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Local Visual Energy Mechanisms Revealed by Detection of
Global Patterns

Yaniv Morgenstern and James H. Elder
Centre for Vision Research, York University, Toronto, Ontario, Canada M3] 1P3

A central goal of visual neuroscience is to relate the selectivity of individual neurons to perceptual judgments, such as detection of a visual
pattern at low contrast or in noise. Since neurons in early areas of visual cortex carry information only about a local patch of the image,
detection of global patterns must entail spatial pooling over many such neurons. Physiological methods provide access to local detection
mechanisms at the single-neuron level but do not reveal how neural responses are combined to determine the perceptual decision.
Behavioral methods provide access to perceptual judgments of a global stimulus but typically do not reveal the selectivity of the individual
neurons underlying detection. Here we show how the existence of a nonlinearity in spatial pooling does allow properties of these early
mechanisms to be estimated from behavioral responses to global stimuli. As an example, we consider detection of large-field sinusoidal
gratings in noise. Based on human behavioral data, we estimate the length and width tuning of the local detection mechanisms and show
that it is roughly consistent with the tuning of individual neurons in primary visual cortex of primate. We also show that a local energy
model of pooling based on these estimated receptive fields is much more predictive of human judgments than competing models, such as
probability summation. In addition to revealing underlying properties of early detection and spatial integration mechanisms in human

cortex, our findings open a window on new methods for relating system-level perceptual judgments to neuron-level processing.

Introduction

One of the fundamental jobs of the primate vision system is to
detect objects of interest in the visible environment. The system
must be able to work under a diverse range of scene conditions,
with varying levels of illumination, shadows, clutter, and camou-
flage. These conditions can, at times, conspire to reduce the ef-
fective figure/ground contrast of the object to challenging levels.
Thus, it is important for the visual system to efficiently exploit
whatever information is available in the image.

Neurons in early visual cortex have highly localized receptive
fields that will, in general, subtend only part of an object. Thus,
efficient detection depends crucially on both the nature of these
local receptive fields and on how the outputs of these neurons are
combined over retinal space to yield a perceptual judgment. This
process of spatial pooling is challenging to study, since it lies at the
interface between local processing, involving computations at the
single-neuron level, and system-level judgments, which must be
studied using behavioral methods.

Our goal in this work is to develop and apply novel behavioral
system identification techniques that will allow us to bridge this
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gap, gaining insights into neuron-level processing from behav-
ioral data. Our methods and findings build on previous work that
relies on the injection of noise into visual stimuli to aid linear
system identification (Ahumada and Lovell, 1971; Ahumada and
Beard, 1999; Beard and Ahumada, 1999; Pelli and Farell, 1999;
Ahumada, 2002; Solomon, 2002). These methods assume that
detection is based on a linear system, where the decision variable
is given by the inner product of a spatial template (the receptive
or summation field) with the visual input. If the internal template
is matched to the stimulus to be detected and the added visual
noise is Gaussian and white, this strategy yields optimal detection
performance (Green and Swets, 1966).

This linear assumption is satisfied if the neurons coding local
stimulus information are themselves linear, and if their outputs
are pooled additively. Note that for such a system, it is, in princi-
ple, impossible to use behavioral techniques to identify the recep-
tive fields of the individual neurons: since addition is associative,
linear summation within each receptive field cannot be distin-
guished from linear summation over receptive fields. For exam-
ple, given inputs x; . . . x, and output y, one cannot distinguish
the system y = (a;x; + a,X,) + (a3x; + a,x,) from the system
Y= ox; T oanx, Toasxs tooagx,.

It has, however, been demonstrated that visual detection, even
for relatively simple stimuli, can be highly nonlinear (Ahumada
and Beard, 1999; Solomon, 2002; Goris et al., 2008). This impor-
tant observation is both a blessing and a curse for neuroscientists.
It is a blessing because the existence of a nonlinearity means that,
in principle, it may be possible to recover local neural parameters
using behavioral data based on global perceptual judgments. It is
a curse because this nonlinearity prevents the application of pow-
erful stochastic linear system identification methods. Thus, the
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specific issue we address here is how to
adapt these stochastic techniques to a sys-
tem that is highly nonlinear. In doing this,
we are able to take advantage of the system
nonlinearity, using behavioral judgments
of global stimuli to estimate local neuron-
level receptive field parameters.

Materials and Methods

The problem of nonlinear spatial pooling can
be studied using a simple stimulus such as a
Gaussian-windowed sinusoidal grating (Fig.
1), which has been used to study spatial percep-
tion for many decades (Campbell and Robson,
1968). It is well established that contrast detec-
tion thresholds for noiseless grating stimuli de-
cline progressively as the stimulus width is
increased, reflecting long-range spatial pooling
(Howell and Hess, 1978). Whether this is also
the case for noisy stimuli has been a matter of some debate (Legge and
Foley, 1980; Kersten, 1984). This question is of some importance, be-
cause system identification techniques using noisy stimuli are frequently
used in both psychophysical (Ahumada and Lovell, 1971; Ahumada and
Beard, 1999; Beard and Ahumada, 1999; Pelli and Farell, 1999; Ahumada,
2002; Solomon, 2002) and physiological (Ringach, 2004) experiments.
Thus, our first two experiments will test both for the presence of pooling
nonlinearities and for changes to these pooling mechanisms induced by
injection of noise into the stimuli. Our third and final experiment will
then explore the use of noisy stimuli to identify underlying detection
mechanisms.

Apparatus. Stimuli were displayed on a calibrated 85 Hz, 21 inch CRT
using standard psychophysical control software (Brainard, 1997). The
viewing distance was 57 cm. At this distance, a single pixel subtended 6
arcmin. All experiments were conducted in a dimly lit room, and stimuli
were presented on a midgray (mean luminance) background.

In Experiments 1 and 3, our stimuli were 256 X 256 pixels in extent,
subtending 25.3 X 25.3°. In Experiment 2, we maximized the stimulus
extent to 400 X 300 pixels (width by height), so that the stimuli subten-
ded 38.7 X 29.5°.

In Experiment 1, we used a video attenuator (Pelliand Zhang, 1991) to
measure contrast thresholds in the absence of stimulus noise, achieving a
12-bit gamut on the green channel of the monitor (mean luminance, 20
cd/m?).

In Experiment 3, although noise was added to all stimuli, thresholds
were still too low in our low-noise condition to estimate with a standard
8-bit gamut. We therefore used a 10-bit RADEON 7000 Mac Edition
graphics card. Whereas this provides only an instantaneous 8-bit gamut,
it allowed us to shift the gamut between low- and high-contrast modes.
(In the low-contrast mode, only the central 256 gray levels of the 1024
gray-level table were used. In the high-contrast mode, on average, every
fourth gray level was used.) We used the low-contrast mode for our
low-noise condition and the high-contrast mode for our intermediate
and high-noise conditions.

In Experiment 2, all stimuli contained an intermediate level of noise,
allowing us to use a standard 8-bit gamut. The mean luminance for both
Experiments 2 and 3 was 50 cd/m*. The display system was linearized for
each experiment.

Stimuli. All three of our experiments involved the addition of white
Gaussian noise. Three levels of noise (quantified by SD over mean lumi-
nance) were used: low noise (4.3%), intermediate noise (15%), and high
noise (50%).

In Experiment 1, the signal s(x, y) was a vertically oriented sinusoidal
grating, windowed in the horizontal (x) direction with a Gaussian win-
dowing function:

Figure 1.

s(xy) =c¢ exp( — %) cos2mfx + ). (1)
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Experiment 1: detection of windowed grating patterns. An example stimulus is shown: 0.5 ¢/° Gaussian-windowed
grating stimulus, four cycles in width, no-noise and high-noise conditions.

Two spatial frequencies were tested: f, = 0.5 and 1.7 cycles (c)/°. The
phase ¢ was 0 (at fixation) in the constant phase condition and uniformly
distributed over [—r, ) in the random condition. The Gaussian space
constant o, was selected to subtend n = 1, 2, 4, or 8 cycles of the grating
between 1/e points: o, = n/(2 \ﬁfs) Contrast thresholds were measured
both without noise and with a high level of noise (50%). Gray levels were
clipped if they exceeded the gamut of the graphics system.

In Experiment 2, the grating signal was fixed at cosine phase and also
windowed in the vertical direction:

¥ X
s(x,y) =¢ exp( - ﬁ) exp (* ﬁ>cos(277fsx). (2)

The grating frequency was f, = 0.5 ¢/°. As for Experiment 1, o, was
selected to subtend n = 1, 2, 4, or 8 cycles of the grating between 1/e
points. The vertical space constant was fixed at o, = 4\/2°. An interme-
diate (15%) level of noise was added to the stimulus.

