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Short-Term Plasticity of Unitary Inhibitory-to-Inhibitory
Synapses Depends on the Presynaptic Interneuron Subtype
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Excitatory-to-inhibitory cortical synapses exhibit either short-term facilitation or depression, depending on the subtype identity of the
postsynaptic interneuron, while the short-term plasticity (STP) of inhibitory-to-excitatory synapses depends on the presynaptic in-
terneuron. However, the rules governing STP of inhibitory-to-inhibitory synapses have not yet been determined. We recorded 109 unitary
connections made by the two major inhibitory interneuron subtypes in layer 4 of mouse somatosensory cortex, fast-spiking (FS) and
somatostatin-containing (SOM) interneurons, on each other and on excitatory, regular-spiking (RS) neurons. In all pairs, we measured
dynamic changes in the postsynaptic response to a 20 Hz train of presynaptic action potentials. In half of our dataset, we also measured
kinetic properties of the unitary IPSC: latency, rise time, and decay time constant. We found a pronounced dependency of STP on the
presynaptic, but not the postsynaptic, identity: FS interneurons made strongly depressing connections on FS, SOM, and RS targets, while
in synapses made by SOM interneurons on FS and RS targets, weak early depression was followed by weak late facilitation. IPSC latency
and rise time were also strongly dependent on the presynaptic interneuron subtype, being 1.5–2� slower in output synapses of SOM
compared with FS interneurons. In contrast, the IPSC decay time constant depended only on the postsynaptic class, with 1.5� slower
decay on excitatory compared with inhibitory targets. The properties of the inhibitory outputs of FS and SOM interneurons reciprocate
the properties of their excitatory inputs and imply a dynamic spatiotemporal division of labor between these two major inhibitory
subsystems.

Introduction
Chemical synaptic transmission has a remarkable capacity for
up-modulations (facilitation) or down-modulations (depres-
sion) in the amplitude of the synaptic response, which persist
over a wide range of time scales. This capacity, referred to as
“synaptic plasticity,” is thought to be the basis for the nervous
system’s ability to process and store information (Martin and
Morris, 2002; Silva, 2003). Short-term plasticity (STP) refers to
modulations that result from recent activity of the synapse over
the previous tens to hundreds of milliseconds (Magleby, 1979;
Zucker and Regehr, 2002). The STP amplitude and sign (depres-
sion or facilitation) vary between different synapses, raising the
question: is STP a function of the presynaptic neuron, the post-
synaptic neuron, or both? Note that this is not the same as asking
whether the underlying mechanism resides presynaptically or

postsynaptically. For example, STP can be a function of the
postsynaptic neuron even if its cellular mechanism resides
presynaptically, and vice versa, because the mechanism could
be induced by transsynaptic signaling during synaptogenesis
(Thomson and Deuchars, 1994; Reyes et al., 1998). Early dual
recording experiments in neocortical brain slices revealed that
unitary excitatory synapses on inhibitory interneurons (E3 I
synapses) can be either depressing or facilitating, depending on
the subtype identity of the postsynaptic interneuron. Specifically,
EPSPs on parvalbumin-containing fast-spiking (FS) interneu-
rons, a major subtype characterized by multipolar morphology
and a fast-spiking phenotype, usually exhibit depression, while
EPSPs on somatostatin-containing (SOM) interneurons, which
often have bitufted morphology and a burst-firing or low-
threshold spiking phenotype, exhibit facilitation (Thomson,
1997; Markram et al., 1998; Reyes et al., 1998). In contrast, STP of
inhibitory-to-excitatory (I3E) synapses depend on the identity
of the presynaptic interneuron (but see Reyes et al., 1998; Gupta
et al., 2000). For example, in cortical layer 4, FS3RS (regular-
spiking) synapses exhibit strong depression while SOM3RS
synapses exhibit only slight depression or modest facilitation
(Beierlein et al., 2003).

