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Slow population activities (SPAs) exist in the brain and have frequencies below �5 Hz. Despite SPAs being prominent in several cortical
areas and serving many putative functions, their mechanisms are not well understood. We studied a specific type of in vitro GABAergic,
inhibition-based SPA exhibited by C57BL/6 murine hippocampus. We used a multipronged approach consisting of experiment, simula-
tion, and mathematical analyses to uncover mechanisms responsible for hippocampal SPAs. Our results show that hippocampal SPAs are
an emergent phenomenon in which the “slowness” of the network is due to interactions between synaptic and cellular characteristics of
individual fast-spiking, inhibitory interneurons. Our simulations quantify characteristics underlying hippocampal SPAs. In particular,
for hippocampal SPAs to occur, we predict that individual fast-spiking interneurons should have frequency– current ( f–I) curves that
exhibit a suitably sized kink where the slope of the curve decreases more abruptly in the gamma frequency range with increasing current.
We also predict that these interneurons should be well connected with one another. Our mathematical analyses show that the combina-
tion of synaptic and intrinsic conditions, as predicted by our simulations, promotes network multistability. Population slow timescales
occur when excitatory fluctuations drive the network between different stable network firing states. Since many of the parameters we use
are extracted from experiments and subsequent measurements of experimental f–I curves of fast-spiking interneurons exhibit charac-
teristics as predicted, we propose that our network models capture a fundamental operating mechanism in biological hippocampal
networks.

Introduction
Despite constituting only 10 –15% of the total neuronal popula-
tion, the inhibitory population of interneurons forms a critical
component of the mammalian hippocampus underlying a wide
range of population activities. Notably, it generates gamma
rhythms (25–100 Hz) that are thought to be responsible for spa-
tial information and representation of memory (Buzsáki, 2006).
Experimental and modeling studies (Wang and Buzsáki, 1996;
Vida et al., 2006; Bartos et al., 2007; Sohal et al., 2009) ascribe the
ability of the inhibitory population to support gamma rhythms to

the highly connected network of fast-spiking interneurons via
fast GABAergic synapses. The fast kinetics of GABAergic synapses
and the high interconnectivity allow synchronization among
fast-spiking interneurons, thus creating high-frequency popula-
tion activities. However, inhibitory networks also sustain slow
population activities (SPAs) of much lower frequencies (�5 Hz)
(Schwartzkroin and Haglund, 1986; Straub et al., 2000; Papathe-
odoropoulos and Kostopoulos, 2002; Wu et al., 2005b).

In particular, Wu et al. (2002, 2005b) have established that
coherent activity of inhibitory interneurons (including fast-
spiking interneurons) underlies SPAs in mouse hippocampus.
Given the disparity between the timescales of individual cell fir-
ings (�100 Hz) and SPA network frequencies (�5 Hz), how do
we reconcile the apparent paradox that these fast-spiking in-
terneurons with fast synaptic kinetics can support gamma
rhythms as well as SPAs? This timescale paradox is also inherent
in many brain population activities (Bullmore et al., 2009; He
et al., 2010). Thus, its resolution provides insight into the
complexity of brain dynamics, where rhythms of frequencies
spanning four orders of magnitude routinely coexist (Buzsáki
and Draguhn, 2004).

In this article, we focus on the in vitro hippocampal SPAs (Fig.
1A) of Wu et al. (2005b) to explore how both intrinsic and net-
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work characteristics shape slow activities
in networks of fast-spiking interneurons.
A system can have emergent population
slow timescales during a phase transition
(where a network changes global firing pat-
terns) (Landau and Lifshitz, 1980; Plischke
and Bergersen, 2006). We have previously
extracted synaptic constraints during the
ongoing population activity (Ho et al.,
2009). Based on these constraints, we devel-
oped interneuronal network models and
found that SPAs can be generated in model
networks of fast-spiking interneurons with
rapid synaptic properties. From our simula-
tions, we uncovered the relationship be-
tween intrinsic cellular characteristics of
constituent interneurons and the emer-
gence of SPAs in inhibitory networks. Spe-
cifically, individual interneurons must have
frequency–current ( f–I) curves with an
abrupt slope decrease as I increases, a
“kink,” for the inhibitory network to sustain
SPAs. Using mathematical analyses, we
showed that such f–I curves promoted the
coexistence of multiple network firing states
(i.e., network multistability). Population
slow timescales are the result of the network
switching from one state to another due to
excitatory synaptic fluctuations. Further-
more, we experimentally determined that
these f–I characteristics, as required for the
existence of SPAs, are present in CA3 fast-
spiking cells where SPAs robustly occur.

SPAs are also prominent in cortical cir-
cuitries (Steriade et al., 1993; Jarosiewicz
et al., 2002) other than hippocampal net-
works. Cortical SPAs are thought to serve
functions including memory consolida-
tion (Buzsáki, 1989) and synaptic plastic-
ity (Tsukamoto-Yasui et al., 2007). Their
mechanisms are, however, not well un-
derstood in terms of excitatory and inhib-
itory interactions and balances. Although
our work is on GABAergic, inhibition-
based SPAs in hippocampus, our findings
may generalize to other circuitries. Our results shed new light on
the synergistic effects between intrinsic and synaptic properties
underlying SPAs.

Materials and Methods
Experiments
Field potential recordings in hippocampal slices. Hippocampal slices
(thickness, 1 mm) were prepared from 1- to 3-month-old C57BL/6 mice
of either sex, as previously described (Wu et al., 2005a,b). All animal
procedures were performed in agreement with the policies and guide-
lines of the Canadian Council on Animal Care. To achieve sufficient in
vitro perfusion and oxygenation of the 1 mm thick slices, we separated the
dentate gyrus from the CA1 area while keeping functional connections of
the dentate gyrus-CA3 projection. The slices were perfused with an arti-
ficial CSF (ACSF) at 32–33°C. The ACSF contained the following (in
mM): 3.5 KCl, 1.25 NaH2PO4, 125 NaCl, 25 NaHCO3, 2 CaCl2, 1.3
MgSO4, and 10 glucose. Extracellular recordings were made with glass
pipettes filled with a solution containing 200 mM NaCl and 5 mM HEPES,

pH adjusted to 7.4. A CA3 extracellular recording electrode was placed
largely in the somatic or cell body layer.

Spontaneous SPAs were observed to arise in the CA3 area (Fig. 1A) and to
spread to subicular and entorhinal cortical areas (Wu et al., 2006), and si-
multaneous cellular recordings indicated that coherent activities in inhibi-
tory cells underlay these SPAs (Wu et al., 2002, 2005b). These hippocampal
SPAs were also previously referred to as spontaneous rhythmic field poten-
tials in Wu et al. (2005b) and as basal sharp waves in Ho et al. (2009).

Whole-cell recordings of GABAergic inhibitory interneurons. Acute hip-
pocampal slices (thickness, 300 �m) were cut from 18- to-21-day-old
Wistar rats of either sex using a VT1200 vibratome (Leica), as described
previously (Sauer and Bartos, 2010). All animal procedures were performed
in agreement with national and institutional guidelines. For storage and
superfusion of slices, a physiological solution was used containing the fol-
lowing (in mM): 125 NaCl, 25 NaHCO3, 2.5 KCl, 1.25 NaH2PO4, 25 glucose,
2 CaCl2, 1 MgCl2. Slices were incubated at 34°C for 15–30 min and subse-
quently stored at room temperature. Solutions were equilibrated with a 95%
O2–5% CO2 gas mixture throughout the procedure. Patch pipettes for
whole-cell patch-clamp recordings were pulled from borosilicate glass cap-
illaries (outer diameter, 2.0 mm; inner diameter, 1.0 mm) and had a resis-

Figure 1. SPAs in the experiment and the model have similar characteristics. A, CA3 experimental output from a thick hip-
pocampal slice showing SPAs. The data have been bandpass filtered between 0.5 and 250 Hz. B, An example of simulated SPAs that
resemble experimental data. Network output is shown as average summed inhibitory synaptic variables (� si/N ) as an analog for
LFP output. Parameters as in Table 2 with gsyn � 0.048, �e � 0.00152, �� 1, p � 2, �� 0.81, nreset � 4. See Table 3 for units
of parameters used. A, B, The power spectrum of the corresponding trace is shown on each lower-right panel, with the lower-left
panel showing the spectrum on a log–log plot.
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tance of 2.5 to 4.0 M�. Pipettes were filled with K-gluconate-based internal
solution as follows (in mM): 120 K-gluconate, 20 KCl, 10 EGTA, 2 MgCl2, 2
Na2ATP, 10 HEPES).

Interneurons with somata located in or close to the principal cell
layer of CA3 were recorded under visual control using infrared dif-
ferential interference contrast videomicroscopy (Doischer et al.,
2008). Whole-cell recordings were made using an Axopatch 200B
amplifier (Molecular Devices). The resting membrane potential was
determined after breakthrough in the I � 0 mode and was �65 to �55
mV. Series resistance (Rs, 9 –25 M�) was monitored and compen-
sated throughout the experiment (100%, time lag 1 ms). Signals were
filtered at 10 –20 kHz (4-pole, low-pass Bessel filter) and digitized at
20 – 40 kHz using a Power 1401 digital interface (Cambridge Elec-
tronic Design). Pulse generation and data acquisition were performed
using FPulse (U. Fröbe, Physiological Institute, University of
Freiburg, Freiburg, Germany) running under Igor Pro 5.01 on a per-
sonal computer. For data analysis, Stimfit (C. Schmidt-Hieber, Uni-
versity College London, London, UK) and MatLab (Mathworks,
http://www.mathworks.com) were used. All recordings were per-
formed at 32–34°C.

To determine f–I curves (see Fig. 6 B, C), cells were held in the current
clamp mode and 1 s long depolarizing current injections are applied. To
obtain a high f–I resolution, amplitudes were increased incrementally
with step sizes of 5–10 pA. The maximal current injection was set as the
amplitude reaching maximal discharge frequency. Interneurons were
classified as fast-spiking (FS) on the basis of maximal discharge fre-
quency �100 Hz, and an adaptation ratio �0.5 was determined from the
ratio of the first and the last interspike intervals during a train of action
potentials at �100 Hz (1 s).