In Experiment 3, the stimulus was simply a noisy vertical grating of

frequency f, = 0.5 or 1.7 ¢/°, in cosine phase:
s(x,y) = ¢ cos2mfx. (3)

All three levels of noise were tested.

Procedure. There were two subjects for Experiment 1 (two males),
three subjects for Experiment 2 (one female and two males), and three
subjects for Experiment 3 (two females and one male). One of the au-
thors (Y.M.) was a subject in all three experiments; the others were naive
to the purposes of the experiments. Other than Y.M., no subject did more
than one experiment. All six subjects had normal or corrected-to-normal
visual acuity.

Experiments 1 and 2 were two-interval forced-choice tasks: on each
trial, a signal-absent stimulus and a signal-present stimulus were dis-
played in random order. Subjects were asked to press the left arrow key
on a keyboard if they believed the signal to be in the first image and the
right arrow key if they believed it to be in the second image. Each trial
consisted of a 500 ms fixation interval, followed by a 500 ms blank screen,
a 200 ms stimulus interval, a 600 ms blank screen, a second 200 ms
stimulus interval, and then a blank screen again, displayed until the sub-
ject responded.

Experiment 3 was a detection (present/absent) task. On each trial, only
one stimulus was displayed, randomly selected to be either signal plus
noise or noise alone. Subjects were asked to press the left arrow key on a
keyboard if they believed the signal to be present and the right arrow key
otherwise. Each trial consisted of a 500 ms fixation interval, followed by
a 500 ms blank screen, a 200 ms stimulus interval, and then a blank screen
again, displayed until the subject responded.

For all experiments, an auditory tone was sounded if the response was
incorrect. Subjects were asked to maintain fixation on a central cross
during fixation and stimulus intervals.
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0.5 c/deg grating

1.7 c/deg grating
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Figure 2 shows the results for two ob-
servers and two grating frequencies. Thresh-
olds were slightly higher for the 1.7 ¢/°
condition. This may seem surprising,
since the peak of the contrast sensitivity
function is generally thought to be in the
3—4 ¢/° range (Schade, 1956; Campbell
and Robson, 1968). However, note that,
consistent with Kersten (1984), our re-

sults are plotted as a function of the num-
ber of cycles visible. This means that for
the plots in Figure 2, a fixed position on
the abscissa represents a larger stimulus
width (in degrees) for the 0.5 ¢/° condition
than for the 1.7 ¢/° condition. Thus,
thresholds for the 0.5 ¢/° condition are ex-
pected to be lower because of spatial sum-
mation. It is also the case that the exact
shape of the CSF depends on many differ-

ent factors (Graham, 2001).

b Spatial summation
Most importantly for present purposes,
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Figure 2.  Experiment 1: detection of windowed grating patterns. Plots show threshold contrast required for reliable (75%

correct) detection of the grating stimulus, for two subjects. Results for grating stimuli with a known, constant (cosine) phase are
shown in red. Results for random phase gratings are shown in blue. Error bars indicate SEM. Lines show maximum likelihood linear
fits. a, Results for 0.5 ¢/° grating stimulus. b, Results for 1.7 ¢/° grating stimulus. YM and CO are observers.

Table 1. Empirically estimated summation constants (slope of log contrast
threshold vs log stimulus width)

0.5 ¢/° Grating 1.7 ¢/° Grating
Without With Without With
noise noise noise noise
Observer C.0.
Constant phase —0.31 —0.39 —0.30 —0.39
Random phase —-0.23 —0.16 —0.33 —0.45
Observer Y.M.
Constant phase —0.31 —0.18 —0.45 —0.46
Random phase —0.31 —0.40 —0.38 —0.32
Mean —0.29 —0.28 —037 —0.4
SE 0.02 0.07 0.03 0.03

An adaptive psychometric procedure (QUEST; Watson and Pelli,
1983) was used for all experiments to estimate the threshold stimulus
contrast ¢, for 75% correct performance in Experiments 1 and 2 and to
maintain stimulus contrast near threshold in Experiment 3.

Subjects performed 4 blocks of 40 trials for each stimulus condition in
Experiment 1, 8 blocks of 40 trials for each stimulus condition in Exper-
iment 2, and 10 blocks of 500 trials for each stimulus condition in Exper-
iment 3. Blocks were randomly interleaved over conditions in all three
experiments. In Experiment 2, at the beginning of each block of trials, an
example suprathreshold stimulus was shown until subjects pressed a key
to begin the block.

Results

Experiment 1: effects of noise and phase randomization

on summation

In our first experiment, we measured contrast detection thresh-
olds for Gaussian-windowed grating stimuli of various widths,
both with noise (50% contrast) and without noise (Fig. 1). We
tested two conditions: one in which the grating stimuli were of
known and constant (cosine) phase and one in which the phase
was randomized from trial to trial.

thresholds were found to decline steadily
as the grating window was increased in
width, for all conditions. To quantify this
decline, we fit both linear and quadratic
models to the data. We found that the
mean value of the second-order term of the quadratic term over
all conditions was not significantly different from zero (t,5, =
0.05; p = 0.96, two-tailed). Furthermore, a four-way ANOVA
examining the effects of spatial frequency, observer, noise, and
phase randomization on the quadratic term revealed no signifi-
cant main effects or two-way interactions (p > 0.1). Thus, to a
good approximation, this decline was linear in log—log space,
indicating a power-law relationship.

Table 1 and Figure 3 summarize the empirical summation
slopes derived from maximum likelihood linear fits to the data. A
four-way ANOVA examining the effects of spatial frequency, ob-
server, noise, and phase randomization on the summation slope
revealed a significant effect of spatial frequency (F, ;,) = 5.6;p =
0.037; slopes were steeper for the 1.7 ¢/° condition than for the 0.5
¢/° condition. This difference may be attributable to uncertainty
regarding the exact position and spatial extent of the windowed
grating stimulus. We explore this possibility below (see The role
of spatial uncertainty).

Otherwise, no significant main effects of observer (F(, ;;, =
0.6; p = 0.5), noise (F(; ;;, = 0.2; p = 0.7), or phase randomiza-
tion (F(; ;) = 0.4; p = 0.5) were observed. In particular, the rate
of improvement with stimulus width was very similar for noise-
less and noisy stimuli. We also note that previous work (Mayer
and Tyler, 1986) suggests that summation slopes for grating detec-
tion are invariant to the specific threshold at which they are mea-
sured, since the slope of the psychometric function is roughly
invariant to grating width. Thus, it appears that with some general-
ity, the addition of noise to the stimulus does not change the funda-
mental nature of the detection and pooling mechanisms underlying
the task and that system identification techniques using noisy stimuli
can potentially be used to estimate these mechanisms.

Incoherent detection
For the constant-phase condition of our first experiment, the
ideal linear template is a Gaussian-windowed grating function
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Figure3.  Experiment 1: empirical summation constants (slope of log contrast threshold vs
log stimulus width), averaged over phase condition and observer. Error bars indicate SEM.

matching the frequency, orientation, position, and phase of the
stimulus. Matching stimulus phase is critical here: if an incorrect
phase is used, or if the system pools over multiple phases, perfor-
mance declines (Green and Swets, 1966). Of course, in the
random-phase condition, it is impossible for an observer to
match the stimulus phase, and performance of a linear system
should be lower than for the fixed phase. The fact that our human
subjects perform similarly for the two conditions (Fig. 2) thus
indicates that they are incoherent detectors, unable to exploit this
phase information (Ahumada and Beard, 1999; Solomon, 2002),
and must be using some form of nonlinear strategy.

Experiment 2: effect of noise on summation— control

The results of our first experiment suggest that the addition of
stimulus noise does not qualitatively change the nature of spatial
summation. However, these results are not consistent with pre-
vious work. In particular, Kersten (1984) found that adding noise
to windowed grating stimuli seemed to cut off summation, lead-
ing to flat summation functions. There are specific methodolog-
ical differences that we believe may account for this divergence in
findings (see Discussion). However, before proceeding with clas-
sification image analysis, we want to verify that the results of our
first experiment are not caused by some artifact in our stimuli.

One concern is that the sharp border between the noisy grat-
ing and the mean luminance background at the top and bottom
edge of the stimulus introduces broadband components that, in
principle, could be used to aid detection. Also, for the 0.5 ¢/°
condition and the largest window size (eight cycles visible), the
grating signal is truncated at left and right borders at 8% of peak
amplitude. Thus, a small broadband artifact was introduced here
as well.

