Discussion
We have introduced here a metaplastic STDP model that gener-
alizes a number of previous models and accounts for most exper-
iments on associative synaptic plasticity: it provides a common
framework to integrate the main phenomenology of STDP to-
gether with metaplasticity mechanisms. Previous models also in-
cluded an activity-dependent induction threshold (Bienenstock
et al., 1982), or metaplasticity mechanisms (Lisman, 1989; Fusi et
al., 2005; Graupner and Brunel, 2007), but these models were not
consistent with STDP or with priming experiments. Similarly,
previous models of higher-order STDP interactions (Senn et al.,
2001; Shouval et al., 2002; Badoual et al., 2006; Pfister and Ger-
stner, 2006; Benuskova and Abraham, 2007; Clopath et al., 2010)
did not include metaplasticity as an emergent property of the
model. The mSTDP model aims at being consistent with these
different timescales. It accounts for the frequency dependence of
STDP but also for slower timescale priming experiments. Most
importantly, our mSTDP model can lead to stable learning in the
presence of spontaneous activity without disturbing the network
AI regime, therefore providing a possible solution to the cata-
strophic forgetting problem.

One original component of the mSTDP model is the LTP and
LTD activity-dependent thresholds. Because of their dependence
on presynaptic spiking activity, these thresholds can be under-
stood as the context represented by the input statistics evaluated
over a presynaptic ensemble. In the most extreme case, in which
averages are performed over all synapses, identical thresholds are
shared by all synapses, a behavior that recovers the heterosynaptic
nature of the BCM rule. However, when less trivial presynaptic
ensembles are defined, competition can occur more locally, re-
sulting in the emergence of multimodal receptive fields (see re-
lated biological evidence in the study by Jia et al., 2010). This can
be achieved by local diffusion of the individual thresholds, with
an underlying topographical organization added. Our model of-
fers a possible framework for detailed compartmental description
of different integrative subfields underlying distinct STDP-based
operations in which the validating postsynaptic signal can be
either the sodium spike or the local calcium spike boosted by
backpropagation of the action potential in the distal dendrite
(Frégnac, 1999; Bar Ilan et al., 2011). STDP models have been
developed along these lines showing the emergence of spatially
distinct clusters of synaptic “engrams” on the dendrites (Iannella
et al., 2010).

For network dynamics in vivo, this novel form of plasticity is
able to serve simultaneously two main functions: (1) achieve
long-term stabilization of synaptic changes induced by recurring
correlation patterns independently of ongoing disruptions pro-
duced by background activity; and (2) provide a plausible mech-
anism of homeostasis and self-normalization for synaptic
learning during changes of local or global context. Its compati-
bility with a plausible identified biophysical mechanism is thus
testable in future in vitro and in vivo experiments. Several exper-
iments could be designed to test specifically some of the key as-
sumptions of the mSTDP model.

A straightforward functional prediction is that successions of
short and repeated stimulations of the synapse, interleaved with
long resting periods, should elicit more plasticity at the synapse
than a single stimulation period of the same cumulative time.
This form of “spaced training” protocol has simple predictions
that have been experimentally tested (Zhou et al., 2003; Dunfield
and Haas, 2009). During a single long-lasting stimulation, the
thresholds for LTP and LTD are reported to slide to protect the
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synapse against too large changes, which may not be the case in
short learning episodes. If those episodes are spaced enough in
time, thresholds go back to their resting values, and therefore
additional stimulations still trigger changes. This type of dynam-
ics is reminiscent of the alternation of “up” and “down” states
during slow-wave sleep, which consists of periods of activity in-
terleaved with periods of silence (for review, see Steriade, 2001;
Destexhe et al., 2007). This period of sleep may play a role in
memory consolidation (Gais et al., 2000; Stickgold et al., 2001; Ji
and Wilson, 2007), but no precise mechanism has been proposed
yet. We suggest that the purpose of down states may be to relax
the sliding thresholds, thereby enabling the activity during the up

states to efficiently trigger long-term plasticity at neocortical syn-
apses when the network endogenously replays the transiently
stored patterns. This is a challenging problem to investigate in the
future, by using networks models displaying up– down states or
by studying the influence of nonstationarities in the background
activity on STDP by imposing a simulated bombardment of con-
ductances using dynamic-clamp techniques.

Another experimental test, more specific to the mSTDP
model, would be to characterize putative changes in the postsyn-
aptic plasticity threshold across the neurite of the cell, as implied
by the diffusion hypothesis. A feasible protocol would be to use
glutamate uncaging under two-photon laser stimulation to selec-