We note that the recorded maximal discharge frequencies were com-
parable to those previously determined in FS interneurons in CA3 (Bar-
tos et al., 2002) and dentate gyrus (DG) (Doischer et al., 2008) of mice.
This indicates that f–I relations are independent of the particular hip-
pocampal area and of whether rats or mice are used.

Detection and quantification of kinks in f–I curves. We analyzed f–I
curves of FS interneurons to determine whether they exhibited a kink,
defined as an abrupt decrease in slope. To determine the position of the
most prominent kink in the recorded f–I curves, the local slope (i.e.,
�f/�I ) of the f–I curve was estimated by linear fitting of short sections
(length, 30 pA, analysis resolution) of the f–I curve in question. Figure 6,

B and C, shows examples of
�f

�I
� I curves. Next, for short successive

sections (again, 30 pA, analysis resolution) along the resulting
�f

�I
� I

curve, the slope change [�slope � slope at (Iamp � 30 pA) � slope at
(Iamp)] was calculated (Fig. 6 B, C, bottom). The minimum of this �slope-I
curve indicated the prominent kink of the corresponding f–I curve at 30
pA analysis resolution. The slope ratio was determined by dividing the
mean slope of the f–I curve part preceding the kink by the mean slope of
the immediately subsequent f–I curve part. The very initial portion of the
f–I curve ( f � 4 Hz) was ignored during analysis. The resulting kink
position and slope ratios were relatively stable for different analysis res-
olutions (tested range, 20 – 40 pA).

To directly compare kinks in f–I curves from experiments with
those in our models, we used the same protocol described to quantify
the kink characteristics of our model interneuron f–I curves (see Fig.

3 A, B, analysis resolution: 0.015 �A/cm 2). However, to apply the
same protocol, we had to approximate the experimental situation in
our model f–I curves. We did this by including a very small amount of
noise (i.e., ge0 � 0 mS/cm 2, �e � 0.00027 mS/cm 2; see equation set 4
below) to our model interneurons for kink calculations. In Table 1 we
show the results of our analyses of six model interneuron f–I curves.

Simulations
Model description and parameter choices. Each inhibitory interneuron
was modeled by the following set of equations (1 � i � N � 120
denotes cell number, V is membrane potential in millivolts, and t is
time in milliseconds),

Vi � Vreset (when Vi crosses Vmax from below) (1)

C
dVi

dt
� Iint

i 	t
 � Isyn
i 	t
 (otherwise)

where Iint
i represents the intrinsic current of the interneuron and is

adapted from a simplified model by Izhikevich (2003, 2007). The specific
capacitance C is assumed to be 1�F/cm 2. Iint

i has the following form,

Iint
i � 	Iext � Ith
 � � � Vi � Vth � p � ni (2)

ni	t
 � nreset 	when Vi crosses 0 from below)

dni

dt
� � �ni (otherwise)

Specifically, Vth and Ith represent, respectively, the values of membrane
potential and external current when the neuron is at threshold, � con-
trols the increase in the firing rate of the interneuron just above thresh-
old, while p controls the functional form of this increase expressed by the
model interneuron. For example, p � 2 represents a model interneuron
with a saddle node on an invariant circle type bifurcation at the onset of
firing, and p � 1 represents an integrate-and-fire type of model interneu-
ron. We note that equation set 1 does not describe the suprathreshold
dynamics for the case p � 1. As a result, for p � 1 we artificially made the
interneuron fire and set V i � Vmax whenever V i crossed Vth from below.
The variable ni is an auxiliary current for controlling the refractory pe-
riod of the interneuron; it primarily affects the interneuron’s firing be-
havior far from the threshold. Equation set 2 describes the behavior of
this current. It resets to nreset whenever the neuron fires and decays
exponentially with constant � between individual spikes. Iext is the exter-
nal current for the model interneurons. In single-cell cases (i.e., when all
the model interneurons were disconnected from each other), Iext repre-
sents the injected current for the model interneurons. In network
cases, the variable represents the “virtual” excitation of the model
interneurons received from the excitatory cell population (equation
set 4).

We used the above mathematical form for intrinsic current (equation
set 2) and not the more traditional conductance-based model because
there is a direct correspondence between the parameters of equation set 2
and the input– output characteristics of the neuron around threshold.
Our models are capable of firing from 0 to up to �150 Hz so that char-
acteristics of experimental fast-spiking interneurons could be adequately
represented. Figure 3 shows sample f–I curves and sample output of

Table 1. Summary of model interneuron f–I curves and mean-field results

f–I Curve (model parameters)

Kink Figure
Total gsyn overlap for Nb �8
(mean-field) (mS/cm 2)Slope ratio Location (Hz) Curve depicted Network simulations Mean-field results

� � 0.41, � � 20, nreset � 4, p � 2 1.8 22 3Ai 4A 8D 0.7 � 10 �2

� � 1, � � 0.81, nreset � 4, p � 2 2.1 29 3Aii 4B 8E 0.45 � 10 �2

� � 10, � � 0.74, nreset � 32, p � 2 4.2 52 3Aiii 4C 8F 0.3 � 10 �2

� � 0.2, � � 30, nreset � 4, p � 4 1.3 15 3Bi 5A 8A 0.5 � 10 �2

� � 1, � � 0.98, nreset � 4, p � 4 1.4 18 3Bii 5B 8B 0.3 � 10 �2

� � 3.5, � � 0.69, nreset � 4, p � 4 1.6 22 3Biii 5C 8C 0.2 � 10 �2

See Table 3 for units of parameters used.
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voltage versus time from a simulation of a single firing model interneu-
ron under constant injected current.

The synaptic current Isyn
i is represented as,

Isyn
i � 	Esyn � Vi
 �

j�1; j�i

N

gsyn
j3isj (3)

si 3 si � smax (when Vi crosses 0 from below)

dsi

dt
� �

si

	syn
(otherwise)

where Esyn is the inhibitory reversal potential and the si (i � 1–120)
represents the synaptic gating variables of the neurons that are synapti-
cally connected (with strength gsyn) to the neuron in question. For com-
putational efficiency, we used a discontinuous model to represent the
opening of the synapses (equation set 3) whenever there was a spike
(comparative simulations indicate that results are similar to those using a
continuous model). Parameters 	syn and smax denote, respectively, the
inhibitory synaptic decay time constant and the value of the maximal
increased opening of the synaptic gates per spike.

To mimic the excitation that the inhibitory population receives from
the pyramidal cells, Iext has the form (Rudolph et al., 2004)

Iext � ge
i 	t
	Ee � Vi
 (4)

dge
i 	t


dt
� �

ge
i 	t
 � ge0

	e
� �2�e

2

	e

e

i 	t


where Ee is the excitatory reversal potential and 	e is the excitatory time
constant. The excitatory conductance ge is a stochastic variable following
the Ornstein-Uhlenbeck process (equation set 4) with mean ge0 and SD
�e (excitatory fluctuations). 
e underlies the stochasticity of ge. To first
order,�t1

t2 
e	s
ds, t2 � t1 � 0 can be, but does not necessarily have
to be, represented as N(0,t2 � t1), where N(0,t2 � t1) is Gaussian distrib-
uted random variable of mean 0 and variance t2 � t1 (Greiner et al., 1987;
Gardiner, 2004; Seydel, 2004).

Therefore, our computational network model consisted of explicit
mathematical representations for inhibitory cells (equation sets 1–3) and
virtual representations for the excitatory cell population (equation set 4).
Each model inhibitory interneuron was connected with all the other
inhibitory interneurons in the network (unless otherwise stated) while
receiving noisy excitation from the virtual excitatory cell population. We
changed the intrinsic characteristics ( f–I curves) of inhibitory interneu-
rons by adjusting the values of �, p, �, and nreset.

We used moderately sized networks of 120 fast-spiking cells. We consider
this size to be large enough as it has been successfully used by others to obtain
mechanistic insights (for review, see Wang, 2010). Given that the hippocam-
pal SPAs are due to coherent inhibitory cell activities and do not seem to
preferentially involve specific inhibitory cell types (Wu et al., 2002, 2005b),
we reasonably focused on fast-spiking cells in our network models since they
constituted the majority of inhibitory cells (Vida, 2010). We used an average
of the summed synaptic variables (i.e., 
i si/N) to represent the local field
potentials (LFPs). This is reasonable given that LFP generation is mainly due
to synaptic currents. Earlier simulations using synaptic currents rather than
synaptic variables showed that this did not affect our conclusions. Since it
was easier to use synaptic variables, we did so.

We divided our simulations into different sets. Each set of simulations
consisted of 828 independent simulations of the 120-cell inhibitory net-
work for 65 s (for homogeneous simulations only; for nonhomogeneous
simulations, the simulated time was 8 –10 s) with different gsyn and �e

values ( gsyn values from 0.2 to 7.0 � 10 �2 mS/cm 2 with increment 0.1 �
10 �2 mS/cm 2, and �e values from 0.027 to 0.302 � 10 �2 mS/cm 2 with
increment 0.025 � 10 �2 mS/cm 2). The first 5 s of any homogeneous
simulation were excluded from further analysis. The different simula-
tions within each set of simulations were characterized by having identi-
cal intrinsic properties (i.e., f–I curves) of inhibitory interneurons but
different synaptic properties between the interneurons. In other words,
between any two simulations within the same set, the intrinsic properties

of, say, model interneuron 1 of one simulation were the same as those of
model interneuron 1 of the other simulation, and so on for model in-
terneurons 2–120. However, the synaptic properties (e.g., gsyn) between,
say, model interneurons 1 and 2 in one simulation were generally differ-
ent from those of the other simulation. The gsyn values were drawn from
data of unitary inhibitory conductance measurements from Bartos et al.
(2002). The �e values were chosen to incorporate the range of values
estimated directly from experimental data of our in vitro hippocampal
SPAs experiments (Ho et al., 2009). Table 2 shows the common param-
eter values we used across all sets of simulations, unless specified other-
wise. Table 3 shows other simulation parameters that were changed
across different simulations to vary the synaptic and intrinsic conditions
of the simulated networks.