There are at least two reasons why these components are un-
likely to explain the divergence between our results and the re-
sults of Kersten (1984). First, stimulus truncation will only aid
detection if it introduces a frequency component to which we are
more sensitive. However, at the eccentricity of the stimulus
boundary (12.7°), the peak of the CSF is ~0.5 ¢/° (Banks et al.,
1991), and contrast sensitivity is generally lower than at the fovea.
Second, we note that Kersten’s stimuli had similar artifacts at the
stimulus boundary, perhaps slightly worse since Kersten used a
dark background, rather than the mean-luminance background
used in our experiments, and the top and bottom boundaries
were generally much closer to the fovea.
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Figure4. Experiment 2: detection of windowed 0.5 ¢/° cosine phase grating patterns. Stim-
uli were designed to greatly reduce stimulus artifacts introduced at the stimulus boundary and
toreduce clipping of high and low intensities. Plots show threshold contrast required for reliable
(75% correct) detection of grating stimulus, for three subjects. Error bars indicate SEM. Lines
show maximum likelihood linear fits. MK, XG, and YM are observers.

Table 2. Experiment 2: empirically estimated summation constants (slope of log
contrast threshold vs log stimulus width)

Observer Summation constant
M.K. —0.26
X.G. —0.18
Y.M. —0.30
Mean —0.25
SE 0.04

Nevertheless, to be fully confident in our summation results,
in our second experiment we again measured summation, focus-
ing on the 0.5 ¢/°, fixed-phase condition, but with a larger stim-
ulus field (38.7 X 29.5°, width by height), and with a Gaussian
window in both the horizontal and vertical dimensions. We fixed
the vertical window space constant at o, = 4\/2°. These changes
reduced the amplitude of the grating signal to 0.3% of peak or less
at left and right boundaries and to 3% of peak at the top and
bottom boundaries.

A second concern might be the clipping of the high-amplitude
Gaussian noise that occurred when the intensity exceeded the
gamut of the display system. For the high noise (50%) level used
in Experiment 1, clipping occurred for 5% of pixels. To reduce
this clipping, in Experiment 2 we use an intermediate (15%)
noise level, for which clipping occurs for only 0.09% of pixels.
This also allows us to assess how our results generalize over dif-
ferent levels of noise.

A third concern might be that the results somehow derive
from subjects’ uncertainty about the spatial extent of the stimuli.
To address this, at the beginning of each block we displayed a
suprathreshold example of the stimulus that remained on until
the subject pressed a button to commence the block. By using an
intermediate level of noise, we also are better able to assess
whether the noise might affect the degree of spatial uncertainty.

Finally, the results of our first experiment were based on data
from only two subjects. Although these two subjects were quite
consistent with each other, it is possible that they are not repre-
sentative of the larger population. In our second experiment, we
test three subjects, including two new subjects, bringing the total
number of subjects for our summation experiments to four.

The results of Experiment 2 are shown in Figure 4 and Table 2.
We see that the results are very consistent with our first experi-
ment: thresholds decline steadily with stimulus width, and the
mean slope of this decline is —0.25, not significantly different
from the mean slope of —0.28 observed for the 0.5 ¢/° constant-
phase, high-noise condition in our first experiment: #,) = 0.4;
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Experiment 3: detection of global (25.3°) grating patterns. Example results are for the 0.5 ¢/° grating stimulus in the intermediate (14%) noise condition, pooled over three subjects. a,

Global 0.5 ¢/° grating stimulus in noise. b, Spatial classificationimage, computed from signal-present trials only. ¢, Projection of signal-present classification image onto horizontal axis. d, Horizontal
Fourier amplitude spectrum of signal-present classification image. e, Spatial classification image, computed from signal-absent trials only. f, Projection of signal-absent classification image onto
horizontal axis. g, Horizontal Fourier amplitude spectrum of signal-absent classification image. Results for 1.7 ¢/° gratings are similar. Horiz., Horizontal; freq., frequency.

p = 0.7, two-tailed. Thus, we are fairly confident that the nature
of spatial summation is not substantially altered by the addition
of stimulus noise. We now apply the noise method to probe the
neural mechanisms underlying spatial pooling and detection.

Experiment 3: classification image analysis

Our first experiment demonstrated that detection of large-field
grating stimuli is highly nonlinear. Whereas it is not possible to
directly identify the nature of the nonlinearity from the measure-
ment of contrast thresholds alone, the addition of noise to the
stimuli greatly increases the information available from a behav-
ioral experiment, as one can consider the joint distribution of
noise samples and subject responses over all trials. Our third
experiment was designed to take advantage of this extra informa-
tion. The stimuli were again vertical gratings of constant cosine
phase, but this time with no window (Fig. 5a). We tested three
subjects on two grating frequencies (0.5 and 1.7 ¢/°) and three
levels of noise contrast (4.3, 14.8, and 50%).

Linear analysis

In this experiment, each trial has four possible signal-response
outcomes: the signal is absent or present and the subject either
reports seeing it or not. The standard psychophysical method for
linear system identification involves computing mean noise fields
for these four cases over all trials and producing a “classification
image” (Ahumada, 2002) of the underlying detection template by
adding the two “present” response fields and subtracting the two
“absent” response fields. This classification image forms an esti-
mate of the underlying detection template, and it has been shown
that if the system is linear, this estimate is both unbiased and
efficient (Murray et al., 2002).

Our first experiment, however, demonstrates that the system
cannot be linear, and in such cases, it has proven useful to pro-
duce two separate classification images, one based only on signal-
present trials and the other based only on signal-absent trials
(Ahumada and Beard, 1999; Solomon, 2002). Specifically, the
signal-present classification image is formed by subtracting the
“miss” response noise field from the “hit” response noise field,
and the signal-absent classification image is formed by subtract-
ing the “correct reject” noise field from the “false alarm” noise
field (Fig. 6).

Response

Stimulus

Figure 6. Calculation of signal-present and signal-absent classification images.

Figure 5, b and e, shows example signal-present and signal-
absent classification images, respectively, for the 0.5 ¢/° stimulus
in 14.8% noise, pooled over all three subjects. Whereas under the
linearity assumption these two classification images are expected
to look the same, they are, in fact, completely unalike. The signal-
present classification image contains a structured template
matched to the frequency and phase of the stimulus, attenuated a
bit near the stimulus boundary but, nevertheless, sensitive to
many cycles of the stimulus. The signal-absent classification
image, on the other hand, contains no discernible structure.
[Similar results have previously been obtained for small high-
frequency or parafoveal Gabor stimuli (Ahumada and Beard,
1999; Solomon, 2002).] These differences are made clearer by
projecting the classification images onto the horizontal axis (Fig.
5¢,f). Taking the Fourier transform (Fig. 5d,¢) makes it even more
evident that the signal-present classification image is closely
tuned to the spectral content of the signal, but the signal-absent
classification image is not. This provides further evidence that the
system is not linear over visual space, so that standard system
identification techniques do not apply. How then can the under-
lying detection mechanisms be estimated?

Nonlinear analysis
Extending the linear methods widely used in neuroscience to

nonlinear systems is a problem of great current interest. In the
physiological literature, a number of techniques for identifying
nonlinear neural kernels mapping stimulus sequences to spike
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trains have been explored, including Wiener/Volterra expansions
(Marmarelis and Marmarelis, 1978) and spike-triggered covari-
ance (STC) analysis (de Ruyter van Steveninck and Bialek, 1988;
Victor, 1992; Bialek and de Ruyter van Steveninck, 2005;
Schwartz et al., 2006). More recently, related techniques have
been explored in the psychophysics literature (Neri, 2004; Nandy
and Tjan, 2007). Although theoretically sound, these techniques
are typically limited by the curse of dimensionality: higher-order
nonlinear mappings greatly increase the parameter space of the
model, demanding greater quantities of data than can be realisti-
cally supplied. Whereas a neuron may fire many times per sec-
ond, the quantity of data is limited by the length of time the
neuron can be held. For behavioral work, where we have only a
few responses per minute, even linear system identification
methods can require many thousands of trials, putting uncon-
strained higher-order identification beyond the patience of hu-
man subjects. Thus, the key to making nonlinear system
identification work for psychophysics is to apply appropriate and
substantial a priori constraints that limit the dimensionality of
the model.

Power spectrum analysis

Previous work can provide some insight into the constraints that
might apply here. Solomon (2002) has shown that when signal-
absent trials for small, higher-frequency parafoveal Gabor stimuli
fail to yield structured templates in the spatial domain, they can
still show tuning to the stimulus frequency in the power spectrum
domain. One theory (Solomon, 2002) is that this tuning reflects a
probability summation process (Green and Swets, 1966; Quick,
1974; Graham and Rogowitz, 1976; Graham, 1977; Sachs et al.,
1980) in which the subject judges the stimulus to be present when
any one of a number of detectors tuned to different stimulus
phases responds above some threshold. However, in such a sys-
tem, the behavioral decision is determined solely by the detector
with maximal response, and performance is poor compared with
a system that pools responses quantitatively (Green and Swets,
1966).

