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Micro-Positron Emission Tomography Imaging of Rat Brain
Metabolism during Expression of Contextual Conditioning
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Using '®F-fluorodeoxygluose microPET imaging, we investigated the neurocircuitry of contextual anxiety versus control in awake,
conditioned rats (n = 7-10 per group). In addition, we imaged a group expressing cued fear. Simultaneous measurements of startle
amplitude and freezing time were used to assess conditioning. To the best of our knowledge, no neuroimaging studies in conditioned rats
have been conducted thus far, although visualizing and quantifying the metabolism of the intact brain in behaving animals is clearly of
interest. In addition, more insight into the neurocircuitry involved in contextual anxiety may stimulate the development of new treat-
ments for anxiety disorders. Our main finding was hypermetabolism in a cluster comprising the bed nucleus of the stria terminalis (BST)
in rats expressing contextual anxiety compared with controls. Analysis of a subset of rats showing the best behavioral results (n = 5 per
subgroup) confirmed this finding. We also observed hypermetabolism in the same cluster in rats expressing contextual anxiety compared
with rats expressing cued fear. Our results provide novel evidence for a role of the BST in the expression of contextual anxiety.

Introduction

Cued fear conditioning is obtained by repeatedly pairing an ex-
plicit cue with a shock and is regarded as a model of stimulus-
bound fear. Conversely, unpredictable (i.e., unsignaled) shocks
produce long-term anxiety-like symptoms in the experimental
context in which the shocks were previously administered. This
learned response to the experimental environment is referred to
as contextual conditioning and is thought to model the diffuse,
generalized distress that characterizes anxiety (Davis, 1998; Fan-
selow, 2000; Grillon et al., 2006). To date, less is known about
contextual conditioning than about cued fear conditioning,
which has been studied for almost 100 years (Watson and Rayner,
1920; Pavlov and Anrep, 1927). However, interest is growing, in
part because contextual conditioning in rats serves as an animal
model for human pathological anxiety such as in generalized
anxiety disorder (Grillon et al., 2006; Zanoveli et al., 2007; Luyten
etal., 2011b). So far, the neurocircuitry of conditioning has been
studied primarily through lesion or inactivation experiments in
rodents (often pretraining interventions) (Kim and Jung, 2006;
Walker et al., 2009) and, to a lesser degree, using autoradiography
or histochemistry techniques (Gonzalez-Lima and Scheich, 1986;
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Beck and Fibiger, 1995; Poremba et al., 1998; Plakke et al., 2009).
To our knowledge, there are no published neuroimaging studies
of conditioned rats, despite the obvious advantages of visualizing
and quantifying metabolism of the intact brain in behaving
animals.

In this study, we performed '*F-fluorodeoxyglucose (FDG)
microPET and MR imaging to study the regional brain metabo-
lism in three groups (ANX, FEAR, and CTRL). ANX rats experi-
enced unpredictable shocks, which were intended to produce
contextual anxiety. FEAR rats received shocks signaled by a 10 s
tone, to produce cued fear, and CTRL rats received equivalent
context and tone exposure but no shocks. Contextual anxiety and
cued fear were indexed by freezing and startle amplitude (Grillon,
2002; Luyten et al., 2011a). Immediately before the start of the
23 min behavioral test session, which was identical for all rats,
'$F-fluorodeoxyglucose was injected to ensure maximal tracer
uptake during the expression of contextual anxiety or cued
fear. MicroPET acquisitions were performed 1 h after injec-
tion during 30 min.

We were primarily interested in the comparison between
ANX and CTRL rats, to gain more insight into the neurocir-
cuitry of contextual conditioning and because of the potential
relevance of these findings to anxiety disorders (Luyten et al.,
2011b). We hope that, in the long run, our results will stimu-
late the development of new treatment options for patients
suffering from anxiety disorders. Ideally, we would like to
develop therapies “to reduce anxiety without preventing the
treated patient from jumping out of the way of an oncoming
car” (Davis etal., 1997). Therefore, we also compared the ANX
with a FEAR group, to see whether we could find any neuro-
biological differences between animals expressing contextual
anxiety and cued fear.
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Figure 1.

Materials and Methods

Subjects

Thirty male Wistar rats (275-320 g on the habituation day) were housed
separately with food and water ad libitum available. They were main-
tained on a 12 h light/dark cycle (lights on at 7:00 A.M. before the start of
the experiment), with a room temperature of =22°C. The experimental
protocol was approved by the animal ethics committee of the Katholieke
Universiteit Leuven, in accordance with the European Communities
Council Directive of 24 November 1986 (86/609/EEC).

Behavioral measurements

Equipment

During the experimental sessions, the rats were placed into a small ani-
mal cage (inner dimensions: 9.4 cm height, 8.2 cm width, and 16.5 cm
length) with a grid floor, fixed on a response platform and located inside
a ventilated sound-attenuating chamber (MED Associates). The grid
floor consisted of six 5-mm-diameter stainless-steel bars spaced 10 mm
apart, through which footshocks could be delivered (MED Associates). A
red light bulb (3.8 W) was continuously on. The freezing behavior of the
animals was recorded by a video camera (DCR-SR55E Super NightShot
Plus; Sony) positioned in front of the rat holder. In addition, the startle
reaction of the rats generated a pressure on the response platform and
analog signals were amplified, digitized, and processed by software (Star-
tle Reflex, version 5.95; MED Associates). The presentation and sequenc-
ing of the acoustic stimuli and footshocks were controlled by the same
software. One of two loudspeakers, both located 7 cm behind the rat
holder, was used to deliver a continuous white background noise (55 dB);
the other speaker delivered the startle (white noise, 100 dB, 50 ms) and
tone stimuli (4000 Hz, 75 dB, 10 s, 5 ms rise/fall). The amplitude of the
startle response was defined as the first peak accelerometer voltage that
occurred during the first 100 ms after onset of the startle probe and was
measured on an arbitrary scale ranging from 0 to 2047. The startle plat-
form and loudspeakers were calibrated before the experiment.

