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Network Analysis Reveals Increased Integration during
Emotional and Motivational Processing

Joshua Kinnison, Srikanth Padmala, Jong-Moon Choi, and Luiz Pessoa
Department of Psychology, University of Maryland, College Park, Maryland 20742

In recent years, a large number of human studies have investigated large-scale network properties of the brain, typically during the
resting state. A critical gap in the knowledge base concerns the understanding of network properties of a focused set of brain regions
during task conditions engaging these regions. Although emotion and motivation recruit many brain regions, it is currently unknown
how they affect network-level properties of inter-region interactions. In the present study, we sought to characterize network structure
during “mini-states” engendered by emotional and motivational cues investigated in separate studies. To do so, we used graph-theoretic
network analysis to probe network-, community-, and node-level properties of the trial-by-trial functional connectivity between regions
of interest. We used methods that operate on weighted graphs that make use of the continuous information of connectivity strength. In
both the emotion and motivation datasets, global efficiency increased and decomposability decreased. Thus, processing became less
segregated with the context signaled by the cue (potential shock or potential reward). Our findings also revealed several important
features of inter-community communication, including notable contributions of the bed nucleus of the stria terminalis, anterior insula,
and thalamus during threat and of the caudate and nucleus accumbens during reward. Together, the results suggest that one way in which
emotional and motivational processing affect brain responses is by enhancing signal communication between regions, especially be-

tween cortical and subcortical ones.

Introduction

The past years have witnessed an explosion in the investigations
of how brain regions are organized into networks. Network anal-
ysis of neuroimaging data has focused almost exclusively on char-
acterizing the large-scale properties of resting-state datasets in
which participants lay passively in the scanner without perform-
ing an explicit task (Bullmore and Sporns, 2009; Wang et al.,
2010). However, a critical gap in the knowledge base concerns the
understanding of network properties of a focused set of brain
regions during task conditions engaging these regions.

In the present study, we sought to characterize network struc-
ture during “mini-states” engendered by emotional and motiva-
tional cues. Previous studies have identified a number of regions
involved in threat processing, including dorsomedial prefrontal
cortex (PFC), anterior insula, bed nucleus of the stria terminalis
(BNST), and thalamus (Dalton et al., 2005; Chandrasekhar et al.,
2008; Mobbs etal., 2010; Somerville etal., 2010; Choi et al., 2012).
Reward processing engages, among others, dorsomedial PFC and
ventral/dorsal striatum (Savine and Braver, 2010; Aarts et al.,
2011; Padmala and Pessoa, 2011). Little is known, however,
about how threat and reward influence network properties of
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functional interactions across the many brain regions recruited
by these manipulations.

To address this question, two distinct paradigms were inves-
tigated in which emotional/motivational cues preceded the exe-
cution of a response—conflict task (see Fig. 1). In the emotion
task, participants viewed an initial cue that indicated whether
they were in a threat or safe trial, whereas in the motivation task,
participants viewed an initial cue that indicated whether they
were in a reward or control trial. Here, we used graph-theoretic
measures to characterize emotional and motivational processing.
Accordingly, our analyses focused on responses generated to the
cues themselves and not on the cognitive task that was performed
later in the trial.

It has been proposed that increases in functional connectivity
can be interpreted as evidence for increased functional integra-
tion (Friston etal., 1997). Whereas changes in functional connec-
tivity have been reported many times in the emotion and
motivation literatures (Pessoa et al., 2002; Harsay et al., 2011),
previous studies have not investigated how functional connectiv-
ity is potentially altered simultaneously across all regions engaged
by emotional/motivational stimuli. We were particularly inter-
ested in evaluating the roles of key brain regions, such as the
BNST and anterior insula during threat and the caudate and
nucleus accumbens during reward. Because the analyses used
here consider the entire correlation matrix (i.e., the pairwise
functional connectivity between every pair of regions), they are
able to probe general properties of information segregation and
integration (Bullmore and Sporns, 2009). Specifically, we applied
a community-detection algorithm to the set of regions robustly
engaged by threat and, separately, reward and compared, among
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Experimental paradigms. In both tasks, an initial cue signaled the trial condition: safe and threat in the emotion study, and control and reward in the motivation study. A, Subjects

performed a response— conflict task under two contexts, safe and threat. During the threat condition (shown here), a cue stimulus (diamond) signaled that a mild electric shock could occur during
the delay period after cue offset and before the target display (independently of task performance). During the subsequent target phase, participants were asked to indicate whether the picture
contained a house or a building, while ignoring the superimposed word. During the safe condition (data not shown), the trial structure was identical, except for the shape of the cue stimulus
(rectangle) and the fact that shocks were never administered during the delay period. B, Subjects performed a response— conflict task under two contexts, control and reward. During the reward
condition (shown here), a cue stimulus (“$20”) signaled that participants would be rewarded for fast and correct performance; during the control condition (not shown here), a cue stimulus (“$00”)
signaled that no reward was involved. During the subsequent target phase, participants were asked to indicate whether the picture contained a house or a building, while ignoring the superimposed
word. After the target stimulus, subjects were informed about the potential reward and about the total points accrued.

others, global efficiency and decomposability measures that have
been used across many applications of network analysis
(Newman, 2010).

Materials and Methods
Emotion dataset
For additional details, see Choi et al. (2012).

Subjects. The study was approved by the Institutional Review Board of
Indiana University (Bloomington, IN). Data from 41 participants (21 *
2.40 years old; 22 females) were used who were free from psychological
and neurological conditions as measured via self-report. Participants
were right-handed, had normal or corrected-to-normal vision, and gave
informed written consent.