Local energy model

We propose an alternative theory for global detection based on a more
efficient energy formulation that appears common to a diversity of neu-
ral computations in auditory (Green and Swets, 1966) and visual (Adel-
son and Bergen, 1985; Morrone and Burr, 1988; Landy and Bergen,
1991; Emerson et al., 1992; Heitger etal., 1992; Manahilov and Simpson,
1999; Goris et al., 2009) cortex. In this local energy model, the decision
variable 7 is formed by summing the squared responses of an array of
identical local linear filters tiling retinal space. Mathematically, this can
be represented as:

r=2(fxy) * i) (4)
where f(x, y) represents the receptive field of the local filter over
retinal space, i(x, y) represents the visual stimulus, and * denotes
convolution. Note that the model is stationary in space (shift
invariant), which is an important and useful constraint on the
nonlinear nature of the pooling network. In particular, this con-
straint means that the covariance matrix is determined by the
autocorrelation, which is given by the inverse Fourier transform
of the power spectral density. Thus, our technique can be
(roughly) considered as a second-order Volterra technique under
the assumption of shift invariance, which reduces the degrees of
freedom from quadratic to linear in the number of image pixels.
This assumption is thus crucial in limiting the degrees of freedom
to allow reliable estimation.
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Because of the squaring operation, the form of the local filter
f(x, y) cannot be directly estimated using standard classification
image analysis. Remarkably, however, the model can be con-
verted to linear form. Specifically, if F(o,, ®,) and I(w,, w,) are
the 2D Fourier transforms of the local spatial filter f(x, y) and the
visual stimulus i(x, y), then

r= 2 |F[flxy) # iG] = 2 [Flo,0)Pl(w,0,)7

Wx, 0y Wx,0y

where the first equality follows from Parseval’s theorem and the
second from the convolution theorem, both fundamental results
in Fourier theory (Bracewell, 1978).

Equation 5 reveals that the local energy model is linear over
spatial frequency in the Fourier power domain. Thus, if the
model is (approximately) correct, the classification image tech-
nique can be adapted to the power spectrum, allowing direct
estimation of the spectral density |F(w,, ®,)| and hence the fre-
quency tuning and bandwidth of the early linear detection mech-
anisms that form the input to the nonlinear pooling network.
Under the reasonable assumption that these early linear filters are
localized in space, the length and width tuning can also be esti-
mated (see below). Thus, surprisingly, it is possible, in principle,
to recover the spatial properties of the local neural detection
mechanisms in an energy network based only on behavioral re-
sponses to global stimuli.

Estimating the local energy model

Equation 4 implies that sensitivity is uniform across retinal
space, whereas in the spatial classification images we observed
in Experiment 3, sensitivity declines gradually with eccentric-
ity (Fig. 5b,c). This effect can be incorporated into the local
energy model by introducing a prewindowing function g(x, y)
that attenuates the stimulus as a function of eccentricity. Then
we have:

F:;(ﬂxw%”T%ﬂV: > |Flon0,)PIl' (0.0,

(6)

where

i'(x,y) = glx,p)i(x,y). (7)

Based on previous work showing exponential falloff in sensitivity
with eccentricity (Mostafavi and Sakrison, 1975), we model the
spatial attenuation function g(x, y) as:

sen=en ) (31) e

where x, and y,, specify the location of peak sensitivity relative to
the fovea and A, and A, are the exponential space constants in
horizontal and vertical directions, respectively. To estimate these
parameters, we fit the function g(x, y) cos 2mfx to the signal-
present classification images computed in Experiment 3, using a
standard least-squares gradient descent procedure, where f; is the
known signal frequency. The estimated parameters of g(x, y) are
listed in Table 3 and shown in Figure 7. We note that the sum-
mation field is, on average, displaced slightly to the lower left
visual field, consistent with previous results showing higher con-
trast sensitivity for low to moderate spatial frequencies in the
lower visual field (Rijsdijk et al., 1980; Thomas and Elias, 2011),
and the general finding that tasks with a lower visual field advan-
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Table 3. Empirically estimated parameters of global spatial attenuating function
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Laplace window parameters (degrees)

Frequency (¢/°) Observer Noise contrast (%) X Yo A Ay
0.5 I.B. 43 —6.1 —0.56 6.9 75
14.8 0.32 —14 9.4 6.2

50 —0.92 =97 72 15
JR. 43 —96 0.25 12 6.2

14.8 —5.1 48 17 18

50 =25 13 5.6 47
Y.M. 43 —0.82 —16 49 6.5
14.8 —032 =51 32 75
50 0.31 —59 4.1 58

1.7 1.B. 43 3.2 —14 13 n
14.8 —83 —84 36 83

50 18 —10 12 19
JR. 43 —28 —21 5.7 7.1
14.8 —35 —27 4.6 5.4
50 —18 —18 45 77
Y.M. 43 —0.29 —4.6 4.7 5.7
14.8 0.0 =51 38 6.1
50 0.0 =59 2.0 6.5

14;

—_
N

-
o

Empirical parameter estimates (deg)
o \S] e (o2} (o]

| |
AN

|
()
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Figure7. Empirically estimated parameters of global spatial attenuating function, averaged
over ohservers, noise contrast, and frequency. The x, and y, specify the location of peak sensi-
tivity relative to the fovea, and A and A, are the exponential space constants in horizontal and
vertical directions, respectively. Error bars indicate SEM.

tage also tend to be biased to the left visual field (Christman and
Niebauer, 1997; Thomas and Elias, 2011). We find that incorpo-
rating this global attenuation function to capture the falloff in
sensitivity seen in our classification images also leads to an im-
provement in the trial-by-trial consistency of human and model
responses (see below, Evaluation and comparison with compet-
ing models).

We applied the estimated attenuation function to each signal-
absent stimulus noise pattern before taking the Fourier transform
and accumulating the noise fields in the power spectrum domain,
separately for false-alarm and correct reject trials. A signal-absent
power-domain classification image was then formed by taking
the difference of the means of these two noise fields (Fig. 6).

Figure 8 shows the results of this analysis for both 0.5 and 1.7
¢/° grating stimuli and 14.8% noise contrast, using data pooled
over subjects. Figure 8a shows the resulting power spectrum clas-
sification image, where light and dark patches indicate regions
with estimated weights >3 SDs from the mean. There is a
concentration of energy near the signal frequency, made more
apparent by selecting a region of interest near the signal fre-
quency (Fig. 8b).

This concentration of energy near the signal frequency is
roughly Gaussian in appearance, consistent with a localized Ga-
bor filter. It is well known that maximal simultaneous localiza-
tion in space and spatial frequency (in the sense of minimizing
the product of the variances) is uniquely achieved by the Gabor
function (Gabor, 1946), and the Gabor function is widely used as
amodel for early visual receptive fields (Daugman, 1980; Watson
et al., 1983). Here we model the detector energy in the Fourier
domain using the Fourier transform of an odd-symmetric Gabor
filter:

2

7
flxy) = e)<p<—202 - M)stwax, (9)
x y

where o, and o, are the Gabor space constants in horizontal and
vertical directions, respectively, and f,, is the carrier frequency of
the Gabor. We use a standard least-squares gradient descent pro-
cedure to fit the model to the signal-absent power spectrum
classification image data, determining maximum likelihood esti-
mates for the parameters. The red contours in Figure 8, a and b,
represent the bandwidth (at half-amplitude) of the maximum
likelihood fit. Figure 8¢ shows the projection of both data and fit
onto the horizontal spatial-frequency axis.

The horizontal and vertical spreads of the maximum likeli-
hood Gabor fit to the power spectrum classification image com-
pletely determine the horizontal and vertical space constants of
the corresponding spatial Gabor. In particular, the spread in the
space domain is the reciprocal of the spread in the Fourier (am-
plitude) domain. Although by assumption we cannot recover the
phase structure of these local filters with our method, the popu-
lation of orientation-tuned simple cells in primary visual cortex
of primate are known to have a large bias to odd symmetry
(Ringach, 2002). Assuming odd symmetry allows us to take the
inverse 2D Fourier transform of the estimated model to reveal the
appearance of the filters in the spatial domain (Fig. 8d,e). Note
that although the stimulus is ~25° in both width and height, the
estimated local filters are highly localized and elongated, similar
to receptive fields of neurons in early visual cortex. Figure 8f
shows the projection of the data and model to the horizontal
space axis. (This last step required half-wave rectification of the
power spectrum classification data shown in Fig. 8c.)
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0.5 c/deg grating

i === Data
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1.7 c/deg grating
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Figure8. Recovering local mechanisms by power spectrum analysis. Example results are for the intermediate (14%) noise condition, pooled over three subjects. a, Power spectrum classification
image. DCis at the image center. For visualization purposes only, the classification image has been smoothed using a Gaussian smoothing kernel with a space constant of 3 pixels and thresholded
at =3 times the SD of the classification image. Green X symbols mark the signal frequency. Red contours indicate bandwidth (at half-amplitude) of a maximum likelihood sine (Figure legend continues.)
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Table 4. Empirically-estimated parameters of local receptive field model
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Local Gabor filter parameters