Procedure
There were four experimental sessions separated by 24 h intervals: habit-
uation, pretest, training, and posttest (Fig. 1 shows a schematic over-
view). Between the sessions, the animals returned to their home cages.
Habituation. On the first day, all animals were placed in the cage, and
after 5 min of acclimation, they received 30 startle stimuli at a fixed
interstimulus interval (ISI) of 30 s. This habituation session was 20 min
in duration and intended to habituate and stabilize the startle response
(Zhao and Davis, 2004). These data were not included in further analyses.

Experimental design.

Pretest. On the second day, a 23 min pretest was conducted to obtain
behavioral baseline measurements. The animals were placed into the
cage and, after 5 min of acclimation, were presented with 30 startle stim-
uli at a 30 s ISI. One-half of the startle stimuli were presented in the
presence of a 10 s tone (i.e., 15 tone—noise trials) and the other half were
presented in the absence of a tone (i.e., 15 noise-alone trials). On tone—
noise trials, the startle and tone stimuli coterminated. The order of trial
types was counterbalanced and randomized with the rule that no more
than two trials of the same type occurred in a row. Based upon their mean
startle amplitude across 15 noise-alone trials, the rats were matched into
three equivalent groups (ANX, FEAR, and CTRL). A second behavioral
measure assessed the time rats spent freezing during the acclimation
period of 5 min (contextual anxiety) and during the 10 s preceding each
startle stimulus (on noise-alone trials: measure of contextual anxiety; on
tone—noise trials: measure of cued fear during the tone) as analyzed from
videotapes by a blinded observer (Luyten et al., 2011a).

Training. On the third day, the rats were conditioned. The animals
were placed in the box and, after 5 min of acclimation, the ANX and
FEAR rats received 10 footshocks and 10 tones. The animals of the CTRL
group received 10 tones, but no shocks. Each animal was removed 4 min
after the last tone and returned to its home cage. The training session
lasted 30 min.

The rats in the ANX group (contextual conditioning) received explic-
itly unpaired presentations of the shocks (0.8 mA; 250 ms) and the tones,
with a variable ISI of 50—70 s. The rats in the FEAR group (cued fear
conditioning) received explicit pairings of the shocks (0.4 mA; 500 ms)
and tones, with a variable ISI of 100—140 s. In this group, the shocks and
10 s tones coterminated. The rats of the CTRL group (no conditioning)
received 10 tones, with a variable ISI of 100-140 s.

Based on preliminary data, we chose shock parameters that maxi-
mized contextual (ANX) and cued fear (FEAR) conditioning and
produced a clear behavioral distinction between ANX, FEAR, and
CTRL groups.

Posttest. Immediately before the start of this session, the radioactive
tracer ('®F-fluorodeoxyglucose) was injected. Next, the animals were
tested for expression of contextual anxiety or cued fear. As an addi-
tional measure, the exploratory behavior of the rats during the accli-
mation phase was timed. The posttest was conducted in the absence of
footshocks in the same manner as the pretest. At the end of the post-
test session, the rat was placed back in its home cage, transported to
the adjacent scanner room, and anesthetized with isoflurane. Thirty
minutes later, the microPET scan started. After the scan, the rats again
received food. On the next day, structural MR images were made.
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Table 1. Inclusion criteria for subset
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Additional remarks. Individual light/dark cycles with food depriva-
tion and saline injections before the sessions were added to the pro-
tocol to habituate the rat to tracer injection and fasting on the posttest
day (Fig. 1).

Each rat was maintained on an individual 12 h light/dark cycle (lights
on at 8:40, 9:20, 10:00, 10:40, 11:20 A.M., or 12:00 P.M.; the study was
performed in five subsequent series of six rats each), starting 3 d before
the habituation session. Three days should suffice to adapt to this new
light/dark cycle (Fillenz and O’Neill, 1986; Miki and Sudo, 1996).

On the experimental days, food was removed at the beginning of the
light period. Four hours later, an intraperitoneal injection (0.5 ml of
saline on habituation, pretest, and training days and radioactive tracer on
posttest day) was given, and a few minutes later, the experimental session
started. After the session, food was returned. The fasting period preced-
ing tracer injection ensured that the injected '*F-fluorodeoxyglucose did
not have to compete with high levels of normal blood glucose (Bailey,
2005; Casteels et al., 2006). For conditioning experiments, overnight fasting
is not desirable because it may affect expression of contextual anxiety (L.
Luyten, D. Vansteenwegen, K. van Kuyck, B. Nuttin, unpublished results).
Therefore, in our protocol, food deprivation was limited to the first 4.5 h of
the light phase, a period that was chosen to minimize the behavioral effects of
fasting, since rats only consume ~15% of their daily food intake during the
light phase (Tempel et al., 1989; Lecklin et al., 1998).

Subset selection

Five rats were excluded from all analyses because of outlying startle am-
plitudes on noise-alone trials during the pretest (one rat), hematuria and
allodynia (one rat), or technical problems with the image acquisition
(three rats). This left 7 subjects in the CRTL group, 10 subjects in the
ANX group, and 8 subjects in the FEAR group.

Because of considerable behavioral variability within these groups, we
selected the best responders for additional behavioral and imaging anal-
yses. When setting up the inclusion criteria for this subset (Table 1), we
were blind to the individual microPET data.

We excluded all rats that displayed >25% freezing during the acclima-
tion phase of the pretest. We allowed some freezing because of possible
aftereffects of the preceding saline injection, handling of the rat, and/or
introduction into a rather unfamiliar environment.

