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Myelin Gene Regulatory Factor Is Required for Maintenance
of Myelin and Mature Oligodendrocyte Identity in the
Adult CNS
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Although the transcription factors required for the generation of oligodendrocytes and CNS myelination during development have been
relatively well established, it is not known whether continued expression of the same factors is required for the maintenance of myelin in
the adult. Here, we use an inducible conditional knock-out strategy to investigate whether continued oligodendrocyte expression of the
recently identified transcription factor myelin gene regulatory factor (MRF) is required to maintain the integrity of myelin in the adult
CNS. Genetic ablation of MRF in mature oligodendrocytes within the adult CNS resulted in a delayed but severe CNS demyelination, with
clinical symptoms beginning at 5 weeks and peaking at 8 weeks after ablation of MRF. This demyelination was accompanied by micro-
glial/macrophage infiltration and axonal damage. Transcripts for myelin genes, such as proteolipid protein, MAG, MBP, and myelin
oligodendrocyte glycoprotein, were rapidly downregulated after ablation of MRF, indicating an ongoing requirement for MRF in the
expression of these genes. Subsequently, a proportion of the recombined oligodendrocytes undergo apoptosis over a period of weeks.
Surviving oligodendrocytes gradually lose the expression of mature markers such as CC1 antigen and their association with myelin,
without reexpressing oligodendrocyte progenitor markers or reentering the cell cycle. These results demonstrate that ongoing expression
of MRF within the adult CNS is critical to maintain mature oligodendrocyte identity and the integrity of CNS myelin.

Introduction
The process of CNS myelination is tightly regulated both by ex-
trinsic signals provided by neurons and astrocytes and by a net-
work of transcription factors within the oligodendrocyte lineage
(for review, see Emery 2010). The use of knock-out mice has
identified roles for a number of transcription factors in the gen-
eration of oligodendrocytes and their subsequent myelination.
Olig2, an early marker of the lineage, is required for the specifi-
cation of oligodendrocyte progenitors (OPCs) in most regions of
the CNS and is thus ultimately required for the generation of
mature oligodendrocytes (Lu et al., 2002; Zhou and Anderson,
2002; Ligon et al., 2006). The absence of Olig1 (Xin et al., 2005),
Sox10 (Stolt et al., 2002; Takada et al., 2010), Ascl1/Mash1 (Sugi-
mori et al., 2008), YY1 (He et al., 2007), and Nkx2.2 (Qi et al.,

2001) does not prevent the specification of OPCs, but their dif-
ferentiation is blocked at the late progenitor or premyelinating
oligodendrocyte stage, preventing myelination. Recently, we de-
scribed a previously unknown transcription factor, myelin gene
regulatory factor (MRF)/gene model 98, the mouse ortholog to
the human gene C11Orf9. Although MRF is not required for the
generation of OPCs or their differentiation into premyelinating
oligodendrocytes, it is required for the expression of myelin genes
and CNS myelination (Emery et al., 2009). Unlike Olig1, Olig2,
Sox10, Ascl1, YY1, and Nkx2.2, the expression of MRF is con-
fined to the postmitotic stage of the lineage (Cahoy et al., 2008),
and forced expression of MRF in OPCs induces the precocious
expression of MBP and MOG (Emery et al., 2009). This suggests
that its induction during oligodendrocyte differentiation is a key
determinant in initiating myelination.

Whether the transcription factors required for oligodendro-
cyte differentiation are also required on an ongoing basis in ma-
ture cells once myelination is established is unknown. Because of
the dysmyelination and early lethality associated with knock-outs
for the above factors, this question has not been addressable using
conventional knock-out strategies. Recently, inducible condi-
tional knock-out (iCKO) strategies have been used to address this
question within the PNS. Genetic ablation of the “master regula-
tor” of PNS myelination Egr2/Krox-20 in the adult results in
rapid demyelination, with myelin degeneration and denuded ax-
ons found within 3 d of the ablation of the Krox-20 gene (Decker
et al., 2006). Similarly, the inducible genetic ablation of Sox10 in

Received April 18, 2012; revised June 13, 2012; accepted July 13, 2012.
Author contributions: M.K., T.J.K., and B.E. designed research; M.K., S.J., C.M.H., C.F., M.W., and B.E. performed

research; M.K. and B.E. analyzed data; M.K. and B.E. wrote the paper.
This work was supported by the Myelin Repair Foundation and grants from the Australian National Health and

Medical Research Council (NHMRC Grant 1009095), the Australian Multiple Sclerosis Society, the Trish Multiple
Sclerosis Research Foundation, and National Eye Institute Grant EY10257. B.E. is supported by an NHMRC Career
Development Fellowship. We thank Brian Popko for kindly providing the PLP-CreERT mouse line and for helpful
discussions. We are indebted to Anna Friedhuber for processing samples for TEM and to Ben Barres and David Lyons
for constructive criticism of this manuscript during preparation.

Correspondence should be addressed to Ben Emery, Department of Anatomy and Neuroscience and Florey Neu-
roscience Institutes, Melbourne Brain Centre, University of Melbourne, Melbourne, VIC 3010, Australia. E-mail:
emeryb@unimelb.edu.au.

DOI:10.1523/JNEUROSCI.1069-12.2012
Copyright © 2012 the authors 0270-6474/12/3212528-15$15.00/0

12528 • The Journal of Neuroscience, September 5, 2012 • 32(36):12528 –12542



myelinating Schwann cells in the adult results in PNS demyelina-
tion but with a considerably longer delay (Bremer et al., 2011).

Here, we have used an iCKO strategy to determine whether
MRF has a role in the maintenance of myelin by mature oligo-
dendrocytes in the adult. We show that ablation of MRF in my-
elinating cells causes a delayed but severe CNS demyelination,
with clinical signs peaking 8 weeks after ablation of MRF. This
demyelination is preceded by a rapid loss of the expression of key
myelin genes and coincides with a gradual loss of the mature
phenotype and death of many of the recombined oligodendro-
cytes. These findings demonstrate an ongoing requirement for
MRF in the maintenance of both mature oligodendrocyte iden-
tity and the myelin sheath.