In addition to I3E synapses, inhibitory interneurons make
I3 I synapses on other interneurons (Reyes et al., 1998; Gibson et
al., 1999; Gupta et al., 2000; Thomson et al., 2002). However, a
clear rule for predicting STP of I3 I synapses has not yet
emerged, and it is not known whether heterotypic I3 I synapses
(e.g., FS3SOM and SOM3FS connections) follow the E3 I
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rule of postsynaptic dependency, or the
I3E rule of presynaptic dependency.
Moreover, kinetic parameters of hetero-
typic I3 I IPSCs have not been reported
previously, and whether these parameters
vary with the presynaptic or postsynaptic
neuron is unknown. Here we show that
STP and some kinetic parameters of I3I
connections depend on the subtype of the
presynaptic interneuron, but that the IPSC
decay time constant varies with the class of
the postsynaptic target.

Materials and Methods
Slice preparation. All animal-related proce-
dures were approved by the West Virginia Uni-
versity Animal Care and Use Committee and
adhered to U.S. Public Health Service regula-
tions. Brain slices were prepared as previously
described (Ma et al., 2006) from juvenile mice
of either sex, postnatal days 15–23 (17.3 � 1.8,
mean � SD), mostly from the X94 mouse line
(stock #006334; The Jackson Laboratory), in
which SOM neurons are identifiable by their
GFP fluorescence. Some FS–FS and FS–RS
pairs were recorded in slices from G42 mice
(stock #007677; The Jackson Laboratory), in
which FS interneurons express GFP (Chat-
topadhyaya et al., 2004).

Electrophysiological recordings. Slices were su-
perfused at a rate of �2 ml/min with oxygenated
artificial CSF (ACSF) at 32°C. ACSF contained
the following (in mM): 126 NaCl, 3 KCl, 1.25
NaH2PO4, 2 CaCl2, 1.3 MgSO4, 26 NaHCO3, and
20 D-glucose. Dual whole-cell recording were
done from adjacent layer 4 neurons in current- or
voltage-clamp mode, using the Axoclamp 2B
or Axopatch 200B amplifiers, respectively
(Molecular Devices). Glass micropipettes (typ-
ically 5– 8 M� resistance for current-clamp,
3– 4 M� for voltage-clamp) were filled with
the following (in mM): 134 K-gluconate, 3.5
KCl, 0.1 CaCl2, 10 HEPES, 1.1 EGTA, 4 Mg-
ATP, 10 phosphocreatine-Tris, and 2 mg/ml
biocytin (pH 7.25, �290 mOsm). Immediately
upon break-in, a standardized set of subthresh-
old and suprathreshold voltage responses to in-
tracellular current injection were recorded and
used post hoc to calculate intrinsic membrane
parameters and verify the subtype identity of
the neuron as SOM, FS, or RS (Ma et al., 2006;
Tan et al., 2008; Hu et al., 2011). Single and
trains of presynaptic action potentials were then elicited every 8 –15 s
using brief (2– 4 ms) current pulses, and unitary inhibitory postsynaptic
responses (uIPSC/Ps) were recorded while holding the postsynaptic neu-
ron at �50 mV. Records were filtered at 3 kHz (current-clamp) or 2 kHz
(voltage-clamp) and digitized at 20 kHz.

Data analysis. For kinetic parameter measurements [latency, rise
time, and decay time constant (�)], 20 –30 uIPSCs were aligned on the
peak of the presynaptic spike and averaged. Latency was defined as
the interval between the peak of the presynaptic spike and 20% of the
peak of the uIPSC; rise time was measured between 20 – 80% of the
peak of the uIPSC; decay � was measured by fitting a single exponen-
tial to the decay phase of the uIPSC. Dynamic (STP) parameters were
measured from averaged 20 Hz trains of 8 –10 uIPSC/Ps followed by a
single response 500 ms later (recovery test) (Gupta et al., 2000).
Paired-pulse ratio (PPR) was defined as the ratio of the second to first
response; last-to-first ratio (LFR) as the ratio of the averaged seventh

and eighth responses to the first response; and recovery test ratio
(RTR) as the ratio of the recovery test to the first response. Minimal
response amplitudes used for analysis were 20 pA or 0.5 mV for
dynamic parameters and 25 pA for kinetic parameters; this criterion
excluded 10 connected pairs from analysis.