Stimuli and behavioral paradigm. Each trial started with the presenta-
tion of a rectangle- or diamond-shaped cue stimulus (750 ms) that indi-
cated the experimental condition (safe, threat), followed by a 1.75-5.75 s
variable delay period. The threat cue, which was counterbalanced across
participants, indicated that a mild electric shock could be delivered dur-
ing the delay period (independently of task performance). To calibrate
the intensity of the electric shock, each participant was asked to choose
his/her own stimulation level immediately before functional imaging,
such that the stimulus would be “highly unpleasant but not painful.”
After each run, participants were asked about the unpleasantness of the
shock and were asked to, if needed, recalibrate it. Shocks were adminis-
tered with an electrical stimulator (Coulbourn Instruments) on the
fourth (“ring”) and fifth (“pinky”) fingers of the nondominant left hand.
During the threat condition, physical shocks were administered on 33%
of the trials (participants were not informed about the probability of
shock). Skin conductance response data were collected using the MP-150
system (BIOPAC Systems) at a sampling rate of 250 Hz by using MRI-
compatible electrodes attached to the index and middle fingers of the left
hand.

After the delay, the target display was presented for 500 ms, followed
by a 1.75-5.75 s variable intertrial interval (ITI). During the target phase,
participants performed a response—conflict task (Fig. 1 A). Both delay
and ITI durations were selected from an exponential distribution favor-
ing shorter intervals and helped in the robust estimation of separate cue-
and target-related responses.

Each participant performed six “runs” of the main task (seven runs for
one participant). Each run consisted of 54 trials, resulting in a total of 324
trials. Because the current study focused exclusively on the cue phase, we
pooled the cue phase data from all trials (independent of target phase
congruency) for each condition (safe, threat). After deletion of the actual
physical shock trials and the subsequent safe trials, there were a total of
108 trials per cue condition.

MR data acquisition. MR data were collected using a 3 tesla Siemens
TRIO scanner (Siemens Medical Systems) with a 32-channel head coil
(without parallel imaging). Each scanning session began with a high-
resolution MPRAGE anatomical scan (TR, 1900 ms; TE, 4.15 ms; TI,
1100 ms; 1 mm isotropic voxels; 256 mm field of view). Subsequently, in
each functional run of the main experiment, 169 EPI volumes were ac-
quired with a TR of 2500 ms and TE of 25 ms. Each volume consisted of
44 oblique slices with a thickness of 3 mm and an in-plane resolution of
3 X 3 mm (192 mm field of view). Slices were positioned ~30 ° relative to
the plane defined by the line connecting the anterior and posterior com-
missures to reduce susceptibility effects in regions such as the amygdala.

fMRI data analysis. Preprocessing of the data was done using tools
from the AFNI software package [http://afni.nimh.nih.gov/afni (Cox,
1996)], and standard procedures were used (Choi et al., 2012). Cue-
related responses were estimated starting from event onset to 15 s after
onset using cubic spline basis functions (thus, no shape assumptions
were made). As an index of cue activation, we averaged the estimated
responses at 5 and 7.5 s after stimulus onset (as determined via the
spline-based estimates) for the safe and threat conditions, separately.
Note that correlations between cue and target regressors were modest
(=0.34), allowing us to separately estimate cue and target phase re-
sponses. Because the cue was always followed by the delay period, no
attempt was made to separate cue responses from those during the delay
period. Thus, the responses estimated with respect to cue onset com-
bined these two components.

Regions of interest definitions. Regions of interest (ROIs) were based on
5-mm-radius spheres centered on peak voxels of the contrast threat ver-
sus safe during the cue phase defined at the group level.

Estimation of trial-by-trial responses at cue phase. Cue-related re-
sponses were estimated on a trial-by-trial basis via the method described
previously (Rissman et al., 2004). For each participant, a design matrix
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was set up such that the cue phase of each correct trial was modeled as a
separate event, and the target phase of those trials was modeled in a
standard way using a single regressor for all the trials of each congruency
condition. Response estimates for the cue phase of each trial, as well as for
the target phase for each condition, were obtained by convolving regres-
sors with the canonical hemodynamic response (Cohen, 1997). Actual
physical shock trials, the subsequent safe trials, and error trials were
modeled using additional regressors of no interest. Importantly, correla-
tions between any single-trial cue regressor and target phase regressors
was low (r < 0.25), thus providing meaningful estimates for single trials.
However, it should be stated that, for some individual trials, some
“bleed-over” may have occurred. For an evaluation of this method in the
context of functional connectivity analysis, see Zhou et al. (2009). For
applications of this technique in regular connectivity analysis, see
Padmala and Pessoa (2011) and Choi et al. (2012).

Motivation dataset
For additional details, see Padmala and Pessoa (2011).

Subjects. The study was approved by the Institutional Review Board of
Indiana University. Data from 50 participants (22 * 5 years old; 28
females) were used who were free from psychological and neurological
conditions as measured via self-report. Participants were right-handed,
had normal or corrected-to-normal vision, and gave informed written
consent.

Stimuli and behavioral paradigm. Each trial began with a cue indicating
the motivation condition (“$00” or “$20”) shown for 750 ms, followed
by a 2—6 s variable delay period. The reward cue indicated that partici-
pants had the potential to earn extra money based on fast and accurate
performance (totaling $20). After the delay, the target display was pre-
sented for 1000 ms, during which participants performed a response—
conflict task (Fig. 1B). After 200 ms from the offset of the target (not
shown in Fig. 1 B), participants received visual feedback for 800 ms con-
sisting of the total number of points won on the trial, as well as their
cumulative earnings (in points) until that moment in time. Finally, a2-6
s ITI containing a blank screen terminated the trial. Both interstimulus
interval and ITI were selected from an exponential distribution favoring
shorter intervals and helped in the robust estimation of separate cue- and
target-related responses.

Each participant performed six runs of the conflict task. Each run
consisted of 36 trials, resulting in a total of 216 trials. As in the emotion
dataset, because the analysis focused exclusively on the cue phase, we
pooled the cue phase data from all trials (independent of target phase
congruency) for each cue condition (control, reward). A total of 108
trials per cue condition were used.