Materials and Methods
Mouse lines and genotyping. The MRF exon 8 loxP-flanked line (Emery et
al., 2009) was genotyped using primers within intron 7 flanking the first
loxP site (AGGAGTGTTGTGGGAAGTGG and CCCAGGCTGAA-
GATGGAATA), which result in a 281 bp product for the wild-type allele
and a 489 bp product for the loxP-flanked allele, respectively. Mice pos-
itive for the PLP–CreERT transgene (Doerflinger et al., 2003) were iden-
tified with the primers GCGGTCTGGCAGTAAAAACTATC (forward)
and GTGAAACAGCATTGCTGTCACTT (reverse), using the internal
control primers CTAGGCCACAGAATTGAAAGATCT (forward) and
GTAGGTGGAAATTCTAGCATCATCC (reverse). The Rosa26 – eYFP
reporter line (Srinivas et al., 2001) was genotyped using primers AA-
GACCGCGAAGAGTTTGTC, AAAGTCGCTCTGAGTTGTTAT and
GGAGCGGGAGAAATGGATATG. All mice used were maintained on a
mixed C57BL/6 � 129 background.

Conditional ablation of MRF in myelinating cells. Eight-week-old mice
were treated with 4-hydroxytamoxifen (4OHT; Sigma-Aldrich) as de-
scribed previously (Doerflinger et al., 2003). Briefly, 4OHT was dissolved
in 90% corn oil and 10% ethanol to 10 mg/ml. Mice were given a daily
intraperitoneal injection of 1 mg (100 �l) for 5 consecutive days. The first
day of injections was designated day 0.

Rotarod behavioral analysis. Mice were trained for three trials on the
rotarod at a constant speed (4 rpm), 120 s per trial. Subsequent weekly
test runs consisted of three trials on an accelerating rotarod for up to 300 s
(starting at 4 rpm accelerating to a final speed of 40 rpm), with mice
returned to their home cages for at least 15 min between trials. Clinical
grades were assessed using an experimental autoimmune encephalomy-
elitis (EAE) grading system modified to reflect the phenotype of the
inducible MRF knock-outs as follows: grade 0, no overt symptoms; grade
1, loss of tail tone; grade 2, loss of tail tone with mild hindlimb involve-
ment (wide gait) or ataxia; grade 3, substantial hindlimb weakness
(mouse cannot hang from hindlimbs) and ataxia; grade 4, severe
hindlimb weakness (forelimbs mostly used for locomotion) and ataxia;
and grade 5, complete hindlimb paralysis (clinical endpoint; mice were
killed at this grade or if they suffered from �15% weight loss).

Tissue processing and immunostaining of cryosections. Mice were anes-
thetized with sodium pentobarbital (100 mg/kg, i.p.) and transcardially
perfused with 10 ml of PBS and 20 ml of 4% PFA. Optic nerves, brains,
and spinal cords were removed, postfixed in 4% PFA for 2 h, sunk in 30%
sucrose in PBS overnight at 4°C, and embedded in OCT, and 10 �m
cryosections were cut. Sections were blocked in 10% FCS with 0.3%
Triton X-100 and stained overnight in the following antibodies: rat
anti-MBP (MAB386; Millipore), CC1 monoclonal (Millipore), rabbit
anti-NG2 (AB5320; Millipore), mouse anti-CD68 (MCA1957B; AbD Se-
rotec), rat anti-CD3 (555273; BD Pharmingen), mouse anti-GFAP
(MAB360; Millipore), rabbit anti-Sox10 (AB5727; Millipore), rabbit
anti-�-APP (51-2700; Life Technologies), and rabbit anti-active
caspase-3 (BD Pharmingen). Sections were then incubated with the ap-
propriate fluorescent conjugated antibodies (Alexa Fluor; Life Technol-
ogies). FluoroMyelin staining (Life Technologies) was conducted for 2 h
at 1:300 in PBS before four 30-min washes in PBS.

Cumulative detection of dividing cells. For detection of proliferating
cells in vivo, mice were given 5�-ethynyl-2�-deoxyuridine (EdU) (Life

Technologies) dissolved in the drinking water at 0.2 mg/ml. The water
was exchanged every 72 h, and mice were exposed to EdU from 1 week
after the first 4OHT injection until the time the animals were killed (2– 8
weeks after 4OHT). For detection of EdU incorporation, sections were
first processed for eYFP or CC1 immunohistochemistry as above and
then developed using the Alexa Fluor-594 Click-iT EdU Cell Prolifera-
tion Assay kit (Life Technologies) as per the instructions of the
manufacturer.

In situ hybridization. In situ hybridization was performed as described
previously (Faux et al., 2010) using DIG-labeled antisense riboprobes for
the 3� UTR region of MRF (Emery et al., 2009) or probes against
PDGFR� or proteolipid protein (PLP) (constructs kindly provided by
Prof. William Richardson, University College London, London, UK).

Semiquantitative RT-PCR. Spinal cords were dissected from control
(MRF FL/FL) and iCKO (MRF FL/FL; PLP–CreERT) mice at indicated
times after 4OHT. Total RNA was isolated using microRNeasy kits (Qia-
gen) as per the instructions of the manufacturer. cDNA was generated
using superscript III kit (Life Technologies). Semiquantitative PCR was
then performed using primers either flanking the cDNA encoded for by
the loxP-flanked exon 8 (GCCTCAGTGGCTCCTATTTG and GATCG-
GAAGGGTGCATAAGA) or within the cDNA encoded for by exons 7
and 8 (CCCCCAGCATGCCGATGTACAC and TGTACACGGTCAC-
CTGGAAG). �-Actin cDNA was amplified as a loading control using
primers TGTTACCAACTGGGACGACA and AAGGAAGGCTGG
AAAAGAGC.