Inclusion criteria for the CTRL group were as follows: no increase in
percentage freezing during acclimation from pretest to posttest, no in-
crease in percentage freezing before probes from pretest to posttest on
noise-alone as well as tone—noise trials, and no considerable increase in
startle amplitude from pretest to posttest on noise-alone as well as tone—
noise trials. In our startle protocol, the cutoff value for startle amplitude
was 50 (arbitrary scale) (i.e., startle amplitudes <50 were considered to
be “noise” generated by small nonstartle movements of the rat and were
therefore set at 0). Hence, differences of 50 and smaller are considered to
be negligible.

Inclusion criteria for the ANX group were as follows: a minimum
increase of 10% in percentage freezing during acclimation from pretest
to posttest, a minimum increase of 10% in percentage freezing before
noise-alone trials from pretest to posttest, and a minimum increase of 50
in startle amplitude from pretest to posttest on noise-alone trials.

Inclusion criteria for the FEAR group were as follows: a maximum
increase of 25% in percentage freezing during acclimation from pretest
to posttest. We allowed some background contextual freezing in the
FEAR group because cued fear conditioning has been shown to produce
some conditioned responses to the context. The subjects also had to
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demonstrate a minimum increase of 10% in percentage freezing during
tone—noise trials from pretest to posttest and a minimum increase of 50
in startle amplitude from pretest to posttest on tone—noise trials.

After applying these selection criteria, we obtained a subset with five
rats in each subgroup. This is a relatively small group size, but not un-
common for small-animal PET imaging studies (Barbarich-Marsteller et
al., 2005; Higuera-Matas et al., 2008; Soto-Montenegro et al., 2009; Shih
etal., 2011).

Statistical analyses

Difference scores (posttest minus pretest) of startle response amplitudes
(averaged for each animal across the entire session) on noise-alone trials
and tone-noise trials (“Startle amplitude — Difference post—pre”), per-
centage freezing during acclimation (“Percentage Freezing during accli-
mation — Difference post—pre”), and percentage freezing during the 10 s
period before the startle probes on noise-alone and tone-noise trials
(“Percentage freezing before probes — Difference post—pre”) are pre-
sented as means * SD (GraphPad Prism, version 4.03; GraphPad Soft-
ware). Statistical analyses were used to assess conditioning in the
different groups (Statistica 9; StatSoft).

Using an unpaired t test, we compared “Percentage freezing during
acclimation — Difference post—pre” in the ANX and CTRL groups. Two-
way ANOVAs were conducted on both “Startle amplitude — Difference
post—pre” and “Percentage freezing before probes — Difference post—
pre” with Group (ANX and CTRL) and Trial type (noise-alone and tone—
noise) as factors. Tukey’s post hoc tests were performed and only relevant
differences (i.e., comparisons within groups, within sessions, and/or
within trial types) are listed in the text or indicated on figures. A Mann—
Whitney U test was conducted on “Exploring during acclimation on
posttest (in seconds)” to compare the ANX and CTRL groups. Signifi-
cance levels were set at p < 0.05.

Next, we restricted the analysis to a subset, including the rats with an
optimal behavioral response (see above, Subset selection). A one-way
ANOVA was conducted on “Percentage Freezing during acclimation —
Difference post—pre” with Subgroup (CTRL, ANX, and FEAR) as factor.
Two-way ANOVAs were conducted on both “Startle amplitude — Dif-
ference post—pre” and “Percentage freezing before probes — Difference
post—pre” with Subgroup (CTRL, ANX, and FEAR) and Trial type
(noise-alone and tone—noise) as factors. Tukey’s post hoc tests or planned
comparisons (with Bonferroni’s correction for multiple testing) were
performed and only relevant differences (i.e., comparisons within sub-
groups, within sessions, and/or within trial types) are listed in the text or
indicated on figures. A Kruskal-Wallis test with multiple comparisons
was conducted on “Exploring during acclimation on posttest (in sec-
onds)” to compare the three subgroups (CTRL, ANX, and FEAR). Sig-
nificance levels were set at p < 0.05.

Functional and structural imaging

Radiotracer synthesis

Brain glucose metabolism was assessed using FDG. FDG was prepared
with an Ion Beam Applications FDG synthesis module. Approximately
18 MBq (500 uCi; specific activity range, 100-760 GBq/umol) of the
radioligand was injected intraperitoneally. The tracer was administered
in a sterile solution (injection volume, 500 wl) of 5 mm sodium acetate
buffer, pH 5.5, containing 6% of ethanol (Casteels et al., 2006).

Data acquisition

Small-animal PET imaging was performed using a lutetium oxyorthosili-
cate detector-based tomograph (microPET Focus 220; Siemens Medical
Solutions), which has a transaxial resolution of 1.4 mm in full width at
half-maximum. Data were acquired in a 128 X 128 X 95 matrix with a
pixel width of 0.475 mm and a slice thickness of 0.796 mm. The coinci-
dence window width was set at 6 ns with an energy window of 350—650
keV. Before imaging, the rats were anesthetized with 2.5% isoflurane in
2.0 L/min oxygen. FDG measurements were obtained during 30 min
starting 1 h after injection. The acquisition timing rationale and kinetics
of the radioligand in rats have been described previously (Casteels et al.,
2006). Sinograms were reconstructed using filtered backprojection. No
corrections were made for attenuation or scatter.



Luyten et al. @ PET Neuroimaging of Contextual Anxiety in Rats

MR images were acquired under isoflurane anesthesia with a small-
animal MR scanner operating at 9.4 tesla (horizontal bore, 20 cm bore
size) (BioSpec 94/20 USR; Bruker) using a T2-weighted turboRARE
sequence and a 256 X 128 X 256 matrix with an isotropic pixel size of
0.137 mm.