MR data acquisition. Parameters were the same as in the emotion
dataset, with the exception that each main run was collected with 165
volumes.

MRI data analysis. Data analysis followed the same steps as in the
emotion dataset. Again, correlations between cue and target regressors
were modest (=0.37), allowing us to separately estimate cue and target
phase responses. Because the cue was always followed by the delay period,
again, no attempt was made to separate cue responses from those during
the delay period.

ROI definitions. ROIs were based on 5-mm-radius spheres centered on
the peak voxels of the contrast reward versus control during the cue phase
at the group level.

Estimation of trial-by-trial responses at cue phase. Data analysis fol-
lowed the same procedures used in the emotion dataset. Again, correla-
tions between any single-trial cue regressor and target phase regressors
was low (r < 0.20), thus providing meaningful estimate for single trials.

Network construction

Individual level. Networks were constructed first at the participant level,
with two networks per participant. In what we refer to as the emotion
dataset, safe and threat networks were constructed. In what we refer to as
the motivation dataset, control and reward networks were constructed.
In the emotion dataset, nodes corresponded to ROIs defined via the
contrast of threat > safe, as defined in our previous study (Choi et al.,
2012). A total of 16 ROIs were used (Fig. 24, Table 1), 13 of which were
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exactly as reported previously. The three regions added were subcortical
counterparts to those observed in the right hemisphere, specifically, left
thalamus, left BNST/caudate, and left basal forebrain. Although these did
not survive the thresholding used in the previous report, they survived at
p < 0.001, uncorrected for multiple comparisons, and were included
here so that bilateral subcortical regions could be considered.

In the motivation dataset, nodes corresponded to ROIs defined via the
contrast of reward > control, as defined in our previous study (Padmala
and Pessoa, 2011). A total of 22 ROIs were used (Fig. 2B, Table 2), which
corresponded to the regions defined in our previous study with the ex-
ception of the visual regions, which were not used here to keep the emo-
tion and motivation networks of similar size and given the present goal of
characterizing the interactions between frontoparietal regions and sub-
cortical ones.

For each dataset, two connectivity matrices were defined based on the
functional connectivity between all pairs of regions (emotion dataset:
safe and threat; motivation dataset: control and reward). Functional con-
nectivity was determined based on trial-based cue phase responses from
all pairs of regions. Whereas regular Pearson’s correlation is frequently
used as a measure of functional connectivity in network analysis of fMRI
data, here we used a robust measure of connectivity to mitigate the po-
tential impact of “extreme” points that frequently distort nonrobust
measures of linear association. To do so, we used robust regression by
using reweighted least squares with a bisquare weighting function (Street
et al., 1988) available in MATLAB (MathWorks) as the function robust-
fit. Specifically, we calculated Pearson’s r( X, Y) product-moment corre-
lation using the reweighted trial-based estimates to determine the N X N
connectivity matrix, where N was the number of ROIs in the given
network:

b = cov(XpgweicnTep YreweicHTED) VAt (XpewEiGHTED)>
r(X,Y) = b X SD(XREWEIGHTED)/SD(YREWEIGHTED)>

where cov, var, and SD, are covariance, variance, and standard deviation,
respectively.

Finally, negative edge weights (i.e., negative correlations) were set to
zero. Because many network measures are incapable of handling negative
edge weights, a common practice is to consider the positive and negative
weights separately (Schwarz and McGonigle, 2011) or ignore negative
correlations entirely (Rubinov and Sporns, 2010). In the present case, we
found no evidence of meaningful negative correlations. Over all subject-
level networks, only a median of 0.4% of edges were negative. Impor-
tantly, at the group-level networks (see below), no negative weights were
present.

Group level. To generate a group-level network, individual data were
collapsed into a median correlation matrix. This was done before remov-
ing negative weights. At the group level, there were thus four networks:
safe and threat (emotion dataset), as well as control and reward (moti-
vation dataset).

Network analysis

Data analysis was performed in MATLAB. Global efficiency measures the
average strength of the shortest paths in the network and can be inter-
preted as the overall “efficiency of communication.” Minimizing the cost
of communication over the most direct paths in the network affords
more efficient information transfer throughout the network. Global ef-
ficiency requires as input a measure of node dissimilarity, or the “cost” of
a connection, which was defined as the inverse of the functional connec-
tion weight (i.e., 1/w). Note that a value of zero does not pose problems in
this respect because in such cases the algorithm is designed to handle the
exception (Brain Connectivity Toolbox developed by O. Sporns, Indiana
University, Bloomington, IN). More formally, global efficiency E is de-
fined as follows:

1
n(n — 1) i,jevdij’
i#j
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Emotion study

Figure 2.
of the motivation dataset. For abbreviations, see Table 2.

where 7 is the number of nodes in the network, V'is the set of nodes, and
d;; is the cost of the shortest path between nodes i and j.

Researchers in network theory have proposed a measure they call
“modularity” to characterize the extent to which “like is connected to
like” in a network (Newman, 2010). In a nutshell, it indicates the extent
to which networks can be decomposed into subnetworks. Unfortunately,
the term modularity has many unintended connotations in cognitive
science. Because of that, we have chosen to discuss our results in terms of
“decomposability.” However, because modularity is a technical term in
network theory, to avoid confusion, we retain this term in the formal
description provided here in Materials and Methods.