Quantitative PCR. Total RNA was isolated from hemi-brains of mice
using the Qiagen RNeasy Lipid mini-kit as per the instructions of the
manufacturer. RNA, at 1 �g, was used for a reverse transcriptase reaction
with the Taqman Reverse Transcription reagents (Applied Biosystems),
according to the instructions of the manufacturer, and used at a dilution
of 1:20 for the quantitative real-time PCR (qPCR) reactions. qPCR was
performed on an ABI7700 sequence detection system (Applied Biosys-
tems). Relative expression from amplified RNA samples was determined
using the 2 ���

CT method (Pfaffl, 2001). Values were normalized to the
expression of the 18S ribosomal subunit within samples and then nor-
malized to mean values for the control group. Primers were designed
using Primer3 (National Center for Biotechnology Information) and the
qPrimerDepot (primerdepot.nci.nih.gov/). Primer sequences are listed
in Table 1.

Western blot analysis of protein expression. Hemi-brain samples or spi-
nal cords (from the same animals used in the qPCR study) were homog-
enized in RIPA buffer with PMSF and complete protease inhibitors
(Roche) via douncing and subsequent sonication. Lysates were spun
twice at 21,500 � g at 4°C for 20 min to remove insoluble material. Fifty
micrograms of protein were run on a 10% Bis-Tris gradient gel (Life
Technologies) and transferred to PVDF membrane (Millipore). Blots
were probed with an in-house monoclonal antibody against mouse MRF
before being stripped and reprobed with anti-�-actin to confirm even
loading. Control and MRF-transfected HEK293T cell lysates were used as

Table 1. qPCR primers

Forward Reverse

18S ribosomal subunit CGGCTACCACATCCAAGGAA GCTGGAATTACCGCGGCT
MRF (total)a GCATGGGCACCGCCCCTAAG GGGGCGAGTCTGGCAGTGTG
MRF (non-recombined)b AAGGAGCTGCCTATGCTCACCT GCCTCTAGCTTCACACCATGCA
MRF (recombined)c ATCCATCAAATGGCAGCCGCA CAGGGCCTCTAGAGCTCCTT
MAG AACCAGTATGGCCAGAGAGC GTTCCGGGTTGGATTTTACC
PLP1 GCCCCTACCAGACATCTAGC AGTCAGCCGCAAAACAGACT
MBP CCCGTGGAGCCGTGATC TCTTCAAACGAAAAGGGA
MOG ATGAAGGAGGCTACACCTGC CAAGTGCGATGAGAGTCAGC
Sox10 TGGACCGCACACCTTGGGACA ACGCCCACCTCCTCCGACCT
CNP GTTCTGAGACCCTCCGAAAA CCTTGGGTTCATCTCCAGAA
PDGFR� GGAAGGACTGGAAGCTTGGGGC GAGATGAGGCCCGGCCCTGTGA
CD68 GGACTACATGGCGGTGGA GATGAATTCTGCGCCATGAA
�-3-tubulin TCTCGGCCTCGGTGAACTC AAGGCCTTCCTGCACTGGTA
aRecognized transcripts arising from both non-recombined and recombined alleles.
bSpecific to non-recombined allele.
cSpecific to post-recombination/nonfunctional allele.
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a negative and positive control for MRF expression, respectively. For
quantitative MBP blots, gels were transferred on to PVDF-Fl membranes
(Millipore). The membranes were blocked in Odyssey blocking buffer
(Li-Cor) and probed with antibodies against either MBP (MAB386; Mil-
lipore) or PLP (MAB388; Millipore) and �-actin (A-2228; Sigma-
Aldrich). Blots were then probed with the appropriate 680LT and
800CW conjugated secondary antibodies (926-32211 and 926-68020;
Li-Cor) and imaged on an Odyssey Clx infrared imaging system (Li-
Cor). Band intensities were quantified using the Li-Cor software, with
MBP levels normalized within samples to �-actin, and then compared
with controls.

Electron microscopy. Mice were anesthetized with sodium pentobarbi-
tal (100 mg/kg, i.p.) and transcardially perfused with 10 ml of PBS and 20
ml of 4% PFA, 2.5% glutaraldehyde in 0.1 M cacodylate buffer, pH 7.2.
Spinal cords and optic nerves were postfixed for 48 h in this fixative
buffer before being processed for resin embedding. Semithin sections
(0.5 �m) were cut and stained with toluidine blue to evaluate quality and
orientation of tissue. Representative samples were then chosen, ultrathin
sections (90 nm) were cut, and images were captured using a Siemens
Stereoskop Transmission Electron at 3000� or 10,000�.

Quantification and statistics. For cell counts on cryosections, images
were taken using either the 20� or 40� objectives of three to six sections
per animal, with these sections being 100 �m or more apart. Exposure
times and any post-capture adjustments in brightness or contrast were
kept constant for all images to be directly compared. Cell counts and
areas were determined on blinded images using NIH Image J software,
and mean densities were calculated for each animal from these analyses.
Because of the low incidence of active caspase-3-positive (caspase-3 �)
cells, these counts were performed on 9 –12 whole spinal cord sections
per animal. For analysis of proportions of axons myelinated, 10,000�
EM images (three per animal) were imported into NIH Image J, and all
axons within the images were quantified as myelinated or nonmyeli-
nated. For g-ratio analysis, EM images were imported into NIH Image J,
and the external circumference of the myelin and axons was measured.
These measurements were converted to diameters and used for g-ratio
calculations (axonal diameter/external myelin diameter). For each ani-
mal (n � 3/genotype), 37–50 myelinated optic nerve axons and 50 –100
myelinated spinal cord axons were measured, measuring all myelinated
axons falling within the images assessed. For all analyses (cell counts,
percentage axons myelinated, g-ratios, and rotarod tests), individual
means were calculated for each animal, and the means and SEMs were

then calculated for each experimental group based on these individual
means. Statistical significance of clinical scores was assessed using a Wil-
coxon’s signed-rank test, and significance of other data were calculated
using two-way ANOVAs with Bonferroni’s post hoc tests using Prism
software. All data are depicted as mean � SEM.

All experiments were approved by and conducted in accordance with
the Florey Neuroscience Institutes Animal Ethics committee.