Statistical analyses

Relative regional glucose metabolism was determined by count normal-
izing FDG data to the whole-brain uptake. The within-subject test-retest
variability of our imaging procedure is of comparable magnitude to hu-
man data (i.e., <5%) (Casteels et al., 2006).

To optimally use all available image information without a priori
knowledge, images were analyzed on a voxel-by-voxel basis using SPM2
(statistical parametric mapping). For spatial normalization, individual
microPET and MR data were linearly normalized to custom-made rat
brain templates in Paxinos stereotactic space. The procedure of spatial
normalization of microPET and MR images and its validation have been
described previously (Casteels et al., 2006). This methodology allows
reporting results in coordinates directly corresponding to the Paxinos
coordinate system for the rat brain (Paxinos and Watson, 2005).

SPM analysis was performed using a categorical subject design (groups:
CTRL vs ANX vs FEAR) on the FDG data. Spatially normalized images were
masked to remove extracerebral signal that would disrupt the global normal-
ization. All images were smoothed with an isotropic Gaussian kernel of 1.2
mm. FDG data were proportionally scaled with an analysis threshold of 80%
to exclude white matter and ventricular activity.

To minimize false-positive findings, T-map data were interrogated ata
peak level of p < 0.005 (uncorrected) and extent threshold k; > 200
voxels (1.6 mm?), as described previously (van Kuyck et al., 2007; Goffin
et al., 2009). Only those clusters that were significant at the p < 0.05
(corrected) level or that were both neurobiologically plausible and rele-
vant in the light of other findings in this study were considered. Micro-
PET figures show the mean MR image (used for additional localization of
the clusters) of all rats with an overlay of the functional microPET image.

In addition, a voxel-based correlation analysis was performed between
relative FDG data and two covariates: freezing during acclimation on
posttest (in seconds) and exploration time during acclimation on post-
test (in seconds). As differences in behavioral measures were highly sig-
nificant between groups, combining groups for correlation analysis on
these measures would only reflect group differences. We therefore per-
formed correlation analyses separately for the ANX group.

Results

Rats expressing contextual anxiety versus controls
Comparison of ANX and CTRL groups: behavioral data

The ¢ test conducted on startle amplitude (noise-alone trials)
during pretest showed no differences between the ANX (n = 10)
and CTRL (n = 7) groups (t;5) = 0.23; p = 0.82), indicating that
matching was effective.

The ¢ test conducted on percentage freezing during acclima-
tion (post—pre) showed significantly more contextual freezing in
the ANX group than in the CTRL group (¢,5) = 4.14; p < 0.001)
(Fig. 2a). In addition, the ANOVA conducted on startle ampli-
tude (post—pre) showed a main effect of Group (F, ;5 = 13.75;
p < 0.01). Tukey’s post hoc tests (Fig. 2b) showed significantly
more startle potentiation in the ANX group compared with the
CTRL group on both noise-alone (p = 0.03) and tone—noise
trials (p < 0.01). There was no difference between startle poten-
tiation on noise-alone and tone-noise trials within the ANX
group (p = 0.40), suggesting that the ANX rats regarded the
tones as part of the context and not as a specific fear-eliciting cue.

Finally, the ANOVA conducted on percentage freezing before
probes (post—pre) showed a main effect of Group (F, ;5) = 50.55;
p < 0.0001). Tukey’s post hoc tests (Fig. 2¢) showed significantly
more freezing before both noise-alone (p < 0.001) and tone—
noise trials (p < 0.001) in the ANX group relative to the CTRL
rats. In accordance with the startle data, there was no difference
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Figure2.  Effects of conditioning on percentage freezing during acclimation (a), startle am-
plitude (b), and percentage freezing during 10 s before startle probes (c). Difference scores of
posttest minus pretest are shown (means == SD) for ANX (n = 10) and CTRL (n = 7) groups.
*Significantly higher than CTRL (¢ test). *Significantly higher than CTRL noise-alone. *Signifi-
cantly higher than CTRL tone—noise (ANOVA with Tukey's post hoc tests, p << 0.05).

between freezing to the tone and context within the ANX group
(p=0.89). We can conclude that there was significant expression
of contextual anxiety in the ANX group and no sign of fear or
anxiety in the CTRL group.

Comparison of ANX and CTRL groups: imaging data
Relative glucose metabolism was compared between ANX and CTRL
groups (Table 2), and we found a higher metabolism in the ANX group
in a cluster comprising the left bed nucleus of the stria terminalis (BST),
left nucleus accumbens, septal nucleus, and preoptic area. The ANX
group also showed a higher metabolism in a cluster covering cingulate
area 1 and 2, and in a cluster covering the dorsolateral part of the right
entorhinal cortex.

Comparison with the CTRL group showed a lower metabo-
lism in the ANX group in clusters comprising the amygdala
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Table 2. Brain regions showing glucose metabolism differences when comparing ANX (n = 10) and CTRL (n = 7) groups and correlations between glucose metabolism and

behavioral measures
Cluster level Voxel level Coordinates of peak voxel
Peorr ke T Puncorr X y z Cluster comprising
ANX > (TRL
0.238 835 41 <0.001 0.0 0.6 —7.8 L bed nucleus of the stria terminalis (medial division, anterior and ventral part), L nucleus
accumbens (core and shell), medial septal nucleus and medial and lateral preoptic area
0.536 498 3.59 0.001 —0.2 0.0 —22 Cingulate area 1and 2
0.871 238 3.49 0.001 7.0 —7.2 —74 R entorhinal cortex (dorsolateral part)
ANX < (TRL
0.002 3199 5.17 <0.001 5.0 —1.0 —9.2 R amygdala (basolateral, basomedial, and lateral nuclei), R piriform cortex and R endopiriform
nucleus, R primary somatosensory cortex (mainly barrel field and upper lip region)
0.101 1185 3.89 <<0.001 —46 —-1.6 —94 L amygdala (basolateral, basomedial, and lateral nuclei), L piriform cortex and L endopiriform
nucleus
0.036 1629 4.86 <0.001 —438 —6.8 —4.0 L primary somatosensory cortex (mainly barrel field and upper lip region) and L hippocampus
(field CATand CA2)
0.038 1603 4.60 <0.001 0.6 —92 —6.8 (Latero)dorsal tegmental nucleus, dorsal raphe nucleus (caudal part), and central gray