Frequency (¢/°) Observer Noise contrast (%) Octave bandwidth o, (arcmin) o, (arcmin) fo (c/°) £ (/)
0.5 I.B. 43 2.5 13 38 0.78 0.9
14.8 1.8 14 21 1.5 15
50 26 n 54 0.02 0.91
JR. 43 2.6 8.8 40 0.06 1.1
14.8 26 19 69 0.08 0.52
50 23 26 40 0.59 0.6
Y.M. 43 1.4 39 57 0.64 0.64
14.8 2.6 15 44 0.03 0.63
50 25 23 46 0.56 0.59
Mean 23 19 45 0.47 0.82
SE 0.14 3.1 45 0.16 0.11
1.7 1.B. 43 1 18 26 1.8 1.8
14.8 24 74 42 1.8 18
50 2.6 5.6 26 0.17 1.7
JR. 43 26 45 24 0.18 21
14.8 24 53 30 25 2.6
50 26 34 39 0.86 2.9
Y.M. 43 21 9.6 34 1.8 1.8
14.8 2.1 9 34 2 2
50 2.6 3.7 31 0.03 2.6
Mean 23 74 32 1.2 2.1
SE 0.17 15 2 0.31 0.15
50 spatial-frequency parameters of the early local linear visual

Il Filter width &
Il Filter length & )

o w N
=) =) S

e
o

Gabor space constants (arc min)

0.5 c/deg 1.7 c/deg
Grating frequency (c/deg)

Figure9.
cate SEM.

Empirically estimated spatial parameters of local detection filters. Error bars indi-

The maximum likelihood estimates for the spatial and spatial-
frequency parameters of the local Gabor filters are listed in Table
4 and shown in Figure 9. For low-frequency odd Gabor filters,
subtractive interactions between positive and negative frequen-
cies shift the peak frequency tuning f, to higher frequencies rela-
tive to the carrier frequency f,. We note a trend for the estimated
local linear filters underlying detection to become slightly more
broadband for higher noise levels. (Bandwidths are full ampli-
tude at half-height.) Note that the maximum bandwidth achiev-
able by an odd Gabor filter is 2.6 octaves, at which point the filter
is indistinguishable from a Gaussian first derivative. Roughly half
of the filters we estimate approach this limit.

In summary, we find that through Parseval’s theorem, classi-
fication image analysis can be used to estimate the spatial and

<«

(Figure legend continued.) ~ Gabor model fit to the classification image in the power spectrum
domain. b, Magnification of relevant region of power spectrum. ¢, Projection of power spectrum
classification image onto horizontal axis. d, Estimated local linear spatial filter, shown in sine
phase. e, Magnification of local linear spatial filter. f, Projection of estimated local linear spatial
filter onto horizontal axis. Horiz., Horizontal; freq., frequency.

mechanisms that provide the input to a nonlinear pooling mech-
anism. We stress that these parameters can be estimated without
manipulating the spatial extent or spatial frequency of the stim-
ulus, which is the traditional way to estimate early visual mecha-
nisms (Watson et al., 1983; Wilson et al., 1983; Kersten, 1984).
Our method does rely on the assumption that the underlying
linear filters are localized in space and can be approximated as
Gabors. However, this assumption is well supported by previous
research (Daugman, 1980; Watson et al., 1983).

Evaluation and comparison with competing models

The ultimate test of a model is its predictive power. For this
evaluation, we again make use of the noise in our stimuli, com-
puting model responses for each noisy image and comparing
these with human responses on a trial-by-trial basis. We evaluate
four distinct models (Fig. 10).

1. A global coherent model in which the decision variable is
determined by the inner product of the stimulus with the global
spatial template cos (277 f,x) g(x, y) estimated from signal-present
trials. Thus

r= gcos(Zwﬁx)g(x,y)i(x,y). (10)
This is the standard linear model.

2. A global incoherent model, in which the decision variable is
formed by the sum of squared responses of quadrature-pair
global filters:

r= ( gcos(ZWﬁx)g(x,y)i(x,y)>

+ (§sin(27rfsx)g(x,y)i(x,y)> . (11)

Sometimes called the narrowband incoherent detector, this is the
maximum likelihood detector when the phase is completely un-
certain (Kay, 1998) and has been proposed (Murray, 2011) as a
possible explanation for the incoherent detection of small high-
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frequency or parafoveal Gabor stimuli
(Ahumada and Beard, 1999; Solomon,
2002).

3. Ourlocal energy model, in which the
decision variable is determined by the
sum of squared responses over a bank of
local linear detection filters f(x, y) within
the global spatial window g(x, y):

r= xEy(f(w) # (g(x,9)i(x,p)))%
(12)

4. A local probability summation
model, in which the decision variable is
determined by the maximum response
over a pool of local linear detection fil-
ters within the global spatial window

8(% y):
r = max (f{x,y) * (g(xp)i(x,y))).
xy

(13)

Probability summation is a standard
model for spatial pooling (Quick, 1974;
Graham and Rogowitz, 1976; Sachs et al.,
1980).

For all models, we use the global expo-
nential spatial attenuation function g(x; y)
of Equation 8. For the last two models, we
use the local Gabor filters f(x, y) of Equa-
tion 9. We repeat the equations below for
convenience:

g(x,y)

el 55 037 )

2

Xy
flxy) = eXp<—202 - 20_2>sm277ﬁ)x,
x y

(14)

We used the empirically estimated param-
eters for g(x,y) and f(x,y) recorded in Ta-
bles 3 and 4, respectively.

To compare the real-valued decision
variables produced by these four models
with the binary decisions made by our hu-
man subjects, we first partitioned trials
into signal-present and signal-absent sub-
sets. Then, for each of these subsets, we
computed the ¢ score for the difference in
the mean model response when observers
responded present versus when they re-
sponded absent. To be consistent with
human judgments, the model should gen-
erate high values when the user responds
present and low values when the user re-
sponds absent, thus producing a large
positive t score.

The results of this analysis are shown in
Figure 11. Note that three of the four
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Figure 10.  The four detection models evaluated.
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Figure 11.

adjustment o« = 0.05/3 = 0.017).

models (global coherent, global incoherent, and local energy)
show similar ¢ scores for the signal-present case. This is not sur-
prising, since all three models and the human responses correlate
positively with signal contrast, which varied moderately from
trial to trial. (Since the local probability summation model de-
pends only on the maximum local response, it correlates more
weakly with signal contrast.) Thus, the crucial test is the signal-
absent case. Here we see that the local energy model predicts the
human data much better than the alternatives, including probability
summation.

To determine whether the failure of probability summation to
match human behavior might be attributable to the local filter
parameters used, we also evaluated the local probability summa-
tion model using parameters extracted from Kersten (1984). Spe-
cifically, we assumed a Gabor filter that was matched to the

Signal-Absent Trials

Global Local Local Global Global
Coherent Incoherent

Model

Signal-Absent Trials

Global

Model

Evaluation of spatial pooling models based on trial-by-trial consistency with human judgments, for Experiment 3.
The tscores are based on the difference between the mean model response for trials on which the human subject reports the signal
present and the mean model response for trials on which the human subject reports the signal absent. Higher t scores indicate
greater consistency between model and human data. Error bars indicate SEM. Planned pairwise t tests reveal that the local energy
model is significantly more consistent with human judgments than the other three models for signal-absent trials, for both 0.5 ¢/°
grating stimuli (p << 4e — 6, Bonferroni adjustment & = 0.05/3 = 0.017) and 1.7 ¢/° grating stimuli (p << 8e — 5, Bonferroni
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frequency of the signal, with a 1.7 octave
bandwidth, as estimated by Kersten, and
equal filter length and width. We found
that the ¢ score for the local probability
summation model in the signal-absent
condition was roughly the same with this
filter as with the filters we estimated from
the power spectrum. We also checked for
dependence on the length of the underly-
ing filter, varying the aspect ratio (length
to width) from 1 to 8. In the signal-absent
condition, the consistency of the local
probability summation model with the
human data varied only modestly,
achieving a peak ¢ score between 2 and 3
at an intermediate aspect ratio, well be-
low the t score of 7 achieved by the local
energy model. In summary, it seems that
the performance of the probability sum-
mation model is not a strong function of
the precise filter parameters. Rather, the
failure to match the human data seems
to derive from the maximum-response rule
on which the model is based.