For weighted networks, the modularity Q of a given set of community
assignments for a graph is a measure of the total weight of connections
found within the assigned modules versus the total weight of connections
predicted in a random graph with equivalent degree distribution. A pos-
itive Q indicates that the number of intramodule connections exceeds
those predicted statistically. Thus, modularity optimization returns the
set of node assignments that provide the highest Q, that is, the optimal
“modular” decomposition of the network (i.e., graph). More formally,
modularity Q was defined as follows:

FTA(V, V) AV, VN2
QP) = E{Aw, V) (A(v, V)> ]

c=1

where V is the set of all nodes, P, is a partitioning of the network into k
communities, V, is the set of nodes within community ¢, w(i,j) is the weight
of connection between nodes i and j, and A(V',V") Siev,jer W(,j) is
the sum of all edges between node set V' and node set V" (for additional
discussion, see White and Smyth, 2005). Community detection was per-
formed via Clauset-Newman—Moore modularity optimization (Clauset

A, Anatomical slices showing ROIs used in the network analysis of the emotion dataset. For abbreviations, see Table 1. B, Anatomical slices showing ROIs used in the network analysis

et al., 2004) on the group-level network. Briefly, community detection
determines a partition of a network into subnetworks, such that each
node is assigned to one community, and Q assumes a maximal value.

Whereas community detection is many times applied to sizeable net-
works (say, >100 nodes), many standard benchmarks use smaller net-
works, such as Zachary’s network of karate club members with 34 nodes
(Zachary, 1977), comparable in size with the networks investigated here.
Nevertheless, we further evaluated the quality of the community struc-
ture detected in the two datasets. According to the definition of network
modularity, a graph has community structure with respect to a random
graph of equal size and expected degree distribution. Thus, the modular-
ity maximum of a graph reveals a significant community structure only if
it is appreciably larger than the modularity maximum of random graphs
of the same size and expected degree distribution (Fortunato, 2010). The
significance of the modularity maximum Q,,, for a graph can be esti-
mated by calculating the maximum modularity for many realizations of
the null model obtained from the original graph by randomly rewiring its
edges. The statistical significance of Q,,,x is indicated by the distance of
Quax from the null model average (Qy,4) in units of the SD oy, i.e., by
the z-score:

QMAX
z =

- (QNM)

ONm

If zis substantially >1, Qy,,x indicates strong community structure, and
cutoff values of 2-3 are customary (Fortunato, 2010). Here, we evaluated
community structure by using the equation above and by using 100
network randomizations via a recently suggested method (Rubinov and
Sporns, 2011).

To improve the robustness of community assignments, community
detection was done at the group-level network. However, it was impor-
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Table 1. ROI peak locations for emotion study (Talairach coordinates)
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Table 2. ROI peak locations for motivation study (Talairach coordinates)

Threat > safe

Reward > no-reward

Location X y z Label Location X y z Label
Parietal/temporal Parietal
Inferior parietal gyrus/superior temporal gyrus Intraparietal sulcus
-5 =25 23 IPG_L R 24 —54 40 IPS_R
R 62 —37 23 IPG_R L =27 —52 41 IPS_L
Frontal Inferior parietal lobe
Posterior inferior frontal gyrus L —28 —42 4 IPL_L
L —58 5 1 plFG_L Frontal
Posterior inferior frontal gyrus/mid-insula Rostral anterior cingulate cortex
R 50 -1 8 plFG_R R 13 39 8 rACC_R
Supplementary motor area Medial prefrontal cortex
R 8 2 56 SMA_R R 6 8 39 MPFC_R
Mid-insula L -8 7 39 MPFC_L
R 32 5 1 mins_R Supplementary motor area/pre-SMA
Medial prefrontal cortex R/L 0 —6 57 SMA_R
L —4 5 32 MPFC_L Frontal eye field
R n 5 38 MPFC_R R 34 -1 48 FEF_R
Anterior insula L =31 —12 50 FEF_L
L =31 17 1M alns_L Precentral gyrus
R 29 20 n alns_R L —43 —4 37 PCG_L
Subcortical Middle frontal gyrus
Thalamus R 26 46 25 MFG_R
R 8§ -1 8  Thal_R L —-28 35 29 MFG_L
L —10 —13 8  Thal_L Anterior insula
BNST/caudate R 31 17 il alns_R
R 8 5 2 BNST_R L =35 26 5 alns_L
L —-10 5 5 BNST_L Subcortical
Basal forebrain Midbrain
R 14 -1 —4 BFR R 7 =15 -8 MB_R
L —14 -1 —4 BFLL L =10 —18 -8 MB_L
L Left; R, right. Putamen
R 17 9 -2 Put_R
L -19 9 2 Put_L
Caudate
tant to establish that the community assignments (e.g., BNST belongs to R 10 9 2 Caud_R
a specific community) were representative of the networks at the indi- L —10 9 2 Caud_L
vidual level. First, we compared the community assignments obtained at Nucleus accumbens
the group level with those obtained for every individual (based on R 13 6 -7 NAcc_R
individual-level data) in terms of Hamming distance (see Results). Sec- L -3 6 -7 NAcc_L
ond, we used the meta-clustering algorithm (Strehl and Ghosh, 2003), L, Left; R, right.

which allowed us to find consensus communities.

Network analysis in general and community detection in particular are
complex problems. Although these methods are often applied to larger
networks, they are also applicable to smaller ones, as here. A well-
established problem with community detection is that of resolution limit
(Fortunato and Barthélemy, 2007). In many cases, modularity optimiza-
tion does not subdivide a large number of communities, such that itis not
possible to rule out that they are in fact composed of subclusters. Given
that our networks are small to start with, this problem is not serious here,
but it is possible that the communities detected could be further subdi-
vided, although that was not our goal. Furthermore, as stated below, our
aim was to compare network properties as a function of condition. A
potential problem with small networks as investigated here is that estab-
lishing random networks for comparison purposes may be suboptimal.
Critically, however, we do not apply such randomizations to determine
the statistical significance of our results, as done in some other work
(Lancichinetti et al., 2010). Instead, we use the comparison of network
metrics across participants for statistical purposes. In other words, our
goal was not to establish that communities are “significant” but to com-
pare parameters obtained from the network decomposition.