Positive correlation with exploring during acclimation on posttest in the ANX group

<<0.001 2195 7.81 <€0.001 —50 —06 —50

L primary somatosensory cortex (upper lip region)

The x-coordinate corresponds to the distance (in millimeters) lateral to midline (right s positive), the y-coordinate indicates the position relative to bregma (anterior is positive), and the z-coordinate denotes the dorsoventral position. p, ,
cluster-corrected p value; ke, cluster extent (voxels); T, peak voxel t statistic; p,, o, , uncorrected height p value. All (de)activated brain regions are bilateral, unless stated otherwise (L, left; R, right).

(basolateral, basomedial, and lateral nuclei), piriform cortex,
endopiriform nucleus, primary somatosensory cortex, a small
portion of the left hippocampus and in a cluster comprising
the (latero)dorsal tegmental nucleus, dorsal raphe nucleus,
and central gray. An additional behavioral measure (explora-
tion time during acclimation on posttest) was performed be-
cause of the metabolic changes in the somatosensory cortex.
Analysis showed significantly less exploratory behavior for
ANX than CTRL rats (Mann—Whitney U test, p < 0.001). In
the ANX group, a significant positive correlation was found
between the brain metabolism in the left primary somatosen-
sory cortex and the time of exploration during the acclimation
phase of the posttest.

Rats expressing contextual anxiety versus controls and versus
rats expressing cued fear: a subset analysis
Inspection of the individual behavioral data showed considerable
variability within each group. Therefore, we selected the best re-
sponders for additional behavioral and imaging analyses (n = 5
per subgroup), with the intention of removing “noise” from the
imaging data coming from rats that did not display the desired
behavioral effects. Importantly, when setting up the inclusion
criteria for the subset, we were blind to the individual microPET
data.

Furthermore, as already mentioned, we were also interested in
the comparison of the ANX with FEAR rats because this may be
clinically relevant.

Comparison of ANX, FEAR, and CTRL subgroups:

behavioral data

The ANOVA conducted on startle amplitude (noise-alone trials)
during pretest showed no differences between the three sub-
groups (F(, 1,y = 0.26; p = 0.78), indicating that matching was
effective.

The ANOVA conducted on percentage freezing during accli-
mation (post—pre) showed a main effect of Subgroup (F, ;,, =
10.27; p < 0.01). Tukey’s post hoc tests (Fig. 3a) showed signifi-
cantly more contextual freezing in the ANX subgroup than in
both CTRL (p < 0.01) and FEAR (p = 0.01) subgroups.

In addition, the ANOVA conducted on startle amplitude
(post—pre) showed a main effect of Subgroup (F, 1,y = 9.83; p <
0.01). Tukey’s post hoc tests (Fig. 3b) showed significantly more

100+

1
50 L

[ Y
*

Difference post-pre
o

% Freezing during
acclimation

50l CTRL ANX FEAR

600+
500+
4004
3004
200+
100+

w] T

-200
-300-

© w

Startle amplitude T
Difference post-pre

CTRL ANX

[42]

o
]
w

N
T

Difference post-pre
8 o

CTRL ANX FEAR

% Freezing before probes ©

-50-

Jnoise-alone
PZAtone-noise

Figure3.  Effects of conditioning on percentage freezing during acclimation (a), startle am-
plitude (b), and percentage freezing during 10 s before startle probes (c). Difference scores of
posttest minus pretest of subgroups are shown (means == SD) (n = 5 per subgroup). *Signif-
icantly higher than CTRL and FEAR. *Significantly higher than CTRL noise-alone. 3Signiﬁcan'(ly
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Table 3. Brain regions showing glucose metabolism differences when comparing CTRL, ANX, and FEAR subgroups (n = 5 per subgroup) and correlations between glucose

metabolism and behavioral measures

Cluster level Voxel level Coordinates of peak voxel
Peorr ke T Puncorr X y z Cluster comprising
ANX > (TRL
0.001 2270 6.10  <0.001 0.0 —7.4  Bed nucleus of the stria terminalis (mainly medial and lateral division), nucleus
accumbens (core and shell), medial and lateral septal nucleus, and medial
and lateral preoptic area
ANX << CTRL
<0.001 3055 8.97 <0.001 —5.0 —34 —4.0  Lprimary somatosensory cortex (barrel field, upper lip, forelimb and hindlimb,
shoulder and trunk regions) and L hippocampus (field CA1 and CA2)
<0.001 4382 7.86  <<0.001 50 —34  —42  Rprimary somatosensory cortex (barrel field, upper lip, forelimb and hindlimb,
shoulder and trunk regions)
ANX > FEAR
0.301 571 475  <0.001 —20 —10  —86  Bednucleus of the stria terminalis (mainly medial and lateral division), nucleus
accumbens (core and shell), medial and lateral septal nucleus, and medial
and lateral preoptic area
ANX << FEAR
0.659 338 422 0.001 36 —08  —26  Rprimary somatosensory cortex (mainly forelimb, shoulder, and trunk regions)

Negative correlation with freezing during acclimation on posttest in the ANX subgroup