Results
Continuous oligodendrocyte expression of MRF is required
to maintain myelin integrity
Although the expression of MRF is maintained within oligoden-
drocytes in the adult CNS (Allen Brain Atlas and Fig. 1A), the
functional significance of this ongoing expression is unknown.
To generate mice in which the MRF gene could be inactivated in
mature myelinating cells in a temporally controlled manner, we
crossed the MRF exon 8 loxP-flanked (MRF FL) mouse line (Em-
ery et al., 2009) with a PLP–CreERT transgenic line expressing a
tamoxifen-inducible Cre in myelinating cells (Doerflinger et al.,
2003). We treated control (MRF FL/FL) and iCKO (MRF FL/FL;
PLP–CreERT) mice with 4OHT at 8 weeks of age (Fig. 1B), by
which time the majority of developmental myelination is estab-
lished (Agrawal et al., 2009). Semiquantitative RT-PCR analysis
of RNA isolated from spinal cords confirmed that, in the absence
of 4OHT administration, both control and iCKO mice expressed
the full-length MRF transcript. Within 5 d of the first 4OHT
injection, the full-length RT-PCR product in the iCKO mice was
primarily replaced by two shorter amplified products lacking the
RNA coded for by the loxP-flanked exon 8 or exons 8 and 9
(confirmed by sequencing of the RT-PCR products; data not
shown). This confirmed both rapid and substantial Cre-
mediated recombination and inactivation of the loxP-flanked
MRF allele after 4OHT administration (Fig. 1C).

Despite the rapid Cre-mediated ablation of the floxed MRF
allele, iCKO mice remained overtly normal for 	5 weeks after
4OHT injection. However, from 5 weeks after 4OHT, the iCKO
mice displayed progressive motor deficits relative to controls as
assessed by the rotarod test of motor function (Fig. 1D). These
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 0.01. E, Clinical disease scores for the same cohort
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rotarod deficits were confirmed by clinical symptoms consistent
with CNS demyelination, including ataxia, shivering, and tail and
hindlimb weakness, quantified in Figure 1E using a modified
EAE clinical scoring system. This overt phenotype typically
peaked at 8 weeks after 4OHT, at which time point all iCKO mice
would show varying degrees of ataxia and hindlimb weakness,
with some also showing significant forelimb weakness. Typically,
	30% of iCKO mice needed to be killed as a result of substantial
weight loss and/or loss of mobility at 8 –9 weeks after 4OHT.

FluroMyelin staining of cryosections from animals 8 weeks
after 4OHT injections revealed widespread and severe
demyelination in all the CNS regions analyzed in the iCKO mice,
including the optic nerve, corpus callosum, and spinal cord (Fig.
2). This demyelination was confirmed by EM analysis of sections
from the optic nerves and spinal cord lateral white matter, with
iCKO mice displaying myelin vacuolization, denuded axons, and
myelin debris (Fig. 3A,B). The degeneration and/or clearance of
myelin appeared to have occurred more rapidly in the optic
nerves than the spinal cords; whereas the optic nerves typically
contained comparatively little myelin debris and many examples
of thin myelin, indicative of remyelination in progress (Fig. 3C),
the spinal cords typically contained more extensive myelin debris
and actively degenerating myelin sheaths (Fig. 3D). Quantifica-
tion of the proportion of axons myelinated in each area revealed
that the percentage of axons myelinated in the iCKO mice was
reduced from 95.0 � 1.3 to 31.0 � 7.9% in the optic nerve (p 

0.05) and from 79.6 � 6.2 to 34.1 � 5.2% in the spinal cord (p 

0.01). Given the additional observations that many of the re-
maining myelin sheaths were either thin or actively degrading,
these results are consistent with the majority of CNS myelin being
lost after ablation of MRF.

Demyelination caused by MRF ablation is
partially recoverable
To assess whether the demyelination seen after MRF ablation was
recoverable, mice (n � 3/genotype) were maintained over an 8

month period after 4OHT injection. In all
cases, the iCKO mice reached a peak clin-
ical score of 4 (displaying severe tail and
hindlimb weakness, shivering, and ataxia)
at 8 weeks after 4OHT, which subsided to
relatively stable clinical scores of 1 or 2
within 4 months after 4OHT. Tissue taken
at 8 months after 4OHT showed evidence
of substantial remyelination within the
optic nerves and spinal cord, including an
increase in the proportion of myelinated
axons relative to mice taken at clinical
peak (Fig. 3E,F), although this difference
was statistically nonsignificant as a result
of the high degree of variability in the re-
covery cohort. g-ratio analysis of the my-
elinated axons at 8 months after 4OHT
showed a significant increase in the aver-
age g-ratio in iCKO mice compared with
the control mice in each area (0.71 � 0.01
vs 0.78 � 0.01 for control and iCKO mice
in the optic nerve, p 
 0.05 and 0.64 �
0.01 vs 0.71 � 0.01 for control and iCKO
mice in the spinal cord, p 
 0.05), consis-
tent with the majority of myelin present in
the optic nerves and spinal cords of the
iCKO mice being remyelination derived

(plots of individual g-ratios as a function of axonal diameter
shown for each area in Fig. 3G,H).

MRF ablation results in a loss of myelin gene and
protein expression
During oligodendrocyte differentiation, the induction of MRF is
required for the expression of a group of genes known to under-
pin the myelination process or to be protein components of my-
elin structures, such as MBP, PLP, MAG, and MOG (Emery et al.,
2009). To assess whether ablation of MRF caused a dysregulation
of these genes, we performed qPCR on brain cDNA samples from
control and iCKO mice in the absence of 4OHT (0 weeks) or 1, 2,
4, 6, or 8 weeks after 4OHT. Using primers that do not distinguish
between the non-recombined and recombined/nonfunctional
MRF alleles, the expression of MRF itself was modestly decreased
in the iCKOs after 4OHT, with this only being statistically signif-
icant at 2 and 4 weeks after 4OHT. In contrast, qPCR primers
specific to the loxP-flanked exon of MRF showed that, at 1 week
after 4OHT, the brains of iCKO mice displayed an 86 � 0.53%
reduction in levels of the non-recombined transcript relative to
controls (Fig. 4A). This was accompanied by a corresponding
peak in the expression of the recombined allele. Although expres-
sion of the recombined allele progressively declined from 1 week
after 4OHT, expression of the non-recombined allele partially
recovered at 6 – 8 weeks after 4OHT (Fig. 4A). To assess whether
the MRF protein showed the same kinetics as the RNA, we blotted
spinal cord lysates from the same mice with a monoclonal anti-
body against MRF. The protein showed an essentially identical
profile to the non-recombined allele, being undetectable in the
iCKO mice at 1– 4 weeks after 4OHT and being reexpressed at 6
and 8 weeks after 4OHT (Fig. 4B).