Statistics. Statistical significance ( p) values were determined by com-
paring the observed difference between means (two group comparisons)
or the observed F ratio (three group comparisons) to the distribution of
values computed from 10,000 random permutations of the data. Com-
putations were performed in MathCad.

Results
Using paired whole-cell recordings in brain slices of mouse so-
matosensory (barrel) cortex, we examined the properties of I3 I
synapses made by FS and SOM inhibitory interneurons and com-
pared them to I3E synapses made by the same subtypes. Our

Figure 1. Averaged uIPSCs representing the five groups of inhibitory connections studied. In each panel, the postsynaptic
current is shown above the simultaneously recorded presynaptic action potential. Holding potentials were �50 mV. Traces are
color coded by subtype (FS, red; SOM, blue; RS, black).

Figure 2. Averaged trains of uIPSPs elicited at 20 Hz, representing the five groups of inhibitory connections studied. Traces are
color coded by subtype (FS, red; SOM, blue; RS, black).
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dataset consisted of 98 synaptically connected pairs that yielded
109 inhibitory connections (eleven pairs were connected bidirec-
tionally), falling into three I3 I and two I3E groups. Connec-
tion probabilities for these five groups were 0.56 for SOM3FS,
0.38 for SOM3RS, 0.61 for FS3SOM, 0.48 for FS3FS, and
0.63 for FS3RS. Rates of reciprocal connectivity were not signif-
icantly different from random (Fisher’s exact test). Chemical
SOM3SOM synapses were never observed (Gibson et al., 1999;
Hu et al., 2011). In 54 of these connections, both neurons were
recorded in current-clamp mode; in the remaining 55, the post-
synaptic neuron was voltage-clamped. As previously reported,
some of the FS–FS pairs were coupled electrically in addition to
being connected chemically (Gibson et al., 1999; Galarreta and
Hestrin, 2002); coupled and noncoupled FS–FS pairs were
pooled.

We tested all connections by eliciting both single spikes and 20
Hz spike trains in the presynaptic interneuron; 20 Hz is within the
range of firing frequencies of FS and SOM interneurons in re-
sponse to visual stimulation in vivo (Ma et al., 2010). Represen-
tative averaged uIPSCs from the five groups of connections are
shown in Figure 1; representative averaged uIPSP trains are
shown in Figure 2. From averaged single uIPSCs, we measured
three kinetic parameters: latency, rise time, and decay �. From
averaged 20 Hz trains of uIPSC/Ps, we measured three dynamic
STP parameters: PPR, LFR, and RTR (for definitions, see Mate-
rials and Methods, above). There were no significant differences
in STP parameters between voltage-clamp and current-clamp
data except for the RTR, which was �10 –20% larger in voltage-
clamp data, but this was true for output synapses of both SOM
and FS interneurons, so it did not affect the difference between
the two groups. The six parameters are summarized in Table 1 by
group, and represented graphically in Figure 3.

From Figure 3 and the p values in Table 1, it is clear that the
three dynamic parameters differed very significantly based on the
presynaptic interneuron subtype, but were similar for different
postsynaptic targets (Fig. 3, top; note vertically displaced but