To ensure that our simulated networks received similar excitation when
making comparisons, we made the constructed f–I curves have the same
threshold and coincide with each other at exactly one point above the thresh-
old. Figure 3 shows examples of f–I curves of model inhibitory interneurons
we used for simulation. The ge0 (mean excitation received by model inhibi-
tory interneurons; see equation set 4) value was common across all sets of
simulations unless otherwise specified. The value of ge0 was chosen so that
neurons from different sets of simulations would fire at approximately the
same frequency were they synaptically isolated from inhibitory interactions.
We note that this value is in line with estimates from Ho et al. (2009).

We designed custom C��/Perl codes for the simulations. Owing to
the enormous amount of random numbers for the stochastic integration
(
e of equation set 4), a robust random number generator was required.
We used a pseudorandom number generation algorithm (ran2), as de-
scribed by Press et al. (1997), which is known to be robust and to have a
very long period (�2 � 10 18). For a network of 120 neurons with inte-
gration time step of 0.01 ms, this length of period enables simulation up
to at least 10 13 ms (10 13 � 120 � 100 � 1.2 � 10 17, which is at most 6%
of the period of the random number generator). We used the Box–Muller
algorithm (Press et al., 1997) to transform uniformly distributed random
variables (i.e., outputs of ran2) into Gaussian distributed random vari-
ables. We performed most of the simulations on the GPC supercomputer
attheSciNetHPCConsortium(Lokenetal.,2010)(http://www.scinethpc.
ca/). We used the Euler algorithm for numerical integration. Integration
time step for each simulation ranges from 0.001 to 0.01 ms. Preliminary
simulations using a smaller number of model interneurons were per-
formed using XPPAUT (Ermentrout, 2002) (http://www.math.pitt.
edu/�bard/xpp/xpp.html).

Metric and frequency calculation for simulated SPAs. To determine the
occurrence of SPAs and to quantify the strength and frequencies of SPAs,

Table 2. Constant parameters used for the inhibitory network simulations

Parameter Description Value and unit

Esyn Inhibitory reversal potential �73 mV
Ee Excitatory reversal potential 0 mV
	syn Inhibitory synaptic decay time constant 10 ms
	e Excitatory synaptic decay time constant 3 ms
smax Maximal opening of inhibitory gating variable per spike 0.8
ge0 Mean excitatory drive to model inhibitory interneurons 0.00483 mS/cm 2

N Total number of model inhibitory interneurons in network 120
Vmax See equation set 1 15 mV
Vreset See equation set 1 �65 mV
Ith See equation set 2 0 �A/cm 2

Vth See equation set 2 �61 mV

Table 3. Other parameters used for the inhibitory network simulations

Parameter Description Units

gsyn Unitary inhibitory conductance mS/cm 2

�e Excitatory noise level (see equation set 4) mS/cm 2

� See equation set 2 (mS) (mV)1�p/cm 2

� See equation set 2 ms �1

nreset See equation set 2 �A/cm 2

p See equation set 2 Dimensionless
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we devised a metric based on the power spectra (i.e., discrete Fourier
transform) of the simulated network outputs (
 si/N ). The main idea was
the recognition of a “signature” pattern in the power spectra whenever
the outputs exhibited slow population activities. We calculated the spec-
tra using the entire dataset after discarding the first 5 s of transients.
Spectra were normalized by the original signal and the total time. We
used the subroutines in the FFTW (Fastest Fourier Transform in the
West) package (Frigo and Johnson, 2005) (http://www.fftw.org) to com-
pute discrete Fourier transform for the power spectra and metric.

Spectra examples can be seen in Figures 1 B and 2. One can immedi-
ately notice that there are two “humps” in each of the spectra from 0 to
100 Hz, one toward the low end of the frequency and the other peaking at
�40 Hz. The peak toward the low frequency (�5 Hz) was responsible for
the slow timescale of the simulated SPAs while the peak at �40 Hz was
due to the individual firing of inhibitory interneurons. We visually in-
spected all simulations and their corresponding spectra and noted that
the characteristic “two-hump” shape of the power spectrum was a good
indicator for the presence of SPAs in simulations. We thus developed a
heuristic approach to quantify simulated SPAs based on the shape of the
power spectrum. For any simulation, we regarded SPAs as present when-
ever (1) the peak between 0.1 Hz and 5 Hz (plow) was at least 2� the
average power between 0.1 and 5 Hz, (2) the peak above 5 Hz ( phigh) was
at least 2� the average power density above 5 Hz and above some thresh-
old ( phigh,t), and (3) plow was at least 0.4� phigh. We used ( phigh,t) �
0.05 � 10 �5 Hz �1. We note that every power spectrum obtained from
simulation was produced by discrete Fourier transform from the original
simulation with a sampling interval of 0.02 ms, regardless of the size of
integration time steps used in the original simulation. Thus, for the
strength of simulated SPAs (a dimensionless quantity), we used the value
of plow divided by the sampling interval once the above criteria (1, 2, and
3) were satisfied. These criteria deserve some justification. The first cri-
terion was to ensure there was a respectable peak at the low end of the
power spectrum, and the second criterion served the same purpose for
the peak at the higher end of the power spectrum. The third criterion was
to prevent the peak toward the low end of spectrum from being dispro-
portionally small as compared to the peak at the higher end of spectrum.

We computed the frequencies of simulated
SPAs in the following way: for each simulation
in which SPAs were defined to exist, we rear-
ranged the power spectrum between 0.1 and 5
Hz in descending order of power density mag-
nitude (which was possible because the spectra
were discrete). To determine the frequencies of
simulated SPAs, we included all the frequencies
whose power density magnitudes were at least
80% of plow. We calculated mean and SD and
plotted the results as error bars (see Fig. 7,
bottom).

Thus, SPAs were deemed to have occurred in
a particular network if the criteria for the spec-
tra were satisfied, with the strength of SPAs cal-
culated from the values of the low-frequency
peaks (0.1–5 Hz) of the power spectra. The lo-
cation of these low-frequency peaks in the
spectra determined the dominant frequencies
of the resulting network activities.

Mean-field equations. To explain the observa-
tions from our network simulations, we approx-
imated our network with a mean-field model.
The dimensions of the mean-field model were
much reduced from the full network model so
that it would be amenable to mathematical anal-
yses. Our mean-field model was developed from
a rate-based formulation of neuronal dynamics
by Amit and Tsodyks (1991) and Bressloff and
Coombes (2000). In Appendix C of Ho (2011)
(http://hdl.handle.net/1807/30056), a step-by-
step reduction of the full simulation into the
mean-field equations (equation set 5) has been
outlined. The mean-field equations are an ap-

proximation of the full simulation in that they only capture the lowest order
terms of the full simulation. In other words, fluctuation effects of the full
simulation are neglected in the mean-field equations. We reproduce
here the resulting equations for mathematical analyses,

dIsyn
i 	t


dt
� gsyn��V�smax �

j�1; j�i

N

f	Iext � Isyn
j 
 �

Isyn
i 	t


	syn
(5)

where the parameters are the same as those in equation sets 1, 2, and 3.
The above set of mean-field equations (i � 1 � 120) governs the tempo-
rally coarse-grained progression of the total synaptic current onto inhib-
itory cell i, given a homogeneous all-to-all network configuration with
mutual inhibitory conductance of gsyn. f(…) is the f–I function of indi-
vidual inhibitory interneurons. �V� is the average value of (Esyn � V i)
across all inhibitory interneurons and times. To further reduce the di-
mensionality of the set of 120 mean-field equations (equation set 5), we
assumed the network was spontaneously broken into two clusters, a non-
firing cluster a and a firing cluster b (simplest possible assumption). Once
this assumption was made, the total number of mean-field equations was
reduced to three,

�dIsyn
a

dt
� � gsyn��V�smax�Nbf	Iext � Isyn

b 


� 	Na � 1
 f	Iext � Isyn
a 
	 �

Isyn
a

	sun
, (6)
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� � gsyn��V�smax� 	Nb � 1
 f	Iext � Isyn
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� Naf	Iext � Isyn
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	 �

Isyn
b

	sun
,

Na � Nb � N 
 120

Figure 2. Model SPAs have a range of characteristics. A, B, Two examples of SPAs obtained in the network models. Parameters
as in Table 2 with (A) gsyn � 0.040, �e � 0.00102, � � 0.41, p � 2, � � 20, nreset � 4 and (B) gsyn � 0.044, �e � 0.00127,
� � 1, p � 2, � � 0.81, nreset � 4. See Table 3 for units of the parameters used above. A, B, Top, Temporal progression of the
average synaptic output (
si/N ) of the simulated network. We used (
 si/N ) as our LFP analog. Second from top, Raster plot of all
the spiking neurons in the 120-cell network. Second from bottom, Intracellular trace of one of the neurons in the 120-cell network.
Bottom, Power spectra of the LFP analog of the 65 s simulation. We excluded the first 5 s from analysis.
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where Na and Nb are the number of inhibitory interneurons in clusters a
and b, respectively. Our aim was to find the ranges of values of gsyn, which
yield stable solutions to equation set 6 for different sets of Na and Nb

values. These sets of Na and Nb values are constrained by the total number
of model inhibitory interneurons N. Since equation set 5 is temporally
coarse grained, stable fixed points of equation set 6 (i.e., stable solutions

for �dIsyn
i 	t


dt
� � 0) represent firing states with constant Isyn. Using

linear stability analysis (Boyce and DiPrima, 2007), which involves taking
derivatives of the f–I functions of equation set 6, we can determine the
locations of these solutions (fixed points) on the gsyn line and the local
stability of these solutions (stable solutions given by negative eigenval-
ues). The arrangement of these stable solutions on the gsyn line in turn
enables us to qualitatively explain the change in behaviors of SPAs.
For the mean-field analysis, we used ��V� � �10 mV and Iext �
0.29 �A/cm 2. Algebraic calculations were performed using Maple soft-
ware package (Waterloo Maple; http://www.maplesoft.com/).