<<0.001 N 35.87 <<0.001 5.8
Positive correlation with exploring during acclimation on posttest in the ANX subgroup
<<0.001 265 34.09 <0.001 —6.0 —14

—3.4  Rprimary somatosensory cortex (mainly upper lip region)

—3.6  Lprimary somatosensory cortex (mainly barrel field, upper lip, and forelimb
regions)

The x-coordinate corresponds to the distance (in millimeters) lateral to midline (right is positive), the y-coordinate indicates the position relative to bregma (anterior is positive), and the z-coordinate denotes the dorsoventral position. p.,, ,
cluster-corrected p value; kg, cluster extent (voxels); T, peak voxel ¢ statistic; p,corr , Uncorrected height p value. All (de)activated brain regions are bilateral, unless stated otherwise (L, left; R, right).

startle potentiation in the ANX subgroup compared with the
CTRL subgroup on both noise-alone (p = 0.01) and tone—noise
trials (p = 0.01). However, there was no difference between star-
tle potentiation on noise-alone and tone—noise trials within the
ANX subgroup (p > 0.99). The FEAR subgroup showed signifi-
cantly more startle potentiation on tone—noise trials than the
CTRL subgroup (p = 0.03). Planned comparisons corrected for
multiple testing showed significantly more startle potentiation in
the FEAR subgroup on tone—noise than on noise-alone trials
(p=0.01).

Finally, the ANOVA conducted on percentage freezing before
probes (post—pre) showed a main effect of Subgroup (F, ;,, =
31.62; p < 0.0001) and a significant Subgroup by Trial type in-
teraction (F, |,y = 4.49; p = 0.04). Tukey’s post hoc tests (Fig. 3c)
showed significantly more freezing before noise-alone (p <
0.001) and tone—noise trials (p = 0.001) when comparing ANX
with CTRL rats. In accordance with the startle data, there was no
difference in freezing to the tone or context within the ANX
subgroup (p = 0.95). Rats in the FEAR subgroup showed more
freezing before tone—noise trials than the CTRL subgroup (p <
0.001). Planned comparisons corrected for multiple testing
showed significantly more freezing in the FEAR subgroup before
tone—noise trials than before noise-alone trials (p < 0.01).

Together, contextual conditioning was very low in the FEAR
subgroup, while cued fear conditioning was high. However, there
was no cued fear conditioning in the ANX subgroup, while con-
textual conditioning was high. We can conclude that there was
significant expression of contextual conditioning in the ANX
subgroup and cued fear conditioning in the FEAR subgroup, as
evidenced by freezing and startle measurements.

Comparison of ANX and CTRL subgroups: imaging data

Relative glucose metabolism was compared between the ANX and
CTRL subgroups (Table 3, Fig. 4), and the findings are in line with our
observations in the full dataset. Comparison with the CTRL subgroup
showed a higher metabolism in the ANX subgroup in a cluster compris-
ing the bilateral bed nucleus of the stria terminalis, nucleus accumbens,

septal nucleus, and preoptic area (Fig. 4a). Comparison with the CTRL
subgroup showed alower metabolism in the ANX subgroup in bilateral
clusters comprising large parts of the primary somatosensory cortex and
small portions of the hippocampus (Fig. 4¢). In the ANX subgroup, a
significant negative correlation was observed between freezing (during
acclimation on posttest) and brain metabolism in the right primary
somatosensory cortex. Additional behavioral analyses showed signifi-
cantly less exploratory behavior for ANX than CTRL rats (Kruskal-
Wallis, H, = 9.6, p < 0.01, multiple comparisons, p < 0.05). A
significant positive correlation was observed between exploration time
(during acclimation on posttest) and brain metabolism in the left pri-
mary somatosensory cortex.

Comparison of ANX and FEAR subgroups: imaging data

Relative glucose metabolism was compared between the ANX
and FEAR subgroups (Table 3, Fig. 4). Interestingly, a compari-
son of the ANX and FEAR subgroups showed a hypermetabolic
cluster comprising the bilateral bed nucleus of the stria termina-
lis, nucleus accumbens, septal nucleus, and preoptic area in the
ANX rats (Fig. 4b). Although this cluster was smaller than the
hypermetabolic cluster that was found when comparing ANX
and CTRL subgroups (577 and 2270 voxels, respectively), the
location was comparable and the brain nuclei covered by the
cluster were the same.

In addition, comparison with the FEAR subgroup showed
hypometabolism in the ANX rats in a cluster covering the right
primary somatosensory cortex.

Finally, we did not find any hypermetabolic clusters when
comparing FEAR and CTRL subgroups, but we did find two hy-
pometabolic clusters covering parts of the primary somatosen-
sory cortex and small portions of the left hippocampus.

Discussion

The present study investigated the neurocircuitry involved in ex-
pression of contextual anxiety (ANX) versus control (CTRL) in
awake rats using metabolic microPET imaging and simultaneous
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ANX > CTRL

Figure 4. Mean coronal MR images of the brain showing functional microPET overlays
of the clusters comprising the bed nucleus of the stria terminalis (a, b) and of the cluster
covering the somatosensory cortex (). Relative brain metabolism is increased (red) or decreased (blue)
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startle and freezing measurements. We also imaged a group ex-
pressing cued fear (FEAR).

Our main finding was hypermetabolism in a cluster compris-
ing the BST in rats expressing contextual anxiety compared with
controls. Analysis of a subset of rats with the best behavioral
results confirmed this finding and furthermore showed hyper-
metabolism in the same cluster when comparing rats expressing
contextual anxiety with those expressing cued fear.

A comparison of the ANX and CTRL groups showed several
hypermetabolic and hypometabolic clusters.