nearly horizontal parallel lines). Specifically, synapses made by FS
interneurons depressed by 60% or more by the end of a 20 Hz, 8
pulse train, and remained depressed 500 ms later; synapses made
by SOM interneurons depressed by �10% during the train, but
recovered and then facilitated by approximately the same
amount, remaining facilitated 500 ms later. The first two kinetic
parameters, uIPSC latency and rise time, also varied very signifi-
cantly between presynaptic interneuron subtypes and were
�1.5� slower in connections made by SOM versus FS interneu-
rons. In addition, when the presynaptic neuron was SOM, they
depended to some degree on the postsynaptic neuron and were
�20% slower on RS versus FS targets (Fig. 3, bottom left, bottom
middle; note sloping blue lines). Finally, the uIPSC decay � dif-
fered very significantly between excitatory and inhibitory post-
synaptic targets, being �1.5-fold slower in the former (Fig. 3,
bottom right; note strongly sloping blue and red lines), but was
independent of either the presynaptic or postsynaptic interneu-
ron subtype.

Previous studies showed an age-related increase in PPR of
neocortical EPSPs (Reyes and Sakmann, 1999) and IPSPs (Take-
sian et al., 2010) during early postnatal development; we there-
fore tested for correlations between postnatal age and the
measured synaptic parameters. The PPR increased only slightly
within our age range (trend line rose by �0.1), while the LFR and
RTR remained essentially constant, as did latency and rise time.
Of the six parameters, only the decay � showed a significant de-
velopmentally related trend, decreasing by �1.5 ms within the
age range used in our study (r 2 � 0.09 and 0.26 for uIPSCs on
excitatory and inhibitory neurons, respectively).

Discussion
The current report is, to our knowledge, the first systematic study
of the kinetic and dynamic properties of synapses between neo-
cortical FS and SOM interneurons, the two major interneuron
subtypes in the neocortex. Our major finding was that the sign
and amplitude of STP in these I3 I synapses, like in I3E syn-

Table 1. Average kinetic and dynamic properties of the five groups of connections

uIPSC (pA) uIPSP (mV)

Dynamics Kinetics

PPR LFR RTR Latency Rise time Decay �

1. SOM3 FS
N 21 16 37 37 37 21 21 21
Mean 117.8 1.38 0.85 0.91 1.11 0.93 0.47 2.84
SEM 13.7 0.22 0.02 0.03 0.03 0.03 0.01 0.17

2. SOM3RS
N 11 7 18 18 18 9 9 10
Mean 40.5 1.04 0.85 0.91 1.12 1.05 0.57 4.31
SEM 5.1 0.18 0.03 0.04 0.03 0.04 0.02 0.37

3. FS3 SOM
N 5 10 15 15 15 4 4 4
Mean 64.4 1.82 0.73 0.41 0.57 0.50 0.28 2.46
SEM 24.0 0.33 0.02 0.02 0.03 0.04 0.02 0.25

4. FS3 FS
N 10 16 26 26 26 10 10 10
Mean 83.1 1.79 0.72 0.39 0.54 0.64 0.31 2.26
SEM 16.7 0.19 0.02 0.02 0.02 0.04 0.01 0.20

5. FS3RS
N 8 5 13 13 12 6 6 6
Mean 82.1 2.70 0.64 0.35 0.56 0.60 0.32 3.90
SEM 32.1 0.68 0.03 0.02 0.02 0.02 0.01 0.24

1 versus 2 (different targets of SOM) p � 0.83 p � 0.96 p � 0.73 p � 0.03 p � 0.001 p � 0.001
3 versus 4 versus 5 (different targets of FS) p � 0.03 p � 0.28 p � 0.49 p � 0.13 p � 0.41 p � 0.001
1,2 versus 3,4,5 (presynaptic SOM versus FS) p � 0.0001 p � 0.0001 p � 0.0001 p � 0.0001 p � 0.0001 p � 0.10
2,5 versus 1,3,4 (postsynaptic E versus I) p � 0.35 p � 0.55 p � 0.22 p � 0.30 p � 0.06 p � 0.0001