Representing f–I characteristics analytically. We represented the f–I
characteristics of model inhibitory interneurons with analytical func-
tions when performing mathematical analyses via mean-field equations.
The interspike intervals were obtained analytically by first integrating
equation set 1 with Isyn

i � 0 and nreset � 0. We call this first integrated
result T1. To take into account the effects of the refractory periods caused
by nonzero nreset, we added T1 to a constant time interval T2 to form the
total interspike interval T. We note that, while we analytically derived T1

given the parameters �, p, Vmax, and Vreset, T2 was obtained by fitting
1

T1 � T2
against the actual f–I characteristics of model inhibitory in-

terneurons over the current interval concerned with simulations. As a
result, we did not expect a perfect match between the fitted f–I curve and
the actual f–I characteristics of model inhibitory interneurons (actual f–I
characteristics of model inhibitory interneurons were used for simula-
tions, and are shown, for example, in Fig. 3).

Results
SPAs can arise in model networks of fast-spiking
inhibitory cells
To investigate the mechanisms leading to the emergence of SPAs
in cortical circuits, we designed a network model composed of
mutually connected fast-spiking inhibitory interneurons. In
many of our network simulations implementing different in-
terneuron single-cell models, inhibitory synaptic strengths, and
fluctuation levels, we obtained SPAs characterized by periods of
high network activity interspersed with low network activities at
frequencies �5 Hz. Moreover, a subcollection of our simulated
SPAs possessed characteristics similar to those of the in vitro hip-
pocampal SPAs described by Wu et al. (2005b). These character-
istics were as follows: first, the dominant SPA frequency occurred
between 0.5 and 4.5 Hz; second, the duration of the high activity
SPA episode was �200 ms; third, the firing frequency of model
cells during SPAs was �40 – 80 Hz, as seen experimentally. Im-
portantly, there was at least a twofold increase in the inhibitory
conductance from low to high activity states in accordance with
results from analyses obtained directly from the experimental
data (Ho et al., 2009).

In Figure 1A, we show an extracellular field recording (LFP
output) from a thick slice preparation exhibiting hippocampal
SPAs. One representative network simulation exhibiting SPAs is
shown in Figure 1B. We plot the average summed inhibitory
synaptic variables (
i si/N) as a representation for the local field
potential (LFP analog) on the top of Figure 1B. In Figure 1, A and
B, the bottom two panels are power spectra of the top panel (in
log-log scale and regular scale, respectively). Although the LFP
analog (Fig. 1B) is only a rough approximation to actual LFP
(Fig. 1A), a clear similarity with the experimental data can be
seen. Both simulation and experiment express slow activities that

can be observed in the LFPs themselves on the top as well as their
spectra on the bottom. An additional peak in the 40 Hz region
due to the firing rate of individual fast-spiking cells is apparent in
the model spectra (Fig. 1B).

Cellular f–I characteristics control the occurrence of SPAs
We show two sample simulated SPAs in Figure 2. These two
example outputs (Fig. 2A,B) were drawn from two different sets
of simulations, which means that the model inhibitory interneu-
rons used for the two simulations had different intrinsic proper-
ties (see Materials and Methods). The frequencies of these
simulated SPAs can range from much less than 1 Hz to 5.0 Hz, as
can be seen in the spectra in the bottom plots of Figure 2. From
our simulations, we find that the increase in output synaptic
conductances from the low to the high activity state can be as
small as �2-fold to as large as 10-fold (Fig. 2A,B, compare the
top plots). In a 15 ms time window, approximately one-tenth to
one-third of the neurons in the network participate in firing dur-
ing high activity states.

To quantify the strength of SPAs, we used a metric based on
the power spectrum of the simulated SPAs (LFP representation).
Briefly, using the model LFP power spectrum, a normalized ver-
sion of the low-frequency height gives a value that quantifies the
SPA strength from each simulation. This value is color coded in
the plots of Figures 4, 5, and 7. The pseudo-color temperature
indicates the strength of the SPAs. Two samples of strong SPAs
are given by the green triangles in Figures 4A and 5A, and a

Figure 3. f–I curves of model interneurons and sample output. A, f–I curves. Curves have
Vth, Ith, Vreset, and Vmax parameters as in Table 2 with curve i, � � 0.41, p � 2, � � 20, nreset

� 4; curve ii, � � 1, p � 2, � � 0.81, nreset � 4; curve iii, � � 10, p � 2, � � 0.74, nreset

� 32. B, f–I curves. Curves have Vth, Ith, Vreset, and Vmax parameters as in Table 2 with curve i, �
� 0.2, p � 4, � � 30, nreset � 4; curve ii, � � 1, p � 4, � � 0.98, nreset � 4; curve iii, � �
3.5, p � 4, � � 0.69, nreset � 4. C, Voltage versus time for a firing model interneuron.
Parameters as in Table 2 with � � 1, p � 2, � � 0.81, nreset � 4, Iext �
0.03 �A/cm 2. See Table 3 for units of the parameters used above.
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sample of weak SPAs is given by the green diamond in Figure 4B.
See Materials and Methods for further details of the metric
computation.

Our simulations were divided into different sets, with each set
having fixed cellular properties (see Materials and Methods).
Each set of simulations consisted of independent simulations

over a range of inhibitory synaptic strengths and a range of excit-
atory conductance fluctuation levels. To explore how the varia-
tion in intrinsic properties of constituent interneurons affected
SPAs, we changed the curvature of the f–I curve of individual
model interneurons when we moved from one set of simulations
to another. Given the equations describing an individual in-

Figure 4. Dependence of SPAs on f–I curves for p � 2. Summary of three sets of simulations. A–C, Each set of simulations uses different intrinsic properties of model inhibitory interneurons while
keeping p � 2. A, Set of simulations using � � 0.41, � � 20, nreset � 4. B, Set of simulations using � � 1, � � 0.81, nreset � 4. C, Set of simulations using � � 10, � � 0.74, nreset � 32. See
Table 3 for units of parameters used above. A–C, Top, Four selected simulations (LFP representations). For clarity of presentation, only a 30 s segment of the entire 65 s simulation is shown for each
simulation. Middle, Summary of occurrence of simulated SPAs across synaptic parameter regimes ( gsyn, �e). Warmer color (reddish-yellow) represents stronger SPAs. Black represents the absence
of SPAs for the particular synaptic parameter. The four green symbols (triangle, square, circle, diamond) in the middle panel represent the locations (in terms of parameter values) of the four
simulated SPAs shown in the top panel. Bottom, The functional form of the f–I curve of model inhibitory interneurons used for this set of simulations.

Figure 5. Dependence of SPAs on f–I curves for p � 4. A–C, Same as Figure 4 but for p � 4. A, Set of simulations using � � 0.2, � � 30, nreset � 4. B, Set of simulations using � � 1, � �
0.98, nreset � 4. C, Set of simulations using � � 3.5, � � 0.69, nreset � 4. Top, middle, and bottom panel descriptions are the same as given for Figure 4. See Table 3 for units of parameters used
above.
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terneuron (equation set 1), to increase the curvature of an indi-
vidual interneuron’s f–I curve, one can increase the initial slope of
the curve just above the threshold (increasing � and/or decreas-
ing p), while at the same time increasing the refractory period
(decreasing � and/or increasing nreset). In Figure 3A and B, we
show f–I curves of different curvatures as obtained for different �,
p, �, and nreset parameters. Figure 3C shows the firing of a synap-
tically isolated individual model interneuron for a given set of
parameters. As expected, the firing of model interneurons
changed when synaptically connected with other model in-
terneurons in the network (compare Figs. 3C, 2, third row of
panels).

Robust SPAs occur for particular f–I characteristics of
individual interneurons
Figure 4A–C illustrates, respectively, output from three sets of
network simulations for a range of gsyn (unitary inhibitory con-
ductance) and �e (excitatory conductance fluctuation) values. In
Figure 4, we adjusted the curvature of the constituent interneu-
rons’ f–I curve by changing �, nreset, and � across different sets of
simulations (p was fixed at 2 for all the three sets of simulations in
this figure). Note that the curvature of the f–I curves of model
inhibitory interneurons increases from Figure 4A–C (bottom).
These three f–I curves are the same f–I curves as depicted in
Figure 3Ai–Aiii, respectively. One can distinguish two approxi-
mately linear regimes in each of the f–I curves: the first part when
firing first starts and a later region after a kink in the f–I curve. The
strength of this kink can be expressed by the slope ratio of the first
to the later part of the f–I curve (Table 1). For example, the f–I
curve used for model inhibitory interneurons in Figure 4C has a
strong kink with close to a vertical slope initially and a later region
approaching a horizontal slope, resulting in a slope ratio of 4.2.

The middle panels in Figure 4A–C depict the occurrence of
simulated SPAs across synaptic parameter regimes for each set of
simulations. One can see that the region of occurrence of SPAs
forms a somewhat diagonal band across the gsyn � �e plane, with
the “hot” region (yellow to red) occurring toward the lower ends
of both the gsyn and the �e axes relative to other “colder” regions.
There are some changes of this diagonal band as one increases the

curvature of the individual model interneurons’ f–I curve (Fig.
4A–C). First, the position of the entire band moves even more
toward to the lower-left end of the gsyn–�e plane. Second, the
colder regions become more dispersed. In other words, there is a
wider parameter regime exhibiting SPAs, but at the expense of the
SPAs being weaker in each region for Figure 4C. Thus, it is already
apparent from the simulations that is it not only the existence of
a kink in the f–I curve but a kink of particular characteristics that
is important for the presence of SPAs. This will be made clear in
the later section of mathematical analyses.

For each set of simulations in Figure 4A–C, four sample sim-
ulations, as given by the green symbol, chosen at different
“places” of the gsyn–�e plane (labeled by different shapes of green
symbols) are shown with their respective LFP analogs in the top
panels. In Figure 4, A and B, one can clearly see the transition
from high network activity (green circle) to low network activity
(green square) as we increase gsyn, with SPAs occurring at middle
gsyn values (green triangle). However, this transition is rather
“soft” (meaning that the change from high network activity to
low network activity is gradual) for a network in which individual
model inhibitory interneurons have a strongly kinked f–I curve
(Fig. 4C). Overall, there seems to be a competition between the
strength of SPAs and the area of the gsyn–�e parameter space for
which simulated SPAs occur. A network with model interneu-
rons having a moderately kinky f–I curve (Fig. 4B) seems to offer
the best compromise between strength and pervasiveness of SPAs
for inhibitory strength and excitatory fluctuation balances.