Statistical tests

To perform statistical analysis, modularity, global efficiency, as well as mean
edge weight, within community and between community were calculated
first at the subject level (community assignment was based on the group-
level partitions). To determine statistical significance, values calculated at the
subject level were compared via the Wilcoxon’s signed-rank test, because no
assumptions of normality were made on the measures.

We also evaluated changes in the strength of individual connections as
a function of context (e.g., threat vs safe). To focus our tests, we com-
pared only connections between communities. This entailed 60 tests in
the emotion dataset (see Fig. 5A) and 117 tests in the motivation dataset
(see Fig. 8A). Correction for multiple comparisons used the false discov-
ery rate (FDR) correction method (Benjamini et al., 2006), which is more
sensitive when larger numbers of simultaneous tests are performed.

Results

We applied graph-theoretic analysis to both the threat and re-
ward datasets by considering ROIs as nodes and the trial-by-trial
functional connectivity between each pair of ROIs as edge (i.e.,
connection) strength. Based on the pairwise functional connec-
tivity, the first step was to investigate community structure,
namely potential “coherent” groupings of nodes. Community
detection is based on the proportion and/or strength of within- to
between-community edges, on the intuition that a good commu-
nity is densely clustered compared with its surroundings (e.g., in
the World Wide Web, communities may correspond to groups of
pages dealing with the same or related topics). Community de-
tection identifies partitions in networks that maximize specific
optimization criteria. They should not be viewed, however, as
“true” decompositions of a network, because many possible ways
of subdividing the nodes lead to comparable solutions (i.e., val-
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ues close to the maximum) (Good et al.,
2010). The central goal of the present
study was thus to probe differences in
network properties as a function of emo-
tional and motivational stimulus process-
ing. Two main network-level properties
(i.e., those that considered all nodes and
edges) were computed. The first, global
efficiency, provides a measure of integra-
tion. A network with higher global effi-
ciency will have “shorter paths.” Path
distance between two nodes can be de-
fined as the inverse of the functional con-
nectivity between them (the higher the
correlation, the shorter the distance). A
path between two nodes that involves in-
termediate nodes is equivalent to the sum
of the individual path lengths. The second
network-level property, decomposability,
indicates how easily a network can be di-
vided in terms of smaller subnetworks (i.e., communities); de-
creased decomposability reflects less segregation, or equivalently,
increased integration, between the different communities. Note
that decomposability refers to the network measure called mod-
ularity, but we avoid using the latter because of its unintended
connotations in cognitive science, such as “encapsulation” (Fodor,
1983). Finally, unlike previous investigations that have focused on
analyzing brain networks in terms of binary connectivity graphs, we
used methods that operate on weighted graphs that make use of the
continuous information of connectivity strength.

Figure3.

abbreviations, see Table 1.

Emotion dataset

Initially, we considered the set of brain regions that exhibited
greater responses to threat than to safe cues during the emotion
study (Choi et al., 2012). A total of 16 regions were identified
(Table 1), including the anterior insula, inferior frontal gyrus,
and medial PFC, cortically, and thalamus, BNST/caudate, and
basal forebrain, subcortically. These 16 regions comprised the
nodes of the network. Trial-by-trial functional connectivity be-
tween all pairs of regions during the safe and, separately, threat
conditions comprised the edge strength of the safe and threat
networks, respectively (see Materials and Methods).

Community structure

We applied Clauset—-Newman—Moore community detection to
the set of 16 regions. Community detection was used, separately,
during the safe and threat conditions on the group-level connec-
tivity matrix. For both conditions, the network divided into two
communities, one comprising cortical regions and another compris-
ing subcortical regions (Fig. 3). Because the partitioning was per-
formed by using the group-level connectivity matrix, they represent
a sort of “consensus” decomposition. At the same time, although
data at the individual level are noisier, the group-level communities
were representative of the communities found at the individual
level. Specifically, the median Hamming distance between an indi-
vidual’s community assignment and the group-level community as-
signment was 1 for the analysis during threat and 1 for the analysis
during safe; thus, on average, one node had different assignments
when comparing individual networks with the group network. An
additional consensus analysis (see Materials and Methods) also con-
verged on the two communities involving subcortical-only and
cortical-only regions, with the exception that it placed the right sup-
plementary motor area in a separate community. Inspection of the
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Emotion: Safe

Force layout depiction of the group-level network in the emotion dataset during the safe condition. Nodes are colored
to show community organization (red for subcortical community, teal for cortical community). Edges are also colored according to
communities with between-community edges colored purple. For visualization purposes, edges were thresholded to leave only
the ~50% strongest ones. Visualization done with Gephi 0.8 beta, making use of the Force Atlas and label-adjust layout tools. For

Table 3. Network- and community-level measures

Network measure Threat—safe Reward- control
Global efficiency 1 (p = 0.0054) 1 (p = 0.0005)
Decomposability (modularity Q) ! (p = 0.0019) ! (p = 0.0002)
Mean edge weight within subcortical 1 (p = 0.0341) NS (p = 0.1080)
Mean edge weight within cortical NS (p = 0.4800) 1 (p = 6.67e-4)
Mean edge weight between communities 1 (p = 4.5620e-4) 1 (p = 7.16e-4)

Arrows denote the direction of change, and items in bold are statistically significant. NS, Nonsignificant.

individual-level networks revealed that this result was primarily
driven by two participants who had three instead of two detected
communities, with the “extra” community involving the right sup-
plementary motor area; constraining the consensus algorithm to
detect only two communities revealed the assignments described
above. Based on these results, we used the group-level community
assignment in the subsequent analyses.

We also evaluated the quality of the community structure.
This can be accomplished by comparing the decomposability
value obtained for a network with the corresponding decompos-
ability of a random graph of the same size and expected degree
distribution (see Materials and Methods). The comparison is typ-
ically expressed as a z-score, and the values observed were 12.4 for
safe and 10.6 for threat, indicating strong community structure in
both cases (i.e., z much larger than 2; for a comment on small
networks, see Materials and Methods).