The expression of the key myelin genes PLP and MAG closely
mirrored that of the functional MRF mRNA during this time
course, showing an equivalent decrease at 1 week after 4OHT and
a subsequent recovery at 6 – 8 weeks after 4OHT (Fig. 4A). In
contrast, the expression of MBP and MOG showed a more mod-
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iCKO mice. Scale bars, 100 �m.
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est decline and took 4 weeks after ablation of MRF to reach their
lowest levels of 	40% of control values. Despite the severe loss of
myelin genes, such as MBP, PLP, MAG, and MOG, the expression
of the oligodendrocyte lineage marker Sox10 was not reduced in
the iCKO mice (in fact, it was slightly increased), nor was the
expression of CNP, which we have found previously to not be
dependent on MRF for its expression during development (Em-
ery et al., 2009). The expression of PDGFR� increased modestly
in iCKO mice relative to controls at 6 and 8 weeks after 4OHT,
suggesting an OPC proliferative or reactive response to the de-
myelination. The expression of the neuron-specific gene �-3-
tubulin remained equivalent between MRF FL/FL; PLP–CreERT
and control animals throughout the 8 weeks after 4OHT. To
assess whether the downregulation of MBP mRNA observed after
4OHT injection resulted in a detectable loss of the protein, we
performed quantifiable infrared Western blots against MBP from
brain protein lysates from the same cohort of animals as used for
the qPCR study (Fig. 5). In contrast to the rapid loss of myelin
gene expression after ablation of MRF, the loss of MBP protein
was delayed, with a significant decrease in MBP expression only
detectable in the iCKO mice at 8 weeks after 4OHT.

Ablation of MRF in myelinating oligodendrocytes causes a
loss of both mature oligodendrocyte markers and viability of
the recombined cells
Given the rapid and substantial loss of key myelin gene tran-
scripts (as assessed by qPCR) and the eventual loss of myelin (as
assessed by EM analysis) after the ablation of MRF, we next
sought to investigate the effects of MRF ablation on the recom-
bined cells themselves. To assess the status of cells from the oli-
godendrocyte lineage at the peak of clinical severity, we stained
spinal cord and optic nerve sections from iCKO and control mice
at 8 weeks after 4OHT for Sox10, NG2, and CC1. Somewhat
unexpectedly given the severe demyelination seen at this time

point, the densities of CC1� cells were strikingly similar between
control and iCKO mice in the optic nerves and dorsal white mat-
ter of the spinal cord (Fig. 6) but were decreased significantly in
the spinal cord lateral white matter columns of the iCKO mice
(p 
 0.01). Despite the preserved numbers of CC1� oligoden-
drocytes, their size and the expression levels of CC1 were less
regular in the iCKO mice than in control mice, and the linear
arrays of oligodendrocytes were clearly disrupted. All three re-
gions showed a modest but statistically significant increase in the
density of NG2� cells (Fig. 6D).

The presence of significant numbers of CC1� oligodendro-
cytes in the iCKO mice at a time of substantial demyelination
could be attributable to the original recombined oligodendro-
cytes persisting despite being unable to maintain their myelin
sheaths, to new oligodendrocytes derived from OPCs generated
in response to the demyelination, or to a combination of the
above. We therefore took a genetic labeling approach to allow
identification of the original recombined oligodendrocytes,
crossing the MRF FL/FL/PLP–CreERT mice onto the Rosa26 –
eYFP reporter line (Srinivas et al., 2001). MRF FL/FL (iCKO) or
MRF WT/FL (control) mice positive for both the PLP–CreERT and
Rosa26 – eYFP alleles were injected with 4OHT at 8 weeks of age.
Sections were taken from the optic nerve and spinal cord in non-
injected animals (0 week) and mice at 2, 4, 6, and 8 weeks after
4OHT to assess the fate of the recombined cells.

Confirming the previous results at 8 weeks after 4OHT, no
significant difference was found between the MRF FL/FL mice and
MRF WT/FL controls in the density of CC1� oligodendrocytes in
the optic nerve or dorsal spinal cord at any point during the 8
weeks after 4OHT (Fig. 7A,B,F). Before 4OHT injection, both
genotypes had a low percentage of CC1 immunopositive oligo-
dendrocytes expressing eYFP (
3% for both genotypes), indicat-
ing that the PLP–CreERT transgene can cause a low basal level of
“leaky” recombination in the absence of 4OHT administration.
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At 2 weeks after 4OHT, both genotypes displayed a similar re-
combination efficiency, with 	50% of CC1� oligodendrocytes
expressing the eYFP reporter (a lower efficiency of recombina-
tion at the Rosa26eYFP allele compared with the MRF Fl allele).
Almost all these eYFP� cells were positive for CC1 (�98% in
both genotypes), confirming specificity of recombination to ma-
ture oligodendrocytes. In MRF WT/FL controls, the proportion of
CC1� oligodendrocytes expressing eYFP� remained stable be-
tween 2 and 8 weeks after 4OHT. In contrast, the iCKO mice
displayed a substantial decrease in the proportion of CC1� oli-
godendrocytes that were eYFP� within both the optic nerve and
spinal cord at 6 and 8 weeks after 4OHT (Fig. 7C–G), suggesting
that many of the recombined iCKO oligodendrocytes were re-
placed with new oligodendrocytes derived from non-recombined

OPCs. This interpretation was also supported by a progressive
decrease in the density of eYFP� cells in the optic nerves and
spinal cords of the iCKO mice; by 6 and 8 weeks after 4OHT, the
density of eYFP� cells had declined by approximately one-half to
two-thirds (Fig. 7D–H).