In addition to the BST-containing cluster, which is dis-
cussed in detail below, there were also hypermetabolic clusters
covering the cingulate area and parts of the right entorhinal
cortex, which is consistent with previous studies that implicate
the cingulate cortex in contextual conditioning (Beck and
Fibiger, 1995; Pietersen et al., 2006; Skorzewska et al., 2006).
In addition, the anterior cingulate cortex has been implicated
in anticipatory anxiety, which may be relevant when expecting
an aversive stimulus (Nitschke et al., 2006). The involvement
of the entorhinal cortex in contextual conditioning is not un-
equivocal (Phillips and LeDoux, 1995; Schenberg et al., 2005;
Majchrzak et al., 2006; Ji and Maren, 2008). Although previ-
ous data and the results from the present microPET study
implicate this brain region in contextual conditioning, its ex-
act contribution is still unclear. Studies incorporating startle
as a behavioral measure may provide further elucidation.

We also observed hypometabolic clusters when comparing
the ANX with CTRL group.

Our findings in the somatosensory cortex, which were confirmed
in the subset analysis, support the hypothesis that increased freezing
and the concomitantly decreased exploratory behavior (as seen in
ANYX, as opposed to the exploring CTRL rats) led to hypometabo-
lism in this part of the cortex, covering areas involved in exploration
(e.g., barrel field) (Filipkowski et al., 2000). Although this cluster also
comprised small portions of the left hippocampus, we assume that
this is caused by a partial volume effect, resulting in blurring of the
image due to limited spatial resolution. The correlations of be-
havior (exploration and freezing time) with hypometabolism in
the somatosensory cortex, but not in the hippocampus, support
this assumption.

Other hypometabolic clusters comprised the basolateral
amygdala complex (BLA) (lateral, basolateral, and basomedial nu-
clei of the amygdala). Through an extensive series of studies, LeDoux
(2000) and Davis et al. (2010) concluded that this complex plays a
crucial role in contextual and cued fear conditioning. Surprisingly,
our microPET study showed that the BLA was hypometabolic in rats
expressing contextual anxiety, while we were expecting an activation
of this area. One possible explanation for this apparent discrepancy
might be that the extensive inhibitory network of GABAergic in-
terneurons in the BLA was deactivated (and thus hypometabolic) in
the ANX rats, thereby causing an overall activation of the pyramidal
projection neurons of the BLA (McDonald, 1985; Washburn and
Moises, 1992; Duvarci et al., 2011). Electrophysiological recording
studies in the central amygdala (another mainly GABAergic part of
the amygdala) addressed this matter but yielded opposite findings

<«

when comparing a subset of the ANX, FEAR, and CTRL groups (n = 5 per subgroup) (comparison
is stated on figure). Clusters are shown using a T statistic color scale, which corresponds to the
level of significance at the voxel level. The distance (in millimeters) relative to bregma of each
section is indicated (positive values for sections anterior to bregma), as well as a sagittal view of
the rat brain with depiction of the coronal slice location. Images are displayed in neurological
convention, with the left side corresponding to the left hemisphere.
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including increased or decreased neuronal responses to a condi-
tioned stimulus (Pascoe and Kapp, 1985; Ciocchi et al., 2010; Du-
varci et al., 2011). Although some recording studies have been
conducted in the BLA (Garcia et al., 1998; Tang et al., 2001), dedi-
cated electrophysiological experiments should further elucidate the
present findings showing a hypometabolic BLA. These future studies
should take into account the presence of different cell types and focus
on contextual conditioning since prior studies predominantly looked at
cued fear conditioning. Additionally, they should make a clear distinc-
tion between neuronal activity during the different phases of the condi-
tioning experiment (e.g., acquisition vs expression).

With the restriction of the analysis to a subset, we aimed to re-
move “noise” from the imaging data originating from rats that did
not display the expected behavioral effects. It appears that this was a
useful strategy. The previously found clusters covering the cingulate
area, entorhinal cortex, and basolateral amygdala did not surface in
the subset analysis. However, the other findings (the BST and so-
matosensory cortex clusters) were consistent with our observations
in the full dataset. For instance, when comparing the ANX with
CTRL subgroup, there was a hypermetabolic cluster covering the
BST, nucleus accumbens, septal nucleus, and preoptic area. More-
over, when comparing the ANX with FEAR subgroup, we found a
very similar hypermetabolic cluster. Together, this hypermetabolic
BST-containing cluster seems to be a recurring observation in our
study.

Note that comparison of the ANX and FEAR subgroups may
have some limitations. As explained in the Introduction, we were
interested in this comparison because it may be clinically relevant.
Although we aimed to minimize the differences between the ANX
and FEAR groups (except, of course, for the tone—shock association
during training), this comparison inevitably has some limitations. In
particular, because of practical issues, the ANX and FEAR rats were
trained with different shock parameters and one may argue that they
experienced different “exposure” times during the posttest (+23
min exposure to the conditioned context in the ANX group and 15
times 10 s exposure to the conditioned tone in the FEAR group).
Nevertheless, using the present parameters, the only major differ-
ence between the ANX and FEAR groups during the training session
was the association between shocks and tones: explicitly unpaired in
the ANX group and explicitly paired in the FEAR group. Other as-
pects of the experimental design, such as number of tones and
shocks, interval between shocks, and length of the training session
were identical for both groups. In addition, the posttest, during
which there was uptake of the radioactive tracer in the brain, was
identical for all rats. In summary, the ANX versus FEAR comparison
is still relevant and of interest, but potential limitations should be
kept in mind.