Network- and community-level measures

Network- and community-level measures were determined dur-
ing safe and threat contexts and contrasted to each other (Table
3). To allow a statistical comparison of the results, measures were
determined at the individual level and contrasted across condi-
tions. The composition (i.e., nodes) of the two communities was
the one determined at the group-level network, but the connec-
tivity matrix was based on each individual’s data.

Global efficiency increased and decomposability decreased
during threat. We evaluated how mean connection weights
changed within and between communities as a function of threat
(i.e., threat vs safe). To do so, changes in connection strength
were considered at the individual level and compared across the
group (via a Wilcoxon’s signed-rank test). Mean connection
weights both between communities and within subcortical com-
munity increased during threat (Table 3). However, in the case of
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Figure 4.  Changes in threat versus safe connectivity for the group-level network in the
emotion dataset. Within-cortical connections are bounded by a teal box, and within-subcortical
connections are bounded by a green box. For abbreviations, see Table 1.

the cortical community, a significant change of connection
strength was not observed; in fact, some connection decreases
were observed (Fig. 4).

Finally, we probed changes in the strength of individual con-
nections as a function of context. We were particularly interested
in considering connections between the two communities. When
corrected for multiple comparisons (via FDR), increases in con-
nection strength were detected as the context changed from safe
to threat (Fig. 5A,B). The polar plots shown in Figure 5C high-
light some of the changes. For instance, the right anterior insula
exhibited significant increases to all subcortical regions but one,
with the largest increases to the right/left BNST, and then to the
right thalamus. Also shown are the changes for the right BNST
and right thalamus.

Control analyses

For the analyses above, ROIs were selected based on the contrast
threat > safe. This selection criterion does not bias the results
reported above for the following reasons. ROIs were selected
based on the “average” response to threat and safe conditions,
whereas the network analysis used trial-by-trial estimates, which
are in fact independent of average responses. Note also that, when
estimating the average responses to the threat and safe conditions
based on standard multiple regression (as done here), the trial-
by-trial fluctuations around the mean are treated as error. Thus,
an increase in the overall correlations is not necessitated by the
selection criterion.

In any case, we formally tested for any influence of the selection
criterion on the observed results. To do so, we evaluated whether
average increases in responses were correlated with increases in
correlated responses between regions based on trial-by-trial data.
Specifically, for each subject, we defined two variables: abs[ (X, ear —
Xaate) = Yenreat — Ysae)], which indicates the difference in average
signal increase between the safe and threat conditions for regions X
and Y;and abs[r(X,Y) yrear — (X, Y) are], which indicates the differ-
ence in correlation between regions X and Y when changing from
safe to threat based on trial-by-trial estimates (in both cases, absolute
values were considered because direction was not important, only
magnitude). After Fisher’s z transforming, we tested whether these
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correlations were significantly different from zero across partici-
pants. The mean correlation was 0.0184 (before transforming), and
the values did not differ significantly from zero (p = 0.3958). Thus,
increases in average differential responses in the emotion dataset did
not generate increases in functional connectivity between regions.
Another potential concern was that some of the present find-
ings were driven by distance between ROIs. Our goal was not to
understand connectivity during specific conditions but differ-
ences in connectivity between conditions. Thus, spatial proxim-
ity would not be expected to have an impact on these differential
relationships. Nevertheless, to test the question formally, we cor-
related the Euclidean distance between ROIs and the differential
connectivity (safe vs threat) for each pair of ROIs. The mean
robust correlation (across subjects) was negligible (r = —0.05,
NS). Furthermore, when we ran the community-detection algo-
rithm on Euclidean distances between regions, the communities
detected did not bear any semblance to the ones reported.

Motivation dataset

Similar to the analysis above, we considered the set of brain re-
gions that exhibited greater responses to reward than to control
cues during the motivation study (Padmala and Pessoa, 2011). A
total of 22 regions were identified (Table 2), including the ante-
rior insula, medial PFC, and middle frontal gyrus, cortically, and
midbrain, caudate, putamen, and nucleus accumbens, subcorti-
cally. These 22 regions comprised the nodes of the network. Trial-
by-trial functional connectivity between all pairs of regions
during the control and, separately, reward conditions comprised
the edge weights of the control and reward networks, respectively
(see Materials and Methods).

Community structure

Community detection was used, separately, during the reward
and control conditions. For both conditions, the network divided
into two communities, one comprised entirely cortical regions
and another comprised subcortical regions and the right rostral
anterior cingulate cortex (ACC) (Fig. 6).

Again, to evaluate the reliability of the community assign-
ments, we determined the median Hamming distance between
an individual’s community assignment and the group-level com-
munity assignment, which revealed a value of 2.5 for the analysis
during reward and a value of 2 for the analysis during control, so
on average, 2.5 and 2 nodes had different assignments when com-
paring individuals with the group network. Thus, although data
at the individual level are noisier, the group-level communities
were representative of the findings at the individual level. An
additional consensus analysis also converged on the communi-
ties identified above. Based on these results, we used the group-
level community assignments in the subsequent analyses.

As done previously, the quality of the community structure
was determined by comparing the observed decomposability
with the corresponding decomposability of a random graph of
the same size and expected degree distribution (see Materials and
Methods). The z-score values observed were 13.0 for control and
13.2 for reward, indicating strong community structure (i.e., z
much larger than 2; for a comment on small networks, see Mate-
rials and Methods).