Since p determines the nature of bifurcation of a neuron at
threshold (see Materials and Methods), it is a potentially impor-
tant quantity affecting SPAs. In general, f–I curves using p � 4
have smaller curvatures than those using p � 2. Three examples
of f–I curves using p � 4 are shown in Figure 3B.

In Figure 5, we depict the occurrence of simulated SPAs as in
Figure 4, except here we use p � 4. The transform of the diagonal
band on the gsyn–�e plane as one increases the curvature of an
individual neuron’s f–I curve while keeping p � 4 a constant (Fig.
5A–C) follows a somewhat similar pattern to that of case p � 2.
However, in terms of both strength of SPAs and extent of occur-

Figure 6. A–C, Experimental measurement and quantification of the kinks in f–I curves of CA3 fast-spiking interneurons. A, Top, Infrared-differential interference video microscopy image of a
CA3 fast-spiking interneuron. Bottom, Fast-spiking phenotype was determined by the high discharge frequency and high adaptation ratio of the cell. B, Example of a kinky f–I curve from the same

cell as in A. C, Example of a less kinky f–I curve. B, C, Top, Actual f–I curve measured. Middle, Slope of the f–I curve��f

�I� versus I. Bottom, Change in slope of the f–I curve��
�f

�I� versus I. Local

minimum (minima) of this function is (are) the locations of the kink(s) (vertical dotted line) of the original f–I curve. The size of the kink is defined as the ratio of the average slope before the kink
to after the kink (see middle).
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rence on synaptic parameter regimes, the p � 4 case is weaker
than the p � 2 case (although in Fig. 5A one can still notice some
strong SPAs occurring in a small stretch of gsyn–�e plane). In fact,
it is somewhat difficult to discern SPAs with the naked eye in
some of the colder regions for the p � 4 case. We also performed
a set of simulations using p � 1 (data not shown) and found that
SPAs were barely perceptible for the explored parameter regimes.

Generation of SPAs requires a kink in the f–I curve
of interneurons
A major difference between f–I curves with p � 4 relative to p �
2 is the prominence of the kink for curves with p � 2 but not with
p � 4. Table 1 shows the calculated kink size in terms of slope
ratio and location for each of our six model interneurons. It is
clear from Figure 3A,B and Table 1 that the kinks in f–I curves
with p � 2 are more prominent relative to those in curves with
p � 4. The particular f–I curves of model interneurons in which
network simulations produce the most robust SPAs (Fig. 4A,B)
have kink slope ratios close to 2 but much less than 4 (Table 1).

Together, our results suggest that threshold behaviors (as
manifest by the values of p) of individual neurons are critical in
controlling the occurrence of SPAs. Specifically, given the reso-
lution of our simulations, there must be a moderate kink in the
f–I curve (i.e., where the slope of the curve decreases more
abruptly), with the kink in approximately the gamma frequency
regime for SPAs occurring most robustly. The slope ratio of this
optimal kink should be �2–3.

The idea that a kinky f–I curve of interneurons is instrumental
for SPAs is further reinforced when we later apply our analyses
using mean-field equations (equation set 6). We note that the
much used inhibitory interneuron model of Wang and Buzsáki
(1996) has kink characteristics close to these specifications (kink
slope ratio of �2 at �12 Hz). Thus, inhibitory model networks of
Wang–Buzsáki-type interneurons can produce SPAs (similar to
those of Fig. 4A). However, if the kink becomes too large (as in
Fig. 3Aiii), then SPAs again become much less robust (as shown
in Fig. 4C).

Effects of network heterogeneity and
non-all-to-all coupling on the
occurrence of simulated SPAs
Hitherto we have only used 120-cell all-
to-all coupled networks of inhibitory in-
terneurons in which the individual
interneurons are homogeneous with the
same intrinsic characteristics. Clearly, bi-
ological inhibitory networks are neither
homogeneous nor coupled in an all-to-
all fashion. Would our SPA observations
break down in the presence of heteroge-
neity and non-all-to-all coupling? To ad-
dress this, we performed several
additional sets of simulations in which the
all-to-all and homogeneous assumptions
were relaxed.

We performed �3000 simulations in
which heterogeneity was introduced. For
these simulations, we introduced a cellu-
lar level of heterogeneity in which there
was at least a 3% “baseline” heterogeneity
in two of the parameters that controlled
the f–I curvature (� and nreset) of individ-
ual model interneurons. If we now intro-
duced heterogeneity (10 –20%) to the
previously uniform gsyn value (i.e., still all-

to-all coupling, but interneurons might have had different
strengths of connection with one another), we found that SPAs
still occurred. Our simulations indicated that SPAs tolerated net-
work heterogeneity well, even with 20% heterogeneity in gsyn

values. If we now also changed the all-to-all coupling by ran-
domly deleting some connections between interneurons, we
found that the occurrence of SPAs was quite sensitive to the level
of connectivity. That is, a sparsely connected network did not
support SPAs. Specifically, the simulated network required a
minimum of 85% connectivity for robust SPAs to occur.

Given our observations regarding the importance of kinky f–I
curves, we also performed simulations in which the 120-cell
model network had interneurons with two sets of intrinsic char-
acteristics— one (�, p, �, nreset) set leading to higher kink slope
ratios and another set resulting in lower kink slope ratios. Each set
had baseline heterogeneity, as mentioned above. We investigated
several “pairings” of intrinsic characteristics in different sets of
network simulations. For these split-population simulations, we
maintained at least 90% connectivity and had at least 10% gsyn

heterogeneity. From these simulations, we found that if the in-
terneuronal subpopulation in which the f–I curve had the higher
kink slope ratio constituted more than �50 –75% of the entire
population, it became “dominant” (data not shown). That is, the
firing activities of the rest of the population were suppressed, and
the dominant subpopulation behaved as if it were a single popu-
lation. The firing patterns of the dominant subpopulation resem-
bled that of the simulations of a single population in Figures 4 and
5. The degree of dominance depended on the difference in the
slope ratios of the kinks of the f–I functions of the two interneu-
ronal subpopulations. The greater the difference in the kink slope
ratios between the two subpopulations, the higher the dominance
(data not shown). Therefore, we found that the occurrence of
SPAs was preserved if the majority of the interneurons in the
inhibitory network had the “correct” intrinsic characteristics
(meaning kink slope ratios between 2 and 3, with the kink located
in the gamma range). For the rest of the population, intrinsic

Figure 7. SPAs not very dependent on mean excitation levels, but more dependent on excitatory conductance fluctuation
levels. A–C, Simulations represent progressively increasing mean excitation levels on model inhibitory interneurons. A, ge0 �
0.00383, � � 1, p � 2, � � 0.81, nreset � 4. B, ge0 � 0.00483, � � 1, p � 2, � � 0.81, nreset � 4, C, ge0 � 0.00583, � � 1,
p � 2; � � 0.81, nreset � 4. A–C, Top, Summary of occurrence of simulated SPAs. Color codes the same as Figure 4. Bottom,
Frequencies of simulated SPAs. Different line colors represent different excitatory conductance fluctuation levels (�e) used for
simulation. Green, �e � 0.00102. Deep blue, �e � 0.00152. Pink, �e � 0.00202. Light blue, �e � 0.00252. See Materials and
Methods for details on the computation of SPA frequencies and Table 3 for units of parameters used above.
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characteristics are such that their f–I functions are less kinky
(similar to Fig. 3Bi).

We note that although the extent of our heterogeneous simu-
lations is not as exhaustive as that of our homogeneous ones, we
think that it is sufficient enough to allow us to conclude that the
occurrence of SPAs requires a high level of connectivity and that
some, but not necessarily all, interneurons must have kinky f–I
curves.

Experiments suggest that individual CA3 fast-spiking
interneurons have the required f–I characteristics as
predicted by simulations
Given the significant dependence of SPAs on f–I curve character-
istics in our simulations, we decided to undertake a set of exper-
iments to determine whether inhibitory interneurons exhibited
appropriate f–I curves. The individual model interneurons in our
networks are highly simplified single-compartment models that
are meant to represent fast-spiking perisoma-inhibiting in-
terneurons in CA3 hippocampus. Moreover, while f–I curves of
inhibitory interneurons have been reported in the literature, such
as by Hu et al. (2010), the critical aspect in our predictions is that
the f–I function of the majority of the fast-spiking interneurons
responsible for SPAs should have a kink at frequencies in the
gamma range. Such curvatures of f–I functions are not typically
reported in the literature, and, indeed, fine current steps are re-
quired to allow such an examination.

We performed whole-cell current-clamp recordings from
fast-spiking CA3 interneurons (n � 4) and injected 1 s long de-
polarizing current pulses. The amplitude was stepwise increased
by 5 pA to guarantee high f–I resolution. All recorded cells dis-
played maximal discharge frequencies above 100 Hz and only
minimal adaptation (Fig. 6A) (mean adaptation ratio, 1.05). Two
of four tested cells exhibited a moderate kink (Fig. 6B) (mean
slope ratio, 2.1) in the gamma frequency range (mean frequency
of the occurrence of the kink, 55.3 Hz). The other two cells had
only weak kinks (slope ratio, �1.5) (Fig. 6C). Additionally, 12
fast-spiking cells from DG and CA1 regions were also analyzed.
More than half of them exhibited appropriate kink characteris-
tics, and the rest had only weak kinks (data not shown).

In summary, our data suggest that f–I characteristics of CA3
fast-spiking interneurons form a heterogeneous population. Two
of four cells had the kink characteristics, as predicted by our
simulations (i.e., location of the kink between �25 and 80 Hz;
slope ratio of the kink between �2 and 3). The remaining two
cells had less kinky (i.e., more linear) f–I characteristics, which is
consistent with our heterogeneous simulations. Taken together,
experimentally determined f–I characteristics of CA3 fast-spiking
interneurons support the predictions of underlying mechanisms
for the generation of hippocampal SPAs.