Whereas our ¢ score analysis shows
that the local energy model is better than
competing models, this is a relative judg-
ment that does not directly indicate the
goodness of fit of the local energy model
to the human data. To assess this, we fit
a two-parameter cumulative normal
psychometric function to the human re-
sponse data for Experiment 3, as a func-
tion of the response of the local energy
model (Fig. 12).

For plotting purposes only, we have
separated the data based on whether the
signal was absent or present in the stimu-
lus. We estimated the probability of a “sig-
nal present” human response using a
variant of kernel density estimation. In
particular, each trial in which the observ-
er’s response was negative contributed a
Gaussian estimate of the local density of
negative responses, with mean equal to
the model response for that trial. The SD
was selected such that the model re-
sponses for 10 other trials were within 1
SD on either side. The density of positive responses was estimated
in similar fashion, and the probability of a positive response was
computed as the ratio of the positive density to the sum of the
positive and negative densities.

From Figure 12, we see that, qualitatively at least, the cumu-
lative normal psychometric function accurately captures the re-
lationship between the model response and the human response
in almost all cases. We assessed the fit of the model quantitatively
for each observer and condition by Monte Carlo sampling 2000
datasets of the same size as the empirical dataset from the estimated
psychometric function and by computing the resulting squared er-
ror (Wichmann and Hill, 2001). (Since the empirical model re-
sponses are not uniformly distributed, we sample with replacement
from the empirical model response values and then sample from the
cumulative normal model at these values of the model response.) We

Local Local
Energy  Probability
Summation

Local Local
Energy  Probability
Summation
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Psychometric functions relating response of local energy model to human responses for Experiment 3. Top to bottom, Observers 1.B., J.R., and Y.M. Left to right, Noise contrast equals
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signal-absent trials are shown.

find that the proportion of our sampled datasets for which the
squared error exceeds our empirical error ranges from 0.15 to 0.59
across our 18 conditions, indicating a reasonable fit to the combined
(signal-present plus signal-absent) data.

However, when we separate out the signal-present and signal-
absent stimulus conditions (Fig. 12), we do observe one of the 18
conditions in which the model fails (0.5 ¢/°, observer I.B., 14.8%
noise). From Table 4, we see that this is the one condition for
which our estimate of the local Gabor filter parameters seems to
be in error: the peak frequency is three times higher than the
signal frequency, and the estimated length of the filter is roughly
half that estimated for the other conditions involving the 0.5 ¢/°
grating. Thus, we suspect that the poor correspondence between
model and human data for this one condition stems from these
errors in model parameter estimates. Increasing the number of
trials and/or regularizing the estimation would likely correct this
problem.

We emphasize that the crucial support for the model de-
rives from the positive correlation between model and human
response for the signal-absent condition (Fig. 12, shown in
red), which is clear in every one of our 18 conditions, and in
the fact that generally the signal-absent and signal-present
data together form a single smooth, continuous distribution
that can be modeled by a common psychometric function. As
our t score analysis reveals, this strong correlation between

Psychometric functions relating model responses to human responses for an example condition of Experiment 3 (0.5 ¢/°, observer J.R., 14.8% noise contrast). Only data for

model and human response for the signal-absent condition is
not found for the other models. Figure 13 illustrates this for a
typical example condition, where we have zoomed in on the
signal-absent data alone. We see that a strong correlation be-
tween model and human response is evident only for the local
energy model. For the local probability summation model, we
also see a displacement of the psychometric function from the
signal-absent data, indicating that the signal-absent and
signal-present data cannot be accounted for by a single psy-
chometric function, a strong sign that probability summation
is not the basis for human judgments in this task.

Neural basis
The energy-based classification image method allows properties
oflocal detection mechanisms to be estimated solely from human
judgments of global visual stimuli. These local mechanisms may
be identified with single neurons in early visual cortex. To match
the properties of the local filters we have estimated behaviorally,
these neurons must integrate visual information in a substantially
linear fashion within their receptive fields, and these receptive
fields must be orientation tuned. These requirements are met by
the population of simple cells in primary visual cortex (Hubel
and Wiesel, 1968; Movshon et al., 1978).

To assess quantitative correspondence, we rely on data for
receptive fields of simple cells in macaque primary visual cortex
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O Neural (Ringach 2002)
x Psychophysical (0.5 ¢/ deg)
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1.5

Figure 14. Comparison of our psychophysical estimates of spatial and spatial-
frequency parameters of local mechanisms with neurons in macaque primary visual cortex
(Ringach, 2002). Both are based on Gabor models, where f; is the carrier frequency and o,
and o are the Gaussian space constants determining the width and length of the mech-
anisms, respectively.

(Ringach, 2002). Here the spatial selectivity of each neuron is
characterized by the product of the carrier frequency f, and the
width and length space constants o, and o, of a Gabor receptive
field model. Figure 14 compares the distribution of 93 neurons
with the 18 psychophysical estimates made from our third exper-
iment (3 subjects X 2 spatial frequencies X 3 noise contrast
levels).

We find that the physiological and psychophysical esti-
mates are generally compatible, although some of the psycho-
physical estimates for the 1.7 ¢/° condition are slightly more
elongated than physiological measurements. This could be at-
tributable to a number of factors: interspecies differences,
sampling bias toward elongated receptive fields caused by our
grating stimuli, and/or to differences in visual eccentricity of
the human neurons underlying detection in our experiments
and the macaque neurons studied physiologically, since spa-
tial receptive field properties are known to vary with visual
eccentricity (Smith et al., 2001).

Spatial summation

The results of Experiments 1 and 2 reveal summation slopes (log
contrast threshold vs log stimulus width) for grating detection in
the range of —0.27 to —0.28 for the 0.5 ¢/° grating stimuli, and
—0.37 to —0.41 for the 1.7 ¢/° stimuli. What summation slope
would a local energy model predict?

To address this question, we analyzed how the sensitivity d’ of
a grating detector varies as a function of the contrast ¢ of the
grating and the number 7 of independent local filters. Since the
experiments were blocked by the width of the windowed grating,
we make the assumption that subjects can approximately limit
pooling to the signal region. (Below, we consider what happens
when this assumption does not hold.) Then # is proportional to
the width of the stimulus.

Without loss of generality, we assume that the detectors are
normalized to have unit expected response to a grating of unit
contrast and let o, represent the SD of each (normal, indepen-
dent, and identically distributed) detector response to the stimu-
lus noise.

Coherent linear summation
It is useful to first consider the simpler case of an optimal linear,
coherent pooling mechanism over identical, spatially distributed
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mechanisms. This is an easier case because when the detector is
linear and the noise is normally distributed, the decision variable
is also normally distributed.

Letting r; represent the response of local detection filter 7, the
system response (decision variable) r will be:

(15)

n
r= Eri)
i=1

In the signal-absent case, the decision variable has expected value
7, = 0 and variance 0> = no.. In the signal-present case, for a
signal of contrast ¢, the decision variable has expected value 7, =
cn and variance o), = no,.

The signal-to-noise ratio can be defined as:

cn c\n

T,—T
d = [2sNR= 22— = = e n.
\/7 v Vo, + o) 2nao, \/EO',, A
(16)

Assuming constant observer bias, a criterion level of perfor-
mance (e.g., 75% correct) is achieved at a fixed value of d'.
Thus, as stimulus width (the number n of stimulated detec-
tors) increases, contrast threshold ¢, decreases as 1/A/n. On a
log-log plot, ¢, falls with a slope of —0.5, steeper than the
falloff we observe.

Incoherent energy summation
For an incoherent local energy detector, the relationship between
d', n, and ¢ turns out to be more complicated. In particular, d’ is
given by:
c V/E
e s (17)
0,2(2¢* + 707)

(See mathematical proof below.)

Note that although d’ is still proportional To \/n, it is no
longer proportional to the contrast c. As a consequence, although
d’ will rise as \/n when c is fixed, the threshold c, will no longer
fall as 1n/n when d’ is fixed (i.e., at criterion performance). Spe-
cifically, solving Equation 17 for ¢ at threshold, we obtain:

/O_fl
&= : < 2d' + \J4d"? + 14n). (18)
Thus, for large n,
¢ = \/ﬁd'(fi/\'@*ct = 1/n'", (19)

On a log-log plot, ¢, falls with a slope of —0.25.

For smaller n, the relationship between contrast threshold ¢,
and 7 is not exactly a power law, and so the summation function
¢.(n) will not be exactly linear in log-log coordinates. However, in
the neighborhood of a particular value of n, the summation func-
tion will be approximately linear, with a slope that can be calcu-
lated analytically.

In particular, taking the log of both sides of Equation 18, we
obtain:

1
loge, = 2(10gd’ + 2logo, — logn + log<2d’ + \4d? + 14n)>.

(20)
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Figure15.  Slope of summation function ¢,(n) for an incoherent energy pooling mechanism
as a function of the number n of independent detectors.