Bottom four rows are statistical test results.
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apses (Gupta et al., 2000; Beierlein et al.,
2003), depended on the subtype of the
presynaptic interneuron. Specifically, STP
was strongly depressing in synapses made
by FS interneurons, and weakly depress-
ing to weakly facilitating in output syn-
apses of SOM interneurons, regardless of
postsynaptic target class or subtype. Ki-
netic uIPSC parameters showed mixed
dependencies: latency and rise time were
strongly dependent on the presynaptic in-
terneuron, being �1.5� slower in synapses
made by SOM versus FS interneurons, but
within the former they were somewhat
slower if the postsynaptic cell was excitatory.
Finally, decay � varied widely between excit-
atory and inhibitory targets, being �1.5�
slower in the former, but did not depend
on the presynaptic or postsynaptic interneuron subtype. Our
findings are at odds with a previous report (Reyes et al., 1998) of
target-dependent STP of the output synapses of bitufted, putative
SOM interneurons in upper cortical layers of postnatal day 14
rats. This discrepancy could reflect differences in species or age;
alternatively, SOM interneurons in layers 2/3 may differ from
those in layer 4 in their STP properties, just as they differ in their
intrinsic properties (Ma et al., 2006).

Dynamics of unitary inhibitory synapses depend on the
presynaptic interneuron
Various mechanisms have been proposed to explain the dif-
ferences in short-term plasticity between E3 I synapses on FS
and SOM interneurons, including P/Q- versus N-type calcium
channels (Ali and Nelson, 2006), presynaptic calcium-
permeable kainate receptors (Sun and Dobrunz, 2006), and a
longer diffusional distance for presynaptic Ca 2	 in RS3SOM
synapses (Rozov et al., 2001). One can explain the presynaptic
dependency of I3E and I3 I dynamics by similar mecha-
nisms. Indeed, differences in the subtypes of Ca 2	 channels in
presynaptic terminals have been implicated in a study of facil-
itating and depressing synapses made, respectively, by chole-
cystokinin (CCK)-positive and CCK-negative interneurons in
the hippocampus (Ali, 2011).

uIPSC kinetics depend on both presynaptic and
postsynaptic neurons
Like the STP of the inhibitory response, uIPSC rise-time and
latency depended mostly on the subtype of the presynaptic in-
terneuron and not on its target, with uIPSCs made by SOM in-
terneurons having longer latencies and slower rise times
compared with those made by FS interneurons, consistent with
previous reports (Xiang et al., 2002; Koyanagi et al., 2010). The
same mechanisms accounting for synaptic dynamics could be
invoked to explain kinetic properties. For example, a relatively
long distance between the presynaptic Ca 2	 channel and the ves-
icle fusion site could result in a gradually increasing probability of
release during high-frequency firing as Ca 2	 accumulates, ac-
counting for facilitation, and could also account for a longer
latency between presynaptic spike and vesicle fusion, due to the
slow rise of presynaptic [Ca 2	], and for a slower IPSC rise time,
due to reduced release synchrony (Rozov et al., 2001).

Synapses made by SOM interneurons exhibited a second-
ary dependency on the class of the target neuron, with uIPSCs
having slower rise times and latencies on excitatory versus

inhibitory targets. The apparent slower kinetics of SOM3RS
uIPSCs, as recorded in the soma, could be an outcome of the
presumed dendritic location of these synapses (Maccaferri et
al., 2000; Wang et al., 2004), which would be expected to result
in electrotonic filtering of the synaptic current (Spruston et
al., 1993).

In synapses made by both SOM and FS interneurons, uIPSC
decay time constants depended only on the broad class (E or I) of
the postsynaptic neuron, with the two types of I3E uIPSCs hav-
ing slower decay �, compared with the three types of I3 I con-
nections. This is consistent with findings in hippocampus (Bartos
et al., 2001; Patenaude et al., 2005). The slower decay of
SOM3RS uIPSCs could again be attributable to the dendritic
location of the synapse, but FS3RS synapses are presumed to be
located proximally, so the slower decay of the FS3RS compared
with FS3FS and FS3SOM uIPSCs points to a possible differ-
ence in the postsynaptic GABAA receptor properties between
these synapses.