Existence and frequency of simulated SPAs are not sensitive
to mean excitatory synaptic conductance levels
In the above simulations, we varied the excitatory fluctuation
levels within each set of simulations, but the mean excitatory
synaptic conductance ( ge0) was kept the same. As can be seen
(Fig. 4), the level of excitatory fluctuations must be balanced with
the level of synaptic inhibition. But what about mean excitation
levels? Here, we show results where we varied the mean excitation
to the individual inhibitory interneurons of the network. In the
simulations described in this section, we reverted to an all-to-all
connectivity with uniform gsyn values between cells, and homo-
geneous intrinsic characteristics of individual interneurons
within a simulation. We used the network in which the individual

inhibitory interneurons had a “moderate” f–I curve (Figs. 3Aii,
4B), and we decreased or increased ge0 in steps of 0.001 mS/cm 2.
Our simulations show (Fig. 7) that a stepwise increase or decrease
from our standard ge0 value has only a minor influence on the
simulated SPAs. For these sets of simulations with varying ge0,
one can see that there is not a significant change either in the
shape of the “band” representing the occurrence and the strength
of SPAs (Fig. 7, top) or in the frequency statistics of SPAs (Fig. 7,
bottom) as ge0 is varied. In other words, an increase or a decrease
in the overall mean excitation level ge0 by as much as 22% does
not drastically change the results of the network simulations. This
observation indicates that SPAs are not heavily dependent on the
mean level of excitation. However, we note that SPAs are quite
dependent on excitatory fluctuation levels (�e). This can be seen
in Figure 4 or Figure 7—SPAs can disappear if �e is increased or
decreased by only quarter as much (0.00025 mS/cm 2) as the
changes made to ge0 (i.e., a one-step change defined above). That
is, moving vertically up or down by 0.00025 mS/cm 2 from a
colored region in the gsyn–�e plane (where SPAs are present)
moves one into a black region in which no SPAs are present. In
other words, simulated SPAs are much more sensitive to changes
in excitatory fluctuation levels (�e) than to mean excitatory con-
ductance levels ( ge0).

An increase in excitatory fluctuation causes an increase in
frequency but a decrease in amplitude of simulated SPAs
If we now focus on the frequencies of simulated SPAs as shown in
the bottom panels of Figure 7, we observe the following. For each
set of simulations, in general, we see the SPA frequencies decrease
as gsyn increases for a given �e (excitatory fluctuation level). How-
ever, if we keep gsyn constant while increasing the excitatory syn-
aptic fluctuation level (�e), we will in general see an increase in
frequency of SPAs (Fig. 7, bottom panels), despite a general de-
crease in strength of SPAs. One can clearly see the decrease in SPA
strength (as we increase �e) by moving vertically up from any
colored region (and seeing that the color gets colder or turns dark
altogether) in any of the top panels of Figure 7. The increase in
frequencies with increasing excitatory fluctuations is more no-
ticeable at the lower end of excitatory fluctuation level, partially
due to the simplistic way SPA frequencies are computed. We also
find that there is an increase in frequency as we increase the
curvature of the individual inhibitory neurons’ f–I curve (data
not shown).

Simulations suggest that modulation of SPAs by adenosine
antagonists is due to an increase in excitatory fluctuations and not
to mean excitatory levels
Our network simulations are motivated and designed due to the
in vitro spontaneous SPAs that robustly occur in hippocampal
slices (Wu et al., 2005b). Can we apply our simulation results to
understand as yet unexplained observations pertaining to hip-
pocampal SPA experiments? Wu et al. (2009) have recently
shown that adenosine antagonists affect hippocampal SPAs by
increasing their frequency, lowering their amplitude, and in-
creasing their variability (when compared with hippocampal SPA
events of the same slice before perfusion of adenosine antag-
onists). Adenosine stimulates A1 receptors and, hence, pre-
synaptically inhibits glutamatergic synapses. Thus, adenosine
antagonists would lead to increased glutamatergic drive. How-
ever, it is unknown (from experiments alone) whether this is due
to changes in tonic or phasic excitation. Assuming that mecha-
nism(s) underlying our network simulations producing SPAs are
in operation in hippocampal networks, we predict the following
(given the increase in frequency and the decrease in amplitude of
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SPAs seen in the simulations with increasing excitatory fluctua-
tions): hippocampal SPAs are modulated by adenosine antago-
nists due to an increase in excitatory fluctuation levels rather than
to mean excitatory drive changes.

Mathematical analyses using mean-field equations show that
network multistability underlies the emergence of SPAs
We have shown that SPAs can be produced in model networks of
fast-spiking interneurons if f–I curves of the interneurons exhibit
the appropriate kinky behavior. Furthermore, we find that in
experiments, fast-spiking interneurons do have kinky f–I curves
as predicted. But why does changing the shape and functional
form of individual inhibitory interneuron f–I curves have such a
profound effect on the occurrence of SPAs? In other words, what
is the underlying mechanism that allows SPAs to occur? The goal
of this section is to show that the underlying mechanism of SPAs
is network multistability. Given the coexistence of multiple net-
work firing states (i.e., network multistability), switching of the
network between these states due to excitatory fluctuations
would bring about the slow timescales to produce SPAs. We show
the existence of multistability by approximating our network
simulations with a mean-field model. The advantage of the
mean-field approximation is that it allows us to simplify the
mathematics and therefore better visualize the underlying mech-
anisms for SPAs. We assume that the network breaks into one
firing and one nonfiring cluster of interneurons. The size (num-
ber of interneurons) of the firing cluster is Nb, while that of the
nonfiring cluster is Na. This assumption allows us to drastically
reduce the dimensionality of our system of equations and to pre-
dict how the occurrence of stable clusters of firing interneurons
depends on different parameters. Further details are provided in
Materials and Methods, but the essence boils down to the analy-
ses giving stable solutions of firing states of different Nb values on
the gsyn line. Stable solutions are defined as solutions having neg-
ative eigenvalues (units of eigenvalues in ms�1).

Our simulation results in Figures 4 and 5 show colored plots
on ( gsyn – �e) planes, indicating that SPAs emerge when synaptic
inhibitory conductances, gsyn, and excitatory fluctuation balances
are appropriate, given that f–I interneuron curves are moderately
kinky. We performed mean-field analyses on these model simu-
lations, and Figure 8 illustrates the results of our analyses. The
analyses are shown in Figure 8 on ( gsyn � log2 Nb) planes, to
allow a correspondence with gsyn, which are the x-axes of Figures
4 and 5. We note that because the mean-field model approxi-
mates the simulations, the gsyn values for which SPAs occur in the
simulations are not expected to be identical to the gsyn values for
which multistability occurs in the analyses. Figure 8A–C depicts
the results of our mean-field analyses for the simulations in Fig-
ure 5A–C, respectively ( f–I curves for p � 4), while Figure 8D–F
depicts mean-field analysis results for simulations in Figure
4A–C, respectively ( f–I curves for p � 2). For convenience, the
corresponding f–I curve is included as an inset on the lower right
side of each plot in Figure 8A–F.

To understand the relationship between SPAs and individual
cellular characteristics, we investigated how the relative distribu-
tion of mean-field solutions of stable (i.e., negative eigenvalue)
firing states was affected by the f–I curves of individual interneu-
rons. By distribution, we mean the distribution of gsyn intervals in
which different solutions to the mean-field model are stable. The
lines on each of the six plots in Figure 8 denote the gsyn intervals
on which the mean-field solution (equation set 6) for a particular
number, Nb, of firing cells ( y-axis is log2 Nb) is stable. If more
than one line is present for the same gsyn values (i.e., there is an

overlap), then there exists more than one possible stable cluster of
firing interneurons for the same gsyn value. In other words, mul-
tistability exists. We note that successive log2 Nb values have gsyn

intervals that “stack” in a “diagonal” manner, with smaller Nb

values occupying larger gsyn values. Larger gsyn values generally
lead to mean-field solutions with a smaller number of firing in-
terneurons (i.e., smaller Nb). Intuitively, this is because a larger
gsyn gives rise to stronger inhibition so that interneurons could
more easily suppress other interneurons in the networks. More-
over, if there are fewer interneurons firing, each firing interneu-
ron has to fire more frequently to suppress other interneurons
that are not firing. This was observed in our simulations in which,
during the low activity state, each firing interneuron generally
fired at a higher frequency than interneurons firing during the
high activity state. Therefore, one can generally associate mean-
field solutions of smaller Nb values with higher firing frequencies
of individual interneurons.

We now go through the mean-field results of Figure 8A–F,
starting with Figure 8A. When f–I curves of individual model
interneurons are almost linear (Fig. 8A), mean-field solutions for
different Nb values have similar gsyn interval lengths (except for
Nb � 1). This can be intuitively understood as follows: since the
derivative of the f–I curve is associated with the stability of mean-

Figure 8. Mean-field model analyses explain the generation of SPAs. A–F, Mean-field solu-
tions that approximate the full simulations are shown on ( gsyn � log2 Nb) planes, where Nb is
the number of firing cells in a cluster. The lines represent where stable solutions exist (i.e.,
eigenvalues being negative) for given gsyn values shown on the x-axis. For Nb � 1, the largest
eigenvalue is negative as soon as there is a solution, and it remains constant throughout.
Therefore, the line for Nb � 1 extends all the way to infinity. The inset shows the f–I curve used
in network simulations in which the mean-field equations are approximating. The pair of dotted
lines (D) illustrates an example of the overlapping of two different stable network firing states.
Mean-field solutions corresponding to simulations with f–I curve given by the following: (A)
Figure 3Bi: � � 0.2, p � 4, � � 30, nreset � 4; (B) Figure 3Bii: � � 1, p � 4, � � 0.98,
nreset �4; (C) Figure 3Biii: ��3.5, p �4, ��0.69, nreset �4; (D) Figure 3Ai: ��0.41, p �
2, � � 20, nreset � 4; (E) Figure 3Aii: � � 1, p � 2, � � 0.81, nreset � 4; (F ) Figure 3Aiii: �
� 10, p � 2, � � 0.74, nreset � 32. See Table 3 for units of parameters used above.
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field solutions (see Materials and Methods), an overall more lin-
ear f–I curve confers similar degrees of stability for mean-field
solutions of different Nb values (because the derivative, df/dI, is
approximately constant over the f–I curve). Thus, similar gsyn

intervals or lengths of lines can be seen in Figure 8A. Moreover,
because there is little curvature (i.e., second derivative, d 2f/dI 2, is
close to zero) of the f–I curve in Figure 8A, the gsyn intervals of
different Nb values overlap moderately so that network multista-
bility exists and we expect to observe SPAs. In this case, the over-
lap exists for both large and small Nb values. As such, SPAs are
expected to be “strong” (i.e., of larger magnitude) because it was
possible for the network to switch to a state in which many in-
terneurons (high Nb values) are firing. However, SPAs are ex-
pected to occur over a relatively small stretch of gsyn values
because the overlap is concentrated over a small range of gsyn

values. This is the case (i.e., stronger SPAs over a narrower range
of gsyn values) as we can see in the network simulations of Figure
5A in which individual interneurons had f–I curves of Figure 8A
or Figure 3Bi.