Analysis of the proportion of eYFP� cells in each genotype
expressing CC1 showed that, over time, many of the surviving
eYFP� cells within the optic nerve and spinal cords of the iCKO
mice downregulated or lost the mature marker CC1 antigen. In
contrast, the vast majority (�97%) of eYFP� cells in the MR-
F WT/FL controls remained CC1� at all time points (Fig. 7A,E,I).
Despite this loss of the marker CC1, there was no evidence of
reexpression of markers of the OPC stage of the lineage. In an
analysis of several hundred eYFP� cells costained with NG2 at
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each time point in MRF FL/FL and MRF WT/FL mice, no colocaliza-
tion between eYFP and NG2 was ever observed (Fig. 7J and data
not shown). A similar lack of colocalization with eYFP and
PDGFR� was seen (Fig. 7K), with only a single eYFP�/
PDGFR�� colabeled cell counted at the 8 week time point in the
MRF FL/FL mice (representing 1 of 802 eYFP� cells assessed for
PDGFR� expression for this condition, or 0.12%). A single
eYFP�/PDGFR�� cell was also observed in a control (MRFWT/FL)
cortex at 2 weeks after 4OHT, suggesting that these cells represented
extremely rare incidences of recombination in OPCs rather than
reexpression of OPC markers in the cells after ablation of MRF.

Increased oligodendrocyte death and generation after
ablation of MRF
The decrease in density of eYFP� recombined oligodendrocytes
in the MRF FL/FL iCKO mice relative to the MRF WT/FL controls at
later time points suggested that many of the recombined oligo-
dendrocytes may undergo some form of cell death after loss of
MRF. To confirm this, we stained spinal cord sections from the
MRF WT/FL or MRF FL/FL; PLP–CreERT� and Rosa26 – eYFP�

mice with antibodies against active caspase-3 as a marker for
apoptosis. Control mice showed a very low incidence of apo-
ptotic cells at all time points (approximately one active
caspase-3 � cell per every 5–10 sections); none of the apoptotic
cells detected in control mice were eYFP �. At both 2 and 4
weeks after 4OHT, the iCKO mice showed a significant in-
crease in the incidence of active caspase-3 � cells (approxi-
mately one per section, p 
 0.05), with a trend toward
increased apoptosis also seen at 6 and 8 weeks after 4OHT (Fig.
8A). These apoptotic cells were a mix of eYFP � cells and eYFP-
negative (eYFP �) cells (Fig. 8 A, B). The eYFP �, active
caspase-3 � cells presumably consisted of both oligodendro-
cytes that had undergone recombination at the MRF but not
Rosa26 – eYFP locus, as well as other cells undergoing apopto-
sis in response to the demyelination and inflammatory
environment.

The maintenance of relatively normal numbers of CC1� oli-
godendrocytes despite substantial loss of the recombined iCKO
cells (Figs. 6, 7) and the reexpression of the non-recombined
MRF and myelin genes in the iCKO mice at 6 – 8 weeks after
4OHT (Fig. 4) strongly suggested replacement of recombined

cells by newly generated oligodendrocytes. To confirm this, we
treated an additional cohort of MRF FL/FL controls and MRF FL/FL;
PLP–CreERT iCKOs with the thymidine analog EdU from 1 week
after 4OHT and assessed the proportion of CC1� oligodendro-
cytes in the optic nerve that had incorporated EdU at 2– 8 weeks
after 4OHT. Control mice showed relatively limited incorpora-
tion of EdU over the experimental time course, and by 8 weeks
after 4OHT, only 2.6 � 1.0% of CC1� cells were EdU� (Fig.
8C–E), consistent with previous reports of sporadic differentia-
tion of new oligodendrocytes in the adult CNS (Rivers et al.,
2008). In contrast, the iCKO mice showed a strong increase in the
density of EdU� cells in the optic nerve relative to controls from
6 weeks after 4OHT, and many of these EdU� cells were CC1�.
By 8 weeks after 4OHT, 35.6 � 7.0% of CC1� oligodendrocytes
in the iCKO nerves were EdU�, indicating that they were newly
generated from dividing OPCs in response to the demyelination
(Fig. 8D,E).

Surviving recombined cells do not reenter the cell cycle but
display deficits in myelin maintenance
To further investigate whether the oligodendrocytes in which
MRF had been ablated were capable of “de-differentiating” and
reentering the cell cycle, an additional cohort of MRF WT/FL or
MRF FL/FL; PLP–CreERT; Rosa26 – eYFP mice were administered
with EdU from 1 to 8 weeks after 4OHT (Fig. 8F). At 8 weeks after
4OHT, none of the eYFP� cells in the MRF WT/FL control optic
nerves were EdU�, and only an extreme minority (0.42 � 0.22%)
of the eYFP� cells in the MRF FL/FL iCKO optic nerves were EdU�

(p � 0.05 for difference between genotypes, 2580 and 1937
eYFP� cells analyzed for EdU incorporation in controls and
iCKOs, respectively). This is consistent with the general lack of
reexpression of OPC markers NG2 and PDGFR� in iCKO cells
(Fig. 7), suggesting that the recombined oligodendrocytes do not
reenter the cell cycle after the ablation of MRF.