As mentioned above, the hypermetabolic BST-containing
cluster in rats expressing contextual anxiety is the principal ob-
servation of this study. The BST-containing cluster also com-
prised parts of the nucleus accumbens, septal nucleus, and
preoptic area. Both the nucleus accumbens (Westbrook et al.,
1997; Pezze and Feldon, 2004; Martinez et al., 2008) and septal
nucleus (Beck and Fibiger, 1995; Sparks and LeDoux, 1995; Ca-
landreau et al., 2007; Reis et al., 2010) have at times been impli-
cated in contextual conditioning, even though their exact roles
remain unclear. The preoptic area seems to play a role in defen-
sive and anxious behaviors (Briski and Gillen, 2001; McGregor et
al., 2004; Salomé et al., 2004; Schwartz et al., 2008), but we found
no studies providing direct evidence for its involvement in con-
textual conditioning.

However, we believe that the BST, in particular, is the pivotal
brain region in the observed hypermetabolic cluster. The overall
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picture of the neurocircuitry of contextual conditioning is still un-
clear, but several brain regions, including the BST, seem to be in-
volved. As to be expected, we did not observe metabolic changes in
all of these regions. Studies using more animals may provide better
power to detect additional brain areas. Also, our current study fo-
cused on the expression phase, as this is the most relevant phase
regarding anxiety disorders. At present, it is not always clear whether
the brain regions in the proposed neurocircuitries play a role in, for
example, acquisition or expression.

Walker et al. (2003) and Davis et al. (2010) have primarily inves-
tigated the involvement of the amygdala and BST and the anatomical
dissociation between contextual anxiety and cued fear, or as they
prefer to call it, sustained and phasic fear. They state that sensory
information (e.g., coming from a threatening context) enters the
BLA, which projects to the BST and also sends light projections to the
lateral division of the central amygdala, which in turn projects heav-
ily and more slowly to the BST. Finally, the BST projects to various
brain regions involved in the behavioral and autonomic conse-
quences of anxiety [e.g., periaqueductal gray (freezing) and caudal
pontine reticular nucleus (startle potentiation)] (Walker et al.,
2003).

Other groups have focused on the role of the hippocampus in
contextual conditioning. They suggest that the hippocampus pro-
vides input about complex, multimodal stimuli, such as the experi-
mental context in contextual conditioning. This is in line with the
generally acknowledged role of the hippocampus in spatial learning
(Phillips and LeDoux, 1992; Gewirtz et al., 2000). Note that the hip-
pocampus has mainly been implicated in the acquisition of contex-
tual conditioning (Kim and Fanselow, 1992; Phillips and LeDoux,
1992; Anagnostaras et al., 2001; Marschner et al., 2008). This might
explain why we did not observe any distinct metabolic changes in the
hippocampus in the present study investigating the expression
phase.

Finally, researchers are starting to unveil other brain areas that
might be involved. Using FDG-PET in monkeys, it was found that
the orbitofrontal cortex has modulatory inputs into the BST and
may play a role in the adaptive regulation of anxiety responses (Fox
etal., 2010).

Involvement of the BST in anxiety is supported by a growing
body of preclinical evidence (for an overview, see Walker et al., 2009;
Davis etal., 2010). It has been demonstrated that BST lesions disrupt
contextual freezing in a previously shocked context (Onaka and
Yagi, 1998; Nijsen et al., 2001; Sullivan et al., 2004; Resstel et al., 2008;
Zimmerman and Maren, 2011), but not freezing to a conditioned
cue nor fear-potentiated startle following cued fear conditioning
(LeDoux et al., 1988; Walker et al., 2003). Very recently, we found
that posttraining BST lesions completely disrupted the expression of
contextual anxiety, as measured simultaneously with startle ampli-
tude and freezing, in rats after reintroduction in a previously
shocked context (Luyten et al., 2011c¢). The stereotactic coordinates
for the location of the BST lesions were calculated based upon the
present microPET findings. Since the electrolytic lesion was princi-
pally restricted to the BST, these results support our hypothesis that
it is indeed the BST that is hypermetabolic and essential in the pres-
ent study. The resolution of microPET imaging (which is in the
order of magnitude of the size of the BST itself) may be a limitation
of the present study, and the hypermetabolic cluster including the
BST also comprised parts of other brain regions. Strictly speaking,
one could argue that the hypermetabolism in the BST was just a
consequence of the partial volume effect of surrounding hypermeta-
bolic brain regions. However, the results of our lesion study corrob-
orate that the BST plays a key role in the expression of contextual
anxiety.
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Since a few years, imaging studies are beginning to provide
additional support for a role of the BST in anxiety. An FDG-PET
imaging study in rhesus monkeys found a correlation between
BST metabolism and freezing in a human intruder paradigm or
after separation from cage mates (Kalin et al., 2005). A functional
MRI (fMRI) study in spider phobics found increased activation
in the left BST during anticipation of spider versus neutral pic-
tures (Straube et al., 2007). An fMRI study in healthy participants
concluded that the BST indexes hypervigilant threat monitoring
(Somerville et al., 2010). Another fMRI study in healthy partici-
pants found BST activity when comparing unpredictable threat
with no threat using virtual reality contexts (Alvarez et al., 2011).

Anxiety, as opposed to stimulus-bound fear, is also an aspect of
many anxiety and other psychiatric disorders. It is noteworthy that
we found that deep brain stimulation of the BST alleviates symptoms
in patients suffering from severe obsessive-compulsive disorder, a
debilitating anxiety disorder (Gabriéls et al., 2007; Greenberg et al.,
2010). Accordingly, we showed that high-frequency electrical stim-
ulation of the BST in a rat model for obsessive-compulsive disorder
decreased compulsive behavior (van Kuyck et al., 2008).

To conclude, the present study clearly supports a key role for
the BST in the expression of contextual anxiety, which is an ani-
mal model for anxiety-like behavior. Thereby it provides novel
evidence for a role for the BST as a promising target, be it phar-
macological or neurosurgical, in the future treatment of patho-
logical anxiety.
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