Going from Figure 8A to 8B,C, we increase the curvature of
f–I curves of individual interneurons. We observe that mean-field
solutions with fewer firing interneurons (smaller Nb) occupy a
larger interval of gsyn values (Fig. 8B,C), while those with more
firing interneurons (larger Nb) occupy smaller intervals. There is
also less overlapping in gsyn intervals of the mean-field solutions,
and the diagonal “stacking” of the mean-field solutions on the
gsyn intervals is more slanted and bent away from the vertical (Fig.
8B,C). To understand this, note that there is a larger curvature
(i.e., non-zero |d 2f/dI 2| values) along the f–I curve in Figure 8, B
and C; thus, mean-field solutions for different Nb values no lon-
ger have similar gsyn intervals in Figure 8B,C as they do for the f–I
curve in Figure 8A. In particular, we note that with the initial
portion of the f–I curves (Fig. 8B,C) being moderately steeper
than the later portion, small to intermediate Nb values have in-
creased gsyn intervals, whereas the intervals for larger Nb values
are decreased. Furthermore, the relative constant curvature of f–I
curves with p � 4 as compared to p � 2 (i.e., smaller variation of
d 2f/dI 2 over the f–I curve for p � 4 relative to p � 2) ensures little
overlap of mean-field solutions in gsyn values (mean-field solu-
tions of different Nb values are uniformly separated from one
another on the gsyn line). Thus, it is expected that SPAs would be
difficult to observe using f–I curves shown in Figure 8, B and C.
This is the case as seen in Figure 5, B and C.

Figure 8D–F shows mean-field results for f–I curves with p �
2 (p is the variable that determines the characteristics of the in-
terneuron f–I curve just above threshold; see equation set 2).
There are two differences between f–I curves with p � 4 (Fig.
8A–C) and those with p � 2 (Fig. 8D–F). First, with p � 2, the f–I
curves are generally of a higher curvature (i.e., higher |d 2f/dI 2|
values) than with p � 4. Second, the variation of curvature of f–I
curves with p � 2 occurs over a narrower range of injected cur-
rent values, as opposed to f–I curves with p � 4, where the cur-
vature varies more evenly over a wider range of injected current
values. As a result of these two characteristics, a kink is more
prominent for f–I curves with p � 2 but less so with p � 4. One of
the effects of the kink in the f–I curve is that it introduces an
uneven separation in gsyn intervals for different Nb values. For
small to intermediate Nb values (Nb � 8) for which interneurons
fire at a higher frequency, the gsyn intervals increase in length,
allowing more overlap (Fig. 8D,E) because the portion of f–I
curve above the kink is substantially less steep than the portion
below the kink. This is where one finds robust coexistence of
stable firing states of low to intermediate Nb values responsible

for SPAs. Further increasing the kink of individual interneuron
f–I curves (Fig. 8F) nudges solutions with intermediate Nb values
into the periphery; thus, only solutions with small Nb values
dominate the gsyn line. As a result, we see SPAs of low strength
across a wider range of gsyn values. This is shown in Figure 4C,
which uses the f–I curve depicted in Figure 8F or Figure 3Aiii.

To further illustrate the relationship between SPAs and net-
work multistability, we performed a quantification of the amount
of overlap. In the last column of Table 1, we show the amount of
overlap in gsyn values for mean-field solutions with small to in-
termediate Nb values for each of our six mean-field analyses (Fig.
8A–F). The overlap is defined as the total length in units of gsyn in
which there is a coexistence of any two stable firing states of Nb �
8. It is clear that the gsyn overlap is maximized for f–I curves of p �
2 and with the kink slope ratio between �2 and 3. These f–I curve
characteristics, when used to represent individual interneurons
in network simulations, produced the most robust SPAs (Fig.
4A,B). There is also considerable overlap of gsyn intervals in
which an almost linear f–I curve was used (Fig. 8A). In the cor-
responding set of network simulations (Fig. 5A), we see that SPAs
of high strength occurred over a narrower range of gsyn values. For
the three mean-field solutions with the smallest overlap (Fig.
8B,C,F), we see only minimal SPAs in the corresponding sets of
simulations (Figs. 5B,C, 4C, respectively).

In summary, from the above analyses, we found that the oc-
currence of SPAs in network simulations was closely associated
with the degree of coexistence (overlap) in mean-field solutions
with low to intermediate Nb values. As shown in our simulations,
movement between different states occurred in the context of
appropriate levels of excitatory fluctuations and inhibitory
strengths. Specifically, the two f–I curves in which there was sub-
stantial overlap of low to intermediate firing states for the mean-
field solutions coincided with the two sets of full simulations in
which most robust SPAs were observed (Table 1). Moreover, the
f–I characteristics (i.e., kink size and location) of model interneu-
rons in which robust SPAs were demonstrated in simulations
were also shown to exist experimentally in interneurons of CA3
hippocampus (Fig. 6). Although the mean-field analyses only
approximate the network simulations, the correspondence be-
tween the analyses and the simulations as described above is ro-
bust. As such, the requirement of network multistability as an
underlying mechanism for the existence of hippocampal SPAs is
shown.

To make our explanations more concrete and to show further
correspondence with the experiment, we bring forth several sup-
porting points and present an idealized figure. Figure 9A depicts
an idealized arrangement of stable states to illustrate inhibitory
network multistability, which occurs when f–I curves are moder-
ately kinky. As shown, there are stable states with smaller and
larger numbers of firing cells, Nb, for the same gsyn values. Thus, at
a given time, the network may reside in any stable state. In our
proposed mechanism, SPAs are due to movement between stable
intermediate network activities and stable low network activities.
In experiments on hippocampal SPAs, we observed low and in-
termediate firing states. That is, some inhibitory interneurons
fired between SPA episodes in CA3 hippocampus, and many
more interneurons fired during SPA episodes (Wu et al., 2005b,
their Fig. 7B). Furthermore, this can also be clearly seen in our
model simulations; see raster plots of Figure 2 in which model
interneurons fired between SPA episodes.

Our mechanism shows the requirement for suitably kinked f–I
curves at gamma frequencies. This means that during intermedi-
ate network activities when many cells were firing, they should
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have been doing so at gamma frequencies since they had to be
located near the f–I kink to allow movement between states due to
excitatory fluctuations. This required “location” is illustrated by a
dashed rectangle on an appropriate kinky f–I curve in Figure 9B.
We examined several simulated SPA events. We looked at �50
SPA events from two different simulations (that had SPAs similar
to those of our experiment) and found that for each SPA event
(each of �200 ms duration), approximately half the model in-
terneurons fired only one spike and the rest fired two or more
spikes. Of the multiple firing spikes during SPAs, the average
frequency was �45 Hz (i.e., in the gamma range). In our exper-
iment, a mean frequency of �70 Hz is reported (see Wu et al.,
2005b, their Fig. 7). In other words, the spiking model interneu-
rons during SPAs sit near the kink of the f–I curve so that they are
able to move between firing or not firing with appropriate excit-
atory fluctuation (noise) levels.

Comparison between gamma and hippocampal SPAs
We have described how SPAs can arise in inhibitory networks via
network multistability. However, inhibitory networks are also
known to exhibit gamma oscillations that are of much higher
frequencies (25–100 Hz). How is it that the same inhibitory net-
work can sustain oscillations of apparently two different ranges of
frequencies? The answer lies in the different inhibitory conduc-
tance values and excitatory fluctuation levels required by each of
gamma and hippocampal SPAs. Roughly speaking, one can think
of SPAs as “another kind” of gamma, because whenever a collec-
tion of interneurons in the network fires during SPAs, each neu-
ron fires at approximately the gamma frequency. The difference
between SPAs and gamma is that in gamma, the number of in-
terneurons participating in firing is stable. In SPAs, this number
is modulated by an emergent timescale. That is, at times there are
more interneurons firing and at other times there are fewer in-
terneurons firing, thus creating a dominant lower frequency (fre-
quency of modulation of gamma) in the power spectrum. For

SPAs to occur in the first place, inhibitory relative to excitatory
input has to be such that the network, on balance, essentially
operates at the kink part of the f–I curve (Fig. 9B). The excitatory
fluctuations then bring about the SPAs by allowing movement
between different stable network states. On the contrary, for
gamma oscillations generated by the interneuron network
gamma mechanism (Whittington et al., 2000; Tiesinga and Se-
jnowski, 2009), one in general requires smaller inhibitory con-
ductances and lower excitatory fluctuation levels than are
required by SPAs. The interneuronal network during gamma is
more likely to behave as a single cluster, and there is a stronger
synchronization of spike timings between individual interneu-
rons during gamma oscillations. Individual interneurons essen-
tially fire at frequencies located at the farther and less steep end of
the f–I curve beyond threshold (Fig. 9B, dashed circle). Since the
excitatory fluctuations are not strong enough to move the system
out of a firing state, it is difficult for slow timescales to emerge.

Discussion
Summary of results
We have used a combination of experiments, data extraction, and
mathematical modeling techniques in previous (Wu et al., 2005b;
Ho et al., 2009) and present work to elucidate the mechanisms
underlying a form of SPAs. These SPAs originate in CA3 hip-
pocampus and are due to coherent inhibitory activities. Our find-
ings show that hippocampal SPAs are an emergent phenomenon,
and the intrinsic properties of individual interneurons are salient
determinants of the phenomenon. We summarize our hip-
pocampal SPA mechanism as follows: a suitably kinky f–I curve of
interneurons promotes maximal coexistence of network states
between low and intermediate numbers of firing cells (Fig. 9A,
region between the pair of dotted lines). SPAs occur when the
excitatory fluctuations are strong enough to move the network
from one firing state to another, thus creating the population
slow timescales we observed in hippocampal SPA experiments.
The properties at the initial portion of individual interneuron f–I
curves control most characteristics of hippocampal SPAs. For
hippocampal SPAs to exist, the f–I curves of interneurons require
a kink at the gamma frequency range above threshold (Fig. 9B,
dashed rectangle). We have also experimentally measured the f–I
characteristics of CA3 fast-spiking interneurons and quanti-
fied their kinks, finding that they are consistent with our
model predictions.