Although the optic nerve and spinal cords contained a signif-
icant number of surviving recombined iCKO cells at 8 weeks after
recombination (Figs. 7, 8), the high density of oligodendrocytes
in these white matter tracts made assessment of the morphology
of individual cells difficult. We therefore stained the cerebral cor-
tex of MRF WT/FL or MRF FL/FL; PLP–CreERT� and Rosa26 –
eYFP� mice at 8 weeks after 4OHT, colabeling with antibodies
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against eYFP and oligodendrocyte lineage markers. Control
(MRF WT/FL) eYFP� cells invariably stained with CNP, with eYFP
also present in CNP� myelin internodes (Fig. 9A). In contrast,
the iCKO eYFP� cells showed varying levels of CNP expression,
often being negative or only faintly positive, and typically had a

series of fine processes not obviously associated with myelin in-
ternodes. Intact appearing myelin in these sections was almost
invariably eYFP� (i.e., associated with non-recombined or newly
generated oligodendrocytes). Similar observations were made in
the striatum (Fig. 9B), in which the iCKO eYFP� oligodendro-
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cytes were a mix of CNP� cells still associated with myelin and
cells that had apparently lost their myelin. As in the optic nerve
and spinal cord, the iCKO eYFP� cells in the cortex were typically
only faintly positive or negative for CC1 but still did not stain for
OPC or astrocyte markers, such as NG2 (Fig. 9D) and GFAP (Fig.
9E). These data indicate that, after the ablation of MRF, the re-
combined oligodendrocytes either undergo apoptosis or, if they
survive, essentially lose the expression of mature markers and
their associated myelin.

Demyelination caused by MRF ablation is associated with
innate immune system activation and axonal damage
To characterize the secondary responses to the demyelination
resulting from MRF ablation, we stained sections from spinal
cord, brain, and optic nerve of control MRF FL/FL and iCKO
MRF FL/FL; PLP–CreERT mice with antibodies against microglia,
lymphocytes, astrocytes, and axonal damage. Staining for CD68
revealed that the demyelination caused by ablation of MRF was
associated with severe infiltration of activated microglia/macro-
phages into the white matter, many of which could be seen to
colocalize with MBP, indicating active engulfment of myelin de-
bris (Fig. 10A,B). To assess whether the demyelination and mi-
croglial activation were associated with lymphocyte infiltration,
we stained spinal cord sections with anti-CD3 (for T cells) and
B220 (for B cells), using sections from MOG 35–55-induced EAE
sections as a positive control. Whereas the EAE spinal cord sec-
tions showed clear evidence of infiltration of CD3� T cells in
regions of demyelination, no such infiltration was evident in the
demyelinated tissue of the iCKO mice (Fig. 10C). Quantification
of the density of CD3� cells in the iCKO and control mice con-
firmed extremely low numbers of CD3� cells in each genotype
(1.09 � 0.69 and 1.25 � 0.79 cells/mm 2 in the dorsal columns
and 0.28 � 0.28 and 0.99 � 0.99 cells/mm 2 in the dorsal columns
for iCKO and control mice, respectively, p � 0.05). Similarly, no
detectable increase in staining was seen with the B-cell marker
anti-CD45R/B220 (data not shown). To assess whether the de-
myelination and innate immune system activation was associated
with astroglial activation or axonal damage, we stained sections
of control and iCKO mice at 8 weeks after 4OHT for GFAP and
�-APP. The iCKO mice showed a clear increase in GFAP staining
throughout the CNS (shown for the spinal cord in Fig. 10D),
particularly evident in the white matter. Both control and iCKO
mice displayed weak cytoplasmic staining for �-APP in both neu-
rons and glia; however, iCKO mice displayed additional intense
staining in axon bulbs throughout all white matter regions ana-
lyzed (lateral and dorsal white matter of the spinal cord, the cor-
pus callosum, and optic nerve) (Fig. 10E–G).

Discussion
MRF is required for maintenance of oligodendrocyte viability
and myelin gene expression in the adult CNS
We have previously reported a vital role for MRF in oligodendro-
cyte differentiation and CNS myelination during postnatal devel-

opment (Emery et al., 2009). This previous study did not address
whether MRF was only transiently required for the transition
from a premyelinating to a myelinating oligodendrocyte or
whether it was required on an ongoing basis in the mature cells.
Here, we provide evidence that conditional ablation of MRF
within myelinating oligodendrocytes in the adult CNS causes de-
layed but severe demyelination. This demyelination is preceded
by a rapid downregulation of many myelin genes, coincides with
a loss of mature markers within the recombined oligodendro-
cytes, and is associated with the death and replacement of many
of the recombined oligodendrocytes. These results demonstrate
that MRF is not only required during oligodendrocyte differen-
tiation but is also required on an ongoing basis for the mainte-
nance of expression of myelin genes and for the maintenance of a
mature, viable oligodendrocyte phenotype.

Previous iCKO strategies have identified roles for Egr2/
Krox-20 and Sox10 in maintenance of myelin within the adult
PNS (Decker et al., 2006; Bremer et al., 2011). In those two stud-
ies, the kinetics of demyelination observed were vastly different,
occurring within a matter of days after Egr2 ablation but taking
weeks after Sox10 inactivation. The slow kinetics of demyelina-
tion seen after ablation of MRF or Sox10, versus the fast kinetics
seen after ablation of Egr2, strongly suggest that different mech-
anisms are at play. It seems likely that the PNS demyelination
seen after Egr2 inactivation is attributable to an active process of
Schwann cell de-differentiation (as suggested by Decker et al.,
2006), whereas the demyelination seen after ablation of Sox10 or
MRF is a more gradual one, with loss of the oligodendrocytes and
myelin sheaths secondary to transcriptional dysregulation.

The eYFP labeling experiments demonstrated that, after abla-
tion of MRF, many of the oligodendrocytes downregulate the
expression of the mature marker APC/CC1 without reexpressing
OPC markers such as NG2 or PDGFR�. In the vast majority of
cases (�99%), these cells also failed to incorporate EdU, despite
robust proliferation around them, indicating that they do not
reenter the cell cycle. This demonstrates that, in the absence of
continued MRF expression, oligodendrocytes lose their “mature”
phenotype without fully reverting to a progenitor/OPC stage.
These findings seem similar to analogous experiments within
sensory neurons in which inducible ablation of Islet1 after their
specification results in a loss of mature markers without causing
reexpression of early genes (Sun et al., 2008). Although de-
differentiation of mature oligodendrocytes and reentry into the
cell cycle has been reported in other contexts, such as in response
to bFGF in vitro (Grinspan et al., 1996), our results suggest that it
may not occur readily in vivo, given that we failed to see evidence
of it even in the context of severe demyelination and with the
ablation of a pro-differentiation transcription factor.