Functional implications
As previously noted (Beierlein et al., 2003), there is reciprocity
in the properties of input and output synapses of the FS and
SOM interneuron subtypes. Unitary excitatory inputs onto FS
interneurons are fast-rising and fast-decaying (Geiger et al.,
1997; Angulo et al., 1999), generate rapid and short EPSPs
(Fricker and Miles, 2000), and thereby give rise to precisely
timed postsynaptic spikes, allowing FS interneurons to func-
tion as coincident detectors (Galarreta and Hestrin, 2001).
Similar properties are found in the output synapses of FS in-
terneurons: both FS3RS and FS3FS uIPSCs have fast rise
times (as confirmed in this study) and, as a result, FS cells can
precisely entrain spikes in postsynaptic neurons and promote
network oscillations (Cobb et al., 1995; Bartos et al., 2002).
However, RS3FS inputs, while strong and reliable initially,
are markedly depressed during prolonged activity; likewise,
FS3RS synapses are depressed during ongoing activity (as
confirmed in this study), albeit less than RS3FS synapses
(Galarreta and Hestrin, 1998). Thus, the RS3FS3RS circuit
of feedback inhibition, as well as the thalamus3FS3RS cir-
cuit of feedforward inhibition (Porter et al., 2001; Gabernet et
al., 2005; Cruikshank et al., 2007), are optimized to transmit
transient information about novel stimuli, rather than sus-
tained information as expected, for example, during ongoing
sensory exploration. Here we extended these principles to
FS3SOM synapses, which are just as rapid in latency and rise
time as the other FS outputs and show identical frequency-

Figure 3. Kinetic and dynamic properties of inhibitory synapses. Line plots of the three dynamic (top) and three kinetic
(bottom) parameters, separated according to presynaptic (pre; y-axis) and postsynaptic (post; x-axis) identity. Top graphs were
calculated from the full dataset; bottom graphs only from voltage-clamped neurons. Error bars represent SEM. Note that most error
bars are hidden by the data symbols.
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dependent depression. Thus, SOM interneurons will be pow-
erfully but transiently inhibited by FS interneurons in
response to novel stimuli, but this inhibition will fade out
during ongoing sensory activity.

In contrast to synapses on and by FS interneurons, synapses
between excitatory neurons and SOM interneurons have slower
kinetics in both directions. This slow kinetics was extended in the
present study to SOM3FS synapses. Thus, EPSPs elicited in
SOM interneurons and IPSPs elicited by SOM interneurons
will be less temporally precise than those of FS interneurons.
However, due to the strong facilitation of RS3SOM re-
sponses and to the slight facilitation of SOM3RS responses,
the RS3SOM3RS circuit can generate powerful, frequency-
dependent feedback inhibition (Kapfer et al., 2007; Silberberg
and Markram, 2007). Moreover, during active cortical states,
SOM interneurons are likely to be strongly excited by ascending
modulatory inputs (Fanselow et al., 2008) and by incoming in-
puts from the thalamus (Tan et al., 2008), and their capacity to
generate sustained, high-frequency inhibitory output will allow
them to suppress activity not only in neighboring excitatory neu-
rons, but also, as the current findings imply, in FS interneurons.
Thus, the two systems of interneurons are perfectly optimized to
play complementary roles, with a spatiotemporal division of la-
bor between them: FS interneurons provide powerful somatic
inhibition to excitatory neurons, but this inhibition will be
greatly reduced during sustained sensory input due to the depres-
sion of their excitatory inputs, the depression of their inhibitory
outputs, and (as shown here) the slightly facilitating inhibition
they receive from SOM interneurons. The latter will then take
over and replace the transient somatic inhibition with a delayed
but sustained dendritic-targeted inhibition that may gate or
sculpt late excitatory inputs arriving onto dendritic spines (Tan et
al., 2008; Ma et al., 2010).
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