While the concept of network multistability in neuroscience is
not novel (van Ooyen et al., 1992; Freyer et al., 2009; Fröhlich et
al., 2010), to the best of our knowledge we are the first to have
elucidated the conditions that promote network multistability.
From our simulations we have demonstrated that SPAs are more
sensitive to excitatory conductance fluctuations than to changes
in mean excitatory levels. We have applied this result to under-
stand the effects of adenosine antagonists on hippocampal SPAs.

Our proposed model of hippocampal SPAs is based on simu-
lations and analyses independent of specific ionic mechanisms
responsible for the kinkiness of f–I curves of interneurons. There-
fore, any ionic mechanism that produces the correct curvature
of f–I curves can support SPAs in theory. However, since the kink
of the f–I curve is primarily a result of the rapid onset of spiking of
the interneuron just above threshold and the refractoriness of the
interneuron, ionic mechanisms responsible for these two charac-
teristics are probable candidates for sustaining SPAs. The fast-
spiking aspect produces a steep segment at the very initial portion
of the f–I curve just above threshold. This leads to a reduction in
the formation of large firing clusters (large Nb). The refractori-

Figure 9. A, B, Schematics showing idealized arrangement of mean-field solutions for the
occurrence of robust and pervasive SPAs, and f–I curve showing required locations for gamma
output and SPAs. A, Schematic illustrating an idealized arrangement of stable cluster solutions
for the robust occurrence of strong SPAs—multiple coexistence of stable states that include low
to intermediate Nb values—as illustrated by the region between the two dotted lines. B, f–I
Curve illustrating difference between gamma and SPAs. For SPAs, the network essentially op-
erates at the kink region. For gammas, the network operates at the latter more linear region of
the f–I curve, making it less likely that movement between low and high firing states can occur.
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ness ensures a less steep segment at the ensuing portion of the f–I
curve, which promotes overlapping of firing states with low to
intermediate Nb values. For example, voltage-gated potassium
channels Kv3.1 and Kv3.2, which are implicated in controlling
the fast-firing characteristics of inhibitory interneurons (Lau et
al., 2000; Rudy and McBain, 2001; Vyazovskiy et al., 2002) would
be candidates for modulating the occurrence of SPAs.

Hippocampal SPAs as meta-organization of inhibitory
networks
A recurring theme in many natural phenomena is how simple
elements coupled with simple rules of interaction can give rise to
complex large-scale structures (Wolfram, 2002). In many cases,
systems achieve complexity through self-similarity (Bak, 1996)
and its associated “power-law” behavior. There are many exam-
ples in nature and in the brain (Mandelbrot, 1984; Linkenkaer-
Hansen et al., 2001; Beggs and Plenz, 2003; Schneidman et al.,
2006; Tang et al., 2008; Bullmore et al., 2009; Shew et al., 2009; He
et al., 2010; Werner, 2010) in which power-law behaviors have
been discovered. These observations signify the organization of
individual neurons to represent themselves at a scale beyond
what is typically expected of any single neuron. However, physi-
ological mechanisms through which individual neurons self-
organize are poorly understood. Currently, a common answer is
balanced excitation and inhibition (Shew et al., 2009). However,
no clear context is given about this balance. Our work provides a
context for the case of inhibitory networks. Our results suggest
that, as well as synaptic properties, intrinsic properties of inhibi-
tory interneurons can play a vital role in bringing the network
into a state of phase transition. In our case, the self-organization
is built upon a “first-order”-like phase transition in which several
stable states overlap on a range of gsyn values. The slow timescales
are the result of the system “jumping” back-and-forth between
these states (Fig. 10A). The self-similarity is imperfect because of
the limited number of overlapping states. In a genuine self-
similar system, the phase transition is “second-order” (Landau
and Lifshitz, 1980; Pathria, 2001; Plischke and Bergersen, 2006)
with a single point (e.g., a single gsyn value) onto which every state
converges. However, this is not supported by experimental data,
because one would then need all the interneuron f–I functions to
be more linear and similar to Figures 3Bi or 6C for the network to
experience a second-order-like phase transition. It is also biolog-
ically infeasible unless extra mechanisms (Bak et al., 1987; Bak,
1996; Levina et al., 2007, 2009; Millman et al., 2010) are in place to
overcome the fine-tuning problem. Figure 10B shows the hypo-
thetical arrangement of mean-field solutions corresponding to a
second-order-like phase transition when every interneuron in
the network has an almost perfectly linear f–I curve above
threshold.

Extension of our results and related works
We discuss two examples beyond our current experimental setup
for hippocampal SPAs in which our findings can shed light. The
first one concerns experiments by Wu et al. (2005a). In some
hippocampal slices prepared by this group, hippocampal SPAs
were found to coexist with another kind of population activity
called sharp waves (SPWs). SPWs are the result of collective firing
of excitatory pyramidal neurons. Figure 10C depicts a LFP re-
cording in which SPWs coexist with hippocampal SPAs. While
there is no clear trend in terms of frequency and amplitude of
successive hippocampal SPA episodes in hippocampal slices
without the existence of SPWs, here the hippocampal SPA epi-
sodes increase in frequency but decrease in amplitude as the next

SPW episode is imminent (Fig. 10C). If our results about the
effects of excitatory fluctuations on hippocampal SPAs can be
carried over to this situation, the behaviors of hippocampal SPAs
during two SPW episodes might reveal temporally increasing ex-
citatory fluctuation levels as the hippocampal network ap-
proaches the next SPW episode. Since increased excitatory
fluctuation levels are indicative of the imminent onset of SPW
episodes (de la Prida et al., 2006), our results provide a parsimo-
nious explanation that naturally links the two observations
(SPWs and hippocampal SPAs) together (Ellender et al., 2010
described the possible roles of GABA(A) receptor-mediated in-
hibition in SPWs). Similar ideas might also be used to explain the
change in properties in SPAs in hippocampal slices of a Rett
syndrome mouse model (Zhang et al., 2008).

During neocortical slow oscillations (Steriade et al., 1993;
Timofeev et al., 2000; see Wolansky et al., 2006 for slow hip-
pocampal oscillations), the neocortex sustains a network UP and
a network DOWN state. The DOWN state is characterized by the
paucity of synaptic activities in the network, while the UP state is
the opposite. The network switches between UP and DOWN
state with a frequency �1 Hz. It is not fully understood how the
neocortex can transition between the two states. There are, how-
ever, computational models that reproduce some of the behav-
iors observed in experiments (Compte et al., 2003; Holcman and
Tsodyks, 2006). Although we have not explicitly included pyra-
midal cells into our simulation, our work raises the possibility
that network multistability can be built up from individual neu-
rons with only simple characteristics. One can envision that a
minimal computational model of UP and DOWN states can be
constructed by adjusting the f–I curves of some mathematical
representation of neurons. Network stable UP states would have
firing frequencies of individual neurons located in the “not-so-
steep” regions of f–I curves. Noises due to synapses or heteroge-

Figure 10. A–C, Power law behavior of model SPAs and the coexistence of hippocampal
SPAs and SPWs in some hippocampal slices (A). Power spectrum of one of the SPA simulations
on log-log scale. Parameters used from simulation: p � 2, � � 0.41, � � 20, gsyn � 0.041,
�e � 0.00102, nreset � 4. Note the approximate linearity of the spectrum for �3 decades
(from 0.01 to �35 Hz). See Table 3 for units of parameters used. B, Hypothetical arrangement
of mean-field solutions of a second-order-like phase transition. This arrangement of mean-field
solutions happens when every constituent interneuron in the network has an almost perfectly
linear f–I curve above threshold. C, LFP recording on experiments in which there was coexis-
tence of hippocampal SPAs and SPWs. During the LFP recording, the SPW episodes were usually
of much larger amplitude (up to a few mV) and much less frequent than hippocampal SPA
episodes. Three SPW episodes in this recording are each labeled by a diamond, and two exam-
ples (out of many) of hippocampal SPA episodes are marked by crosses. The SPW events in this
recording are artificially truncated at 1 mV in this figure.
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neity of neuronal population might contribute to the transition
between the UP and DOWN states.

Limitations and future work
Although we have included the essential physiological ingredi-
ents for the emergence of SPAs, our model has limitations. Be-
sides the simplified single-compartment model representation of
individual interneurons, most notable is the absence of electrical
synapse representations (gap junctions) between interneurons.
Experiments and computational studies have shown that electri-
cal and chemical synapses work together to affect network output
(Skinner et al., 1999; Tamás et al., 2000; Traub et al., 2001). Since
electrical synapses are believed to enhance the synchronization of
spike timing, we suspect that larger excitatory fluctuation levels
might be required to sustain SPAs were gap junctional effects
included in our simulations. We do not believe our conclusions
would be significantly affected. We plan to incorporate excitatory
cells directly, expand the inhibitory network size to include more
inhibitory cell types, and examine more realistic types of network
connectivity architecture.

We note that even though excitatory populations are only
implicitly included in our present models so that feedback inhi-
bition is absent, we do not expect drastic changes regarding SPAs
if excitatory cells are explicitly included. This is because SPAs are
relatively insensitive to mean excitatory drive (Fig. 7) and this is
what would be primarily modulated with the inclusion of inhib-
itory feedback.

We have developed a mean-field theory for our mathematical
analysis of the emergence of SPAs. One deficiency of mean-field
theory is the incorrect representation of fluctuations. The devel-
opment of an “effective potential” (similar to free energy in ther-
modynamics) via a field-theoretical description is one such
approach to address the problem (Zinn-Justin, 2002). Buice and
Cowan (2007) and Buice et al. (2010) have used this approach in
a neural network context. While we believe our results would not
be significantly affected, it would be interesting to apply the above
approach to our interneuronal networks.
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