Approximating 7 as a continuous variable, we have:

dloge, 1 7n

= —+ .
dlogn 2 2\4d? + 14n(2d’ + \4d* + 14n)

(21)

Thus, the theoretical summation slope is —0.5 for n = 0, declin-
ing monotonically to —0.25 for large n (Fig. 15). Of course, if n =
0, nothing will be detected. A value of n = 1 produces a more
realistic upper bound on the slope: for d’ = 1.349, corresponding
to an unbiased observer at 75% correct, the slope at n = 1 is
—0.39.

For the 0.5 ¢/° grating stimuli, we observed summation slopes
of —0.28 to —0.29 (Table 1), squarely in the predicted range. For
the 1.7 ¢/° gratings, we observed somewhat steeper slopes, be-
tween —0.37 and —0.41. This may be caused by observer uncer-
tainty in the horizontal position of the narrow windowed stimuli;
in other words, observers are not able to precisely limit pooling to
the signal region. A fixed uncertainty will reduce performance
more for narrower stimuli, resulting in a steeper summation
curve. This will be less an issue for the 0.5 ¢/° gratings, which
are more than three times wider than the 1.7 ¢/° gratings. We
explore this hypothesis quantitatively below (see The role of
spatial uncertainty).

Mathematical proof of local energy summation law
Here we prove Equation 17 relating d’, n, and ¢ for the incoherent
local energy detector.

The local energy detector forms the decision variable as a sum
of squared detector responses 7;:

(22)

n
r= Erf
i=1

In the signal-absent condition, since the individual filter re-
sponses are independent, identically distributed, zero-mean nor-
mal random variables, the decision variable follows a X,21
distribution, with mean and variance given by:

2

7, = nol, o>=2nol. (23)

In the signal-present condition, the response r; of each filter is still
normally distributed, but the sum of squared responses is not
exactly X2 because the expected response of each filter is different,
depending on the phase of the filter relative to the signal. To see
this, consider a one-dimensional signal s(x) = c¢sin (27f,x) and a
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local Gabor filter fj(x) matched in frequency but with relative
phase ¢;:

X
fi(x)=a exp( - 20_2) sinQ2mfx + ¢), (24)
where a is an arbitrary gain parameter. The expected response of
the filter to the noisy stimulus is equal to the response to the signal
alone:

Elr,] = jﬁ(X)S(x)dx (25)
x
= acf exp( - 20_2) sin(2mfx + ¢;)sin(27fx)dx
(26)
X
= accosqb,f exp( — 20_2) sin®(27rf.x)dx (27)
= acrycoso;, (28)

where 7, is a constant equal to the response of a unit-amplitude
phase-locked filter to a signal of unit contrast. Without loss of
generality, we set a = 1/, so that

E[r,] = ccosd.. (29)

The second moment of the local filter response also depends on
the phase:

E[r}] = E[r.]’ + 0} = Ccos’d; + . (30)

Although in the signal-present condition the decision variable ris
not exactly X2, we can use the first and second moments of the
local filter responses to derive its mean and variance. First, from
Equation 30, we observe that the mean 7, of the decision variable
in the signal-present condition can be written as:

7, = > E[r7] = ¢* D, cos’d; + no.
=2

i=1 i=1

(31)

Assuming that the phase of the local linear filters is uniformly
distributed, we can write:

! n
zcoszd)i ~ zwfcoszd)idd)i =n/2. (32)
Substituting Equation 32 into Equation 31, we obtain:
7, =n(c’2 + o). (33)

To derive the variance 0'}2, of the decision variable in the signal-
present condition, we first note that since the filters are indepen-
dent, it can be written as the sum of the variances of the squared
filter responses:

n

o, = 2E[(F = E[7])] = E( E[ri] - [E[r?]z)-

i=1 i=1

(34)
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The fourth moment of the normally distributed local filter re-
sponse is given by:
E[r] = E[r;]* + 6FE[r;]*0. + 20%. (35)

Substituting Equations 30 and 35 into Equation 34, we obtain:

" 2
o, = E( E[r]* + 6E[r;]?02 + 20% — ([E[r,-]2 + a'fl) )
i=1

(36)

= E(4[E[ri]zoi + oﬁ) (37)
i=1

= 4?1,0',21 + no? (38)

2nc’ol + 5not. (39)

Combining Equations 23, 31, and 39 yields Equation 17 relating
d' to n and c for the incoherent local energy detector:

T, = T,
[2 2
\o, T o

d'=\2 (40)

c*n

N 2(0; + 07) (41

N
2 fn
R (42)

0,\2(2¢* + 702)

Role of spatial uncertainty
The incoherent local energy model incorporates uncertainty
about the phase of the stimulus, but our analysis assumes that the
observer does know the exact extent of the horizontal grating
window used in Experiments 1 and 2 and is able to restrict sum-
mation exactly to this region. This approximation may be reason-
able for larger stimulus windows, but for smaller stimulus
windows it is likely that spatial uncertainty about the exact posi-
tion and extent of the window will play a larger role in determin-
ing performance.

To gain quantitative insight into this effect, suppose that the
uncertainty in the horizontal position of the stimulus can be
described by a zero-mean Gaussian random variable with vari-
ance 04,. The effect can be modeled by shifting the observer’s
coordinate frame left or right on each trial by this random
amount. The expected signal received in the observer’s coordi-
nate frame is now a wider Gaussian-windowed grating with space
constant o, = Voﬁ + 04, where o, is the horizontal space con-
stant of the Gabor stimulus. Were the deviations of the stimulus
from this expected signal Gaussian and white, the optimal sum-
mation window would match this larger window. Although, in
fact, the deviations are more complex, this is still a good first-
order strategy for dealing with spatial uncertainty.

To see the effect on summation, we let # represent the number
of independent local filters being pooled and #, the number of
these falling within the stimulus window. With this notation, the
mean and variance of the decision variable remain unchanged in
the signal-absent condition (Equation 23), but in the signal-
present condition, they become:

7, = n,c2 + no,

o, = 2n,c’ol + 5no, (43)
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Substituting into Equation 40, we obtain:

cin

d = X 44
o, \//Z(Znscf + 7no?) (“44)
Solving for ¢, as before (Equations 40—42), we obtain:
d'o?
¢ =—"2d"+ \4d” + 14n (45)

1
— loge, = 2(logd’ + 2logo, — logn;

+ log<2d’ + \4d'? + 14n)>. (46)

To relate this to spatial uncertainty, we note that the number #, of
local filters falling within the stimulus window will be propor-
tional to the width o of the stimulus window and, similarly, the
number of local filters n being pooled will be proportional to the
width o3 = \,0',2{ + o3, of the perceptual window. Thus, Equa-
tion 46 can be written as:

1 1
loge, = a — Elogox + 2log(2d’ + V/4d’2 + B\/ofc + oﬁx>

(47)

where constant terms have been collected into the unknown c.

Using d' = 1.349 corresponding to unbiased 75% perfor-
mance, we fit Equation 47 to the 1.7 ¢/° summation data from
Experiment 1, computing maximum likelihood estimates of the
free parameters «, 3, and o,,, obtaining mean values for the
spatial uncertainty o, and proportional constant 8 of o, = 1.2°
and B = 65.

Given these parameter estimates, we can address the hypo-
thetical question: What would the summation slope for the 1.7 ¢/°
condition be if there were no spatial uncertainty? Setting o, to
zero and taking the derivative of Equation 47 with respect to o,
we obtain:

dloge, 1 N Bo
2 4\4d?+ Bo2d' + \4d?* + Bo,)
(48)

dlogn

Using d’ = 1.349 and our maximum likelihood estimate of B =
65, we find that over the range of stimulus widths we tested (one
to eight cycles between 1/e points), the mean predicted summa-
tion slope for the 1.7 ¢/° condition in the absence of spatial un-
certainty is —0.31, very similar to the mean empirical slope
measured for the 0.5 ¢/° condition (—0.29). This supports the
hypothesis that spatial uncertainty is primarily responsible for
the steeper empirical slopes observed for the 1.7 ¢/° condition.

Discussion
Previous results on summation in noise
Our first two experiments suggest that stimulus noise raises
thresholds for grating detection but does not alter the nature of
summation: the decline in threshold as stimulus width increases
follows a power law with an exponent that is roughly the same
with or without stimulus noise.

These results are quite different from those of Kersten (1984),
who found that for noisy gratings, contrast thresholds did not
improve beyond about one cycle in width. For noiseless gratings,
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on the other hand, Kersten found results very similar to ours:
thresholds declined as a power law with an exponent on the order
of —0.3. The consistency in our results for the no-noise condition
suggests that our divergent results have something to do with
differences in the nature of the stimulus noise used.