A

B C

D

Figure 11. Stable learning in recurrent retinotopically organized networks stimulated with moving bars. A, Maps of direction preferences, color coded and computed for each neuron in the
network from their individual receptive fields. For one neuron, the receptive field corresponds to the spatial distribution of its synaptic sources (locations of the presynaptic neurons afferent to the
same target cell). Individual direction preferences were computed by identifying the direction, in each receptive field, in which recurrent presynaptic weights were the strongest (see Materials and
Methods). The left shows the map of the direction preferences in the initial, randomly connected network under spontaneous activity. Middle and right shows these maps induced by plasticity
respectively after unbiased (middle) or directionally biased (right, red arrow) conditioning stimulations. B, Distribution of the direction preferences gathered across all neurons during spontaneous
(black curve), directionally unbiased (gray curve), and biased conditioning (red dashed curve) stimulation. The direction tunings are measured from individual receptive fields as spatial biases in the
recruitment of presynaptic sources. C, Examples of individual receptive fields for several neurons randomly selected in the network after the biased stimulation. The maps are centered on the
reference postsynaptic neurons (black dots), and individual direction preferences are indicated by black arrows. Incoming synaptic weights are color coded. D, Network firing statistics before
stimulation and after the different stimulation phases: left, firing rate distribution; middle, ISI CV; right, mean Pearson’s coefficient computed over 2000 distinct neuron pairs. Arrows indicate mean
values for each phase.
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tively target and activate, in a non-uniform manner, the dendritic
branches of a labeled neuron. Similarly to what has been shown in
Figure 9, local diffusion of the LTP and LTD thresholds should
promote local interactions between neighboring synapses, lead-
ing to the emergence of spatially clustered synaptic patterns along
the dendrite. Crosstalk between nearby synapses during plasticity
processes has already been reported in vitro (Harvey et al., 2008),
with a spatial scale up to few micrometers. We hypothesize that
diffusion related to the slow variables in mSTDP would act on
slower timescales (several hours) and affect a larger extent of the
dendrite. The quantification of their time and spatial constants
would provide some insight about the underlying mechanisms.

From a functional point of view, the presynaptic dependence
of the plasticity thresholds could also be revealed by introducing
stimulus-driven competition within or across dendrites of the
same postsynaptic cell in vivo. It has become possible, by using
two-photon imaging techniques, to map distinct preferred-
orientation subdomains along a single dendritic tree or across
several branches of the same postsynaptic neuron (Jia et al.,
2010). Differential priming stimulations by visually driven acti-
vation of locally clustered or spatially segregated orientation pref-
erence domains could be used to measure the spread of the
plasticity threshold changes on a single or on distinct dendritic
branches.

It is important to note that the model ingredients are consis-
tent with known molecular pathways involved in associative syn-
aptic plasticity. A likely candidate to mediate metaplasticity
processes was suggested to be an autophosphorylated state of
calcium/calmodulin kinase II (CaMKII) (Bear, 1995; Mayford et
al., 1995; Giese et al., 1998). In particular, autophosphorylation at
site Thr305/306 has a suppressive effect on the calmodulin kinase
binding, acting on a very slow timescale as described in our model
(Elgersma et al., 2002; Zhang et al., 2005). The phosphorylation
state at these sites has been shown recently to play a pivotal role in
the induction of LTP and LTD, thus being an ideal candidate for
the regulation of the BCM sliding threshold (Pi et al., 2010). The
CaMKII mechanism has been profusely studied in theoretical
models (Lisman, 1989, 1994; Lisman et al., 2002; Graupner and
Brunel, 2007), showing that it is well suited to induce multi-
stability states. However, these models did not incorporate the
slow LTP downregulation necessary to produce the BCM sliding
threshold. Following Wang et al. (2005), LTD could be mediated
through calmodulin-dependent activation of calcineurin after
calcium influx trough L-type channels. We made here the additional
assumption regarding the increased availability of calmodulin for
LTD when priming stimulations elicit LTP downregulation. More-
over, in this biological interpretation, local competition could result
from the spatial spread of the autophosphorylated state of CaMKII
among nearby synapses. These critical assumptions can be tested
experimentally to directly verify the implication of these predicted
molecular mechanisms.

There is ample biological evidence for synaptic consolidation
processes that are distinct from the plasticity induction process
itself and possibly involve mechanisms that have not been con-
sidered here (for review, see McGaugh, 2000; Dudai, 2004). For
instance, protein synthesis inhibition has been shown to interfere
with LTP (Gold, 2008) and is necessary for reconsolidation of old
memories (Tronson and Taylor, 2007). However, the time con-
stants to which we refer here (a few tens of seconds to minutes)
are typically one or two orders of magnitude below those implied
in distributed spacing of learning episodes, which justifies the
limited scope of our biophysical metaplasticity scenario.

Finally, a possible extension of the model is that the dynamics
of plasticity thresholds could be used in the context of reinforce-
ment learning. There is biological evidence in both vertebrates
and invertebrates that STDP is modulated by neuromodulators
(Seol et al., 2007; Pawlak and Kerr, 2008; Shen et al., 2008; Zhang
et al., 2009; Pawlak et al., 2010; S. Cassenaer, and G. Laurent,
personal communication), which are known to be key factors in
memory retention (Kasamatsu and Pettigrew, 1976; Romo and
Schultz, 1990). Models using STDP modulated by biofeedback
signals can reproduce reward-based paradigms (Legenstein et al.,
2008), and, as Gu and Yan (2004) showed, the activation of do-
pamine D4 receptors in prefrontal cortex exerts a complex regu-
lation of CaMKII. This mSTDP model could be modified to
include a regulation of the internal thresholds by reward-based
signals, thus creating temporal windows during which the syn-
apses could be modified and sensitive to STDP.
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