Network- and community-level measures

Community-level measures were determined during control and
reward contexts and contrasted to each other. Several of the find-
ings when considering the change from control to reward con-
texts paralleled those observed when the changes involved safe
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A, Changes in threat versus safe connectivity between communities for the group-level network in the emotion dataset. Only significant (p << 0.05, FDR corrected) changes are shown

(nonsignificant connections are gray). B, Only between-community edges with significant threat versus safe connectivity changes are shown (p << 0.05, FDR corrected). Node positions and colors
as in Figure 3. Visualization done with Gephi 0.8 beta, making use of the Force Atlas and label-adjust layout tools. C, Polar plots illustrating the changes of key cortical and subcortical nodes from A.
Distance from the dark centered hexagon/decagon corresponds to change in connectivity (threat—safe). Nonsignificant changes were set to zero. For abbreviations, see Table 1.

and threat. Global efficiency increased and decomposability de-
creased during reward. We also evaluated how mean connection
(i.e., edge) weights between and within communities changed
during reward (relative to control) (Fig. 7). Mean connection
weights increased between communities and within the cortical
community (Table 3). No significant difference was observed
within the subcortical community.

We also probed changes in the strength of individual connec-
tions between the subcortical and cortical communities as a func-
tion of context. As shown in Figure 8, A and B, many connections
increased during reward (vs control) and survived multiple com-
parisons. The polar plots show significant changes of the left/
right caudate and right nucleus accumbens (Fig. 8C).

Control analyses

The same control analysis as in the emotion study was performed
here. Again, we evaluated whether average increases in responses
were correlated with increases in correlated responses between re-

gions based on the trial-by-trial data. Specifically, for each subject,
we defined two variables: abs[(X,cward = Xcontrol) — (Yreward —
Y ontror))> Which indicates the difference in average signal increase
between the reward and control conditions for regions X and Y; and
abs[1( X, Y) eward = (X Y) contror]>» Which indicates the difference in
correlation between regions X and Y when changing from control to
reward based on trial-by-trial estimates. After Fisher’s z transform-
ing, we tested whether these correlations were significantly different
from zero across participants. The mean correlation was 0.0017 (be-
fore transforming), and the values did not differ significantly from
zero (p = 0.9069). Thus, increases in average differential responses
in the motivation dataset did not generate increases in functional
connectivity between regions.

To test for the impact of spatial distance, we correlated the
Euclidean distance between ROIs and the differential connectiv-
ity (control vs reward) for each pair of ROIs. The mean robust
correlation (across subjects) was negligible (r = 0.10, NS). When
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Motivation: Control

Figure 6.

tools. For abbreviations, see Table 2.
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Figure7.  Changes in reward versus control connectivity for the group-level network in the
motivation dataset. Within-cortical connections are bounded by a teal box, and within-
subcortical edges are bounded by a green box. For abbreviations, see Table 2.

we ran the community-detection algorithm on Euclidean dis-
tances between regions, different communities were detected rel-
ative to the ones reported for the motivation dataset.

Discussion

Graph-theoretic network analysis was used to characterize how
emotional and motivational mini-states potentially alter func-
tional connectivity between brain regions. Both threat and
reward caused significant changes in network- and community-
level measures, as discussed next.

Emotion dataset

The emotional manipulation involved the threat of shock, which
could occur during the delay interval after the cue stimulus. We
only analyzed trials that did not contain physical shock because
our goal was to understand how shock anticipation/monitoring

Force layout depiction of the group-level network in the motivation dataset during the control condition. Nodes are
colored to show community organization (red for subcortical community, teal for cortical community). Edges are also colored
according to communities with between-community edges colored purple. For visualization purposes, edges were thresholded to
leave only the ~40% strongest ones. Visualization done with Gephi 0.8 beta, making use of the Force Atlas and label adjust-layout
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affected brain function. The effectiveness
of the manipulation was confirmed by the
observations that skin conductance re-
sponses increased after threat cues and
that, behaviorally, response interference
increased during threat trials (Choi et al.,
2012).

Community detection applied to re-
gions responsive to threat monitoring iden-
tified two subnetworks, one comprising
cortical regions and another comprising
subcortical regions. As stated, communities
should not be viewed as “true” decomposi-
tions of a network. Real-world networks
have a large number of partitions whose de-
composability (i.e., graph modularity) val-
ues are close to the global maximum
(Fortunato, 2010). The central goal of the
present study was thus to probe differences
in network properties as a function of emo-
tional and motivational stimulus process-
ing. During threat, the tendency of the
overall network to form two separate
communities, that is, decomposability, decreased. In other
words, the two communities became less clearly defined during the
threat condition. In a related manner, global efficiency increased
during threat. Global efficiency is a measure of integration and pro-
vides one way to estimate the potential for functional integration
between brain regions. As suggested by Achard and Bullmore
(2007), it provides a measure of the capacity of the network for
information transfer between nodes. Together, these results suggest
that responses generated by a given region were capable of affecting
another region more effectively during threat.

It is relevant to discuss the findings regarding the BNST given
the importance of this region in anxiety-related mechanisms
(Davis et al., 2010; Somerville et al., 2010). During threat, the
BNST increased functional connectivity with both anterior and
mid-insula, as well as regions of dorsomedial PFC (Fig. 5). In
contrast, the amygdala, which is engaged during the processing
of more punctate conditioning stimuli used in aversive condi-
tioning studies (Btichel et al., 1998; LaBar et al., 1998; Lim et al.,
2009), did not exhibit enhanced response during threat cues (vs
safe) and thus was not included in the network analysis (for ad-
ditional discussion concerning the amygdala, see Choi et al.,
2012). The thalamus, another region implicated in threat pro-
cessing (Kalin et al., 2005), also exhibited increased functional
connectivity with both anterior and mid-insula regions. To-
gether, these results indicate that an important aspect of threat
processing involves enhanced functional integration between
subcortical regions, such as the BNST and thalamus, and cortical
regions, including the insula and medial PFC. These findings
were observed when performance was irrelevant to the adminis-
tration of the negative stimulus (i.e., shock), unlike the situation
in the reward manipulation discussed next.