We used 2D white noise that did not vary in time. Kersten
(1984), on the other hand, used 1D white noise (varying ran-
domly horizontally, but constant vertically) that also varied ran-
domly over time. In other words, the noise appeared as random,
time-varying vertical bars.

We see two ways in which these differences could contribute
to the divergent results.

1. 2D versus 1D spatial noise. It is reasonable to assume that
internal noise is 2D in space, i.e., varies randomly in both hori-
zontal and vertical dimensions. In the low-noise condition, the
observer will therefore benefit from spatial summation in both of
these dimensions.

In the high-noise condition, where stimulus noise dominates,
the benefit of summation may depend on the nature of the noise.
For Kersten’s stimuli, the observer only derives benefit from
summation horizontally. In our experiments, observers benefit
from summation in both dimensions. This does not predict a
difference in performance for the ideal observer, since in both
experiments the observer sees the full vertical extent of the grat-
ing. However, it is likely that for human observers, sensitivity to
the grating stimuli is highest near the fovea, so that summation
over a stimulus region of a fixed area is most effective if the region
is roughly circular and centered at the fovea. Furthermore, the
brain may be wired to more efficiently summate over roughly
circular regions. Thus, even though the stimuli are windowed
only in the horizontal dimension, the observer may effectively
apply an internal vertical window roughly proportional to the
horizontal stimulus window.

If this is the case, the extent of vertical summation will also
increase as the horizontal window is enlarged, which benefits the
observer when the noise is 2D as in our experiment, but not when
the noise is 1D, as in Kersten’s experiment. This predicts that
summation will be more effective in the high-noise condition for
our stimuli than for Kersten’s.

2. Static versus dynamic noise. It is known that temporal sen-
sitivity increases as a function of visual eccentricity (Allen and
Hess, 1992). Therefore, it is possible that the temporally varying
noise used by Kersten was more effective at masking the grating
signal away from the fovea. This would predict a reduction in the
benefit of summation in Kersten’s high-noise condition.

Future experimental work could help to determine more pre-
cisely how these two factors determine the effects of stimulus
noise on summation.

Previous methods for nonlinear systems identification

In this study, we have developed and applied a method for iden-
tifying the nature of local linear filters underlying detection of
global stimuli, in the context of a nonlinear pooling network. In
the neurosciences, techniques for nonlinear systems identifica-
tion have perhaps been most widely explored for the problem of
inferring nonlinear kernels mapping an input stimulus to the
sequence of recorded spikes generated by a single neuron.

One approach is to use a second-order Wiener/Volterra ex-
pansion of the mapping (Marmarelis and Marmarelis, 1978; Vic-
tor, 1992), modeling the nonlinearity as quadratic. Neri (2004)
explored an extension of this approach to behavioral data and
demonstrated its application to a low-dimensional visual stimu-
lus. Whereas this approach is general, it increases the degrees of
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freedom of the model quadratically, making it impractical for
larger visual stimuli. Neri (2004) relied on 12,500 trials for his
low-dimensional example (n = 13). Scaling this up to the n =
256 X 256 pixel images used here would require roughly 300
billion trials.

An alternative approach is spike-triggered covariance analysis
(de Ruyter van Steveninck and Bialek, 1988; Victor, 1992; Bialek
and de Ruyter van Steveninck, 2005; Schwartz et al., 2006), which
uses the covariance of the spike-triggered stimulus ensemble to
identify a low-dimensional linear subspace containing the non-
linear neural kernel. This approach reduces the number of free
parameters from O(n”) to O(kn), where k is the (hopefully small)
dimensionality of the subspace, plus the parameters required to
model the low-dimensional nonlinear kernel.

There remain issues in the practical application of the method
to the psychophysical detection of global stimuli. First, although
the method ultimately uses only O(kn) parameters, it does re-
quire explicit computation of the O(n?) coefficients of the cova-
riance matrix, which can be problematic for realistic stimulus
images.

Second, STC analysis relies heavily on the assumption that the
subspace containing the nonlinear mapping is of very low dimen-
sionality. Is this the case for the problem we consider here? Our
results suggest that the mapping can be modeled as a nonlinear
pooling of identical but shifted local linear filters. This implies
that the system is shift invariant, meaning that the eigenvectors of
the covariance matrix must be sinusoids. It appears from our
results that the underlying linear filters are fairly broadband (like
V1 neurons), and so the dimensionality of the subspace is actually
fairly high. Thus, the assumptions of the STC method are not
satisfied.

Defeating the curse of dimensionality that plagues general
higher-order methods for nonlinear systems analysis requires ap-
plication of a priori constraints to reduce the effective dimen-
sionality of the parameter space. Our power spectrum method
achieves this. The key assumption is that the system is stationary
(shift invariant) over retinal space. This means that the covari-
ance matrix is determined by the autocorrelation, which has only
n degrees of freedom, and is given by the inverse Fourier trans-
form of the power spectral density. The shift invariance assump-
tion is also important in that it allows the estimated kernels to be
easily visualized in the Fourier domain and also (with an addi-
tional assumption about the spatial localization of the kernel) in
the space domain.

Most closely related to our approach are methods developed
in a recent study on crowding. Nandy and Tjan (2007) examined
two-way identification of small, eccentrically presented letter
stimuli with and without flankers, assuming an underlying model
in which targets are identified by cross-correlation with a local-
ized internal template. Because of spatial uncertainty, however,
the observer monitors multiple spatially displaced copies of this
internal template. The result is that first-order classification im-
age analysis of error trials reveals a localized template for the
missed letter but not for the false-alarmed letter.

Nandy and Tjan (2007) projected out the first-order missed
component from the noise fields and then computed the auto-
correlation over a limited rectangular region of interest (ROI) of
the image to estimate the spatial features of the template for the
false-alarmed letter. The optimal ROI is estimated using a maxi-
mum likelihood method.

As noted by Nandy and Tjan, (2007) accumulation of the
autocorrelation of noise fields is equivalent to accumulation of
the power spectral density, which is the method we use. Thus,
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although applied in different ways to different problems, the two
methods are closely related. In some ways, our problem is easier,
as 50% of our trials contain only white noise. Restricting our
analysis to signal-absent trials allows us to avoid the problem of
projecting out the first-order classification image. Using a large-
field stimulus also allows us to directly determine the ROI mon-
itored by the observer, without using maximum likelihood
techniques.

Whereas Nandy and Tjan (2007) do not explicitly model how
multiple channels are combined, we focus specifically on the fact
that assuming an energy model of pooling makes the system lin-
ear in the power spectrum domain, thus allowing for unbiased
and efficient estimation of the classification image. Explicit test-
ing of the energy model versus probability summation and other
alternative models against the human data supports this assump-
tion. Furthermore, our mathematical modeling of the summa-
tion slope predicted by an energy model, including the effects of
spatial uncertainty, shows that the rate of decline of contrast
thresholds as a function of stimulus width (slopes on the order of
—0.3) is what one would expect from such an energy model.

Efficiency

The primate visual system has evolved to allow reliable visual
detection even when object contrast is poor because of low-light
conditions or camouflage. When the exact stimulus parameters
(location, size, shape, etc.) are known and limiting noise can be
approximated as additive, Gaussian and white, the most efficient
detection strategy is matched filtering, which involves cross-
correlation with a template matched to the known stimulus
(Green and Swets, 1966). Under conditions of stimulus uncer-
tainty, this simple strategy may no longer work. Probability sum-
mation (Green and Swets, 1966; Quick, 1974; Graham and
Rogowitz, 1976; Graham, 1977; Sachs et al., 1980; Solomon,
2002) has long been a popular model for information pooling in
the brain under such conditions. However, performance is poor
compared with a system that pools responses quantitatively
(Green and Swets, 1966).

The narrowband incoherent detector, based on a quadrature pair
of global detectors, is the maximum likelihood grating detector
when the phase is completely uncertain (Kay, 1998) and is a much
more efficient alternative. However, this global detector still requires
the brain to maintain large global templates with precise internal
phase coherence. In contrast, existing physiological evidence sug-
gests a flexible, compositional system based on nonlinear combina-
tions of local detectors, yielding global detectors with a balance of
selectivity and invariance (Cadieu et al., 2007; Connor et al., 2007).
The local energy model is of this class, yielding superior detection
ability compared with probability summation, without the global
coherence requirements of the narrowband detector. Qualitatively
similar local energy mechanisms seem to be common to a diversity
of neural computations in auditory (Green and Swets, 1966) and
visual (Adelson and Bergen, 1985; Morrone and Burr, 1988; Landy
and Bergen, 1991; Emerson et al., 1992; Heitger et al., 1992; Mana-
hilov and Simpson, 1999; Goris et al., 2009) cortex. Thus, the brain
seems to have evolved a relatively efficient and general-purpose
strategy for the neural pooling of visual information, even in the face
of uncertainty.
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