Motivation dataset

As in the case of emotion, motivation was manipulated via an
initial cue stimulus, which in this case signaled the possibility of
obtaining a reward given correct and fast task performance. The
effectiveness of the motivation manipulation was attested by the
pattern of behavioral performance during the response—conflict
task: subjects were faster and exhibited less response interference
during reward trials (Padmala and Pessoa, 2011).
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Figure8. A, Change in reward versus control connectivity between communities for the group-level network in the motivation dataset. Only significant (p << 0.05, FDR corrected) changes are
shown (nonsignificant connections are gray). B, Only between-community edges with significant reward versus control connectivity changes are shown (p << 0.05, FDR corrected). Node positions
and colors as in Figure 6. Visualization done with Gephi 0.8 beta, making use of the Force Atlas and label-adjust layout tools. C, Polar plots illustrating three key subcortical nodes from A. Distance
from the dark centered polygon corresponds to change in connectivity (reward— control). Nonsignificant changes were set to zero. For abbreviations, see Table 2.

Community detection applied to regions that responded more
strongly to reward versus control cues identified two partitions, one
comprising cortical regions and another comprising subcortical re-
gions in addition to the right rostral ACC. As in the case of threat,
global efficiency increased and decomposability decreased with re-
ward. Furthermore, average between-community connection in-
creased with reward. The involvement of the nucleus accumbens
and the caudate in reward-related processing is well documented
(Haber and Knutson, 2010). In our paradigm, these regions consis-
tently increased their functional connectivity with cortical regions.

Comparing emotion and motivation datasets

The effects of emotional and motivational cues exhibited several
similarities. For example, increased functional connectivity was
observed between communities in both cases. At the network
level, global efficiency increased and decomposability decreased.
Thus, the communities became less segregated with the context

signaled by the cue (potential shock or reward), revealing that
one way in which emotional and motivational processing affect
brain responses is by increasing functional connections across
brain regions.

A notable difference between the results of the two datasets
concerns how functional connectivity changed within the two
communities. In the case of reward, functional connectivity in-
creased in the cortex but was not robustly altered within the
subcortical community. In the case of threat, functional connec-
tivity did not change within cortex but increased within the sub-
cortical community. In fact, in cortex, several changes in
connection strength were numerically negative (i.e., they reduced
with threat). How should we interpret these findings?

Let us consider the motivation dataset first. We have proposed
previously that the effect of reward during perception and cogni-
tion depends on interactions between valuation regions and
frontoparietal regions important for attention and executive con-
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trol (Pessoa and Engelmann, 2010). Such interactions lead to the
upregulation of control and improved behavioral performance
during challenging task conditions (and higher likelihood of re-
ward). Along these lines, Harsay et al. (2011) reported higher
functional connectivity between the caudate and both the frontal
eye field and intraparietal sulcus during the reward condition of
an antisaccade task. In the context of our study, the increased
functional connectivity between the two communities in the mo-
tivation dataset is consistent with these ideas, and they also sug-
gest that the increases in connectivity can be quite broad. For
example, the left/right caudate and the right nucleus accumbens
exhibited increases in functional connectivity to all cortical re-
gions but one.

In terms of the emotion dataset, we and others have proposed
that emotional processing diverts processing resources that are
also needed for executive function. This interference effect is then
proposed to impair cognitive performance (Pessoa, 2009). We
tentatively suggest that the reduced functional connectivity
among some of the cortical areas may have reflected the interfer-
ence effect that the threat of shock exerted on subsequent cogni-
tive performance: it is possible that responses across some of the
cortical regions became less coherent with threat. It is noteworthy
that the left/right anterior insula did not exhibit the same pattern
of reduced functional connectivity to other cortical regions. Dur-
ing threat, not only did these regions increase their correlation
with regions in the subcortical community but to regions in the
cortical community, too. These findings are consistent with the
notion that the anterior insula plays a distinctive role during
threat monitoring (Paulus and Stein, 2006). It also should be
noted that the threat and reward manipulations were asymmet-
ric, such that threat was independent of performance, whereas
reward was contingent on it. Therefore, the differences discussed
here may have partly reflected this distinction.

It is conceivable that any type of comparison between a more
challenging or interesting condition and a less challenging/inter-
esting one would produce some of the results observed here. To
investigate this issue, we repeated our analyses (in the emotion
dataset), but this time using the trial-based target phase responses
from regions that responded more vigorously to incongruent
versus neutral trials. No significant changes in network- or
community-level measures were detected between incongruent
and neutral conditions (all p values >0.15; tests as in Table 3). It
should be noted, however, that a recent MEG study reported that
greater cognitive effort was associated with the emergence of a
more efficient and less modular network topology (Kitzbichler et
al., 2011), indicating that this type of change is not specific to the
emotional and motivational manipulations we probed. Finally,
additional studies are needed to determine how our results gen-
eralize to emotional and motivational processing in different task
contexts beyond the one analyzed here.

Conclusions

Many studies have investigated large-scale network properties of
the brain, typically during the resting state (Wang et al., 2010).
These studies have used a large number of regions, ranging from
~100 to >1000. In the current study, we pursued a different
approach. We focused on a small number of regions (~20) span-
ning cortical and subcortical sites that were robustly engaged by
emotional and motivational manipulations. Our findings re-
vealed a number of important ways in which both emotional and
motivational processing altered functional connectivity, includ-
ing increased global efficiency and reduced decomposability. As
mentioned, a recent MEG study has suggested that greater cog-
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nitive effort is associated with the emergence of a less modular
network topology (Kitzbichler et al., 2011). Given that MEG was
used, it is likely that the changes observed were more directly tied
to cortical processing. The present findings revealed that the pro-
cessing of emotional and motivational stimuli may have a similar
impact on network organization but emphasize enhanced verti-
cal, cortical-subcortical functional integration in a manner that
may be behaviorally appropriate. Potential reward may thus con-
tribute to improved task performance (and reward attainment),
and potential threat may redirect mental resources in the service
of mobilizing the body toward safeguarding the organism against
harm.
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