Apoptosis of recombined oligodendrocytes was observed at 2
and 4 weeks after 4OHT, and a substantial decrease (of 	50%) in
numbers of recombined oligodendrocytes was detectable in the
iCKOs by 6 – 8 weeks after 4OHT. Given that in other mouse
models oligodendrocyte death typically precedes overt demyeli-
nation by several weeks (Hesse et al., 2010; Traka et al., 2010; Pohl
et al., 2011), some of the demyelination seen at 8 weeks after
4OHT is almost certainly a result of this apoptosis. A number of
observations point to the likelihood that the recombined iCKO
oligodendrocytes surviving at 8 weeks after 4OHT had also lost
the ability to maintain myelin, however. These include the rapid
downregulation of myelin genes PLP and MAG at 1 week after
4OHT (before any detectable loss of recombined cells and when
the recombined MRF allele was still being expressed at control
levels), the gradual loss of markers usually associated with myeli-

4

(Figure legend continued.) examples are from iCKO nerve at 4 weeks after 4OHT. n � 5 mice
per condition. C, Images showing EdU incorporation and CC1 immunohistochemistry at weeks
2– 8 after 4OHT in the optic nerves of control (MRF FL/FL) or iCKO (MRF FL/FL; PLP–CreERT) mice.
D, E, Analysis of the density of CC1 �/EdU � double-labeled cells (D) and the proportion of
CC1 � oligodendrocytes EdU � (E) at weeks 2– 8 after 4OHT in the optic nerves from C. n �3–5
mice per condition. F, Double staining for eYFP and EdU incorporation in representative MRF WT/FL/PLP–
CreERT/Rosa26 – eYFP (control) and MRF FL/FL/PLP–CreERT/Rosa26 – eYFP (iCKO) optic nerve
sections at 8 weeks after 4OHT. The eYFP � recombined oligodendrocytes (arrowheads) in both
genotypes are overwhelmingly (�99%) EdU �. *p 
 0.05, **p 
 0.01, ***p 
 0.001.
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nating cells (such as CC1 and CNP) and the observation that the
processes of the surviving eYFP� iCKO cells at 8 weeks after
4OHT generally no longer appeared to be associated with intact
myelin sheaths. Compacted myelin in vivo is thought to be a
remarkably stable structure (for review, see Aggarwal et al., 2011);
both the protein (Sabri et al., 1974) and lipid (Saher and Simons,
2010) components of myelin can have half-lives of months in
vivo. Despite this stability, the components of myelin would ap-
pear to show some degree of turnover, and it seems likely that the
dysregulation of myelin genes, such as PLP and MAG, ultimately
leads to a loss of the ability of the cells to maintain their myelin
sheaths independent of their survival.

Remyelination after ablation of MRF
After the clinical peak at 8 weeks, MRF iCKOs showed a gradual
(and incomplete) clinical recovery that was associated with remy-
elination, as evidenced by an increase in the proportion of axons
myelinated and an increase in g-ratios. Given the progressive
incorporation of EdU into many of the CC1� oligodendrocytes
in the iCKO mice at 6 and 8 weeks after recombination and the
associated reexpression of the non-recombined MRF allele and
myelin genes, this remyelination was almost certainly mediated
by newly generated oligodendrocytes. Despite the presence of

large numbers of newly generated oligodendrocytes observed in
the EdU incorporation experiments at 8 weeks after 4OHT, we
saw substantial demyelination at this time point and only rela-
tively limited evidence of remyelination in progress. This indi-
cates that the processes of oligodendrocyte differentiation and
successful remyelination can become uncoupled, eluding to the
importance of identifying the relevant signals in the demyeli-
nated environment that may block remyelination (Franklin and
ffrench-Constant, 2008). The incomplete recovery of these mice
even 8 months after clinical peak presumably reflects both the
incomplete remyelination and irreversible axonal damage.

MRF ablation as a new model for studying
demyelinating disease
There have recently been several mouse models reported that
allow for the inducible ablation of oligodendrocytes (Buch et al.,
2005; Traka et al., 2010; Pohl et al., 2011; Oluich et al., 2012).
These models allow for the induction of a reproducible and wide-
spread demyelination and analysis of the cellular events associ-
ated with it and the subsequent remyelination. One potential
caveat with these genetic models is that many of them result in
demyelination in both the CNS and PNS. Although the PLP–
CreERT transgenics used in this study targets recombination to
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both Schwann cells and oligodendrocytes (Doerflinger et al.,
2003), MRF is not expressed in Schwann cells and does not have
a role in peripheral myelination (LeDoux et al., 2006; Emery et al.,
2009). Consistent with this, we did not observe any evidence of
peripheral demyelination (e.g., clasping of hindlimbs when sus-
pended from tail or by electron microscopy analysis at 8 weeks
after 4OHT; data not shown). We observed significant innate, but
not adaptive, immune system activation and axonal damage at
clinical peak in our model, consistent with other inducible mod-
els of demyelination (Ghosh et al., 2011; Locatelli et al., 2012) and
the axonal pathology associated with multiple sclerosis (Dutta
and Trapp, 2007). Whether the axonal damage is a direct result of
the demyelination or whether the axons were damaged in re-
sponse to the microglial activation is difficult to determine with-
out manipulation of the microglia, but this axonal damage may
contribute to the ongoing clinical deficits seen in the 8 month
recovery cohort. Feasibly, the mice presented in this study may
prove an additional valuable genetic tool for studying the events
associated with CNS demyelination and remyelination free of
confounding PNS effects.

A downregulation of MRF has been observed in other demy-
elinating mouse models, including the mouse model of
Niemann-Pick type C 1 (NPC1) disease (Yan et al., 2011) and the
cuprizone model (Jurevics et al., 2002). Although it is not yet
entirely clear whether the observed dysregulation of MRF in these
models is a causal component of the demyelination or merely
symptomatic of oligodendrocyte dysfunction and loss, our re-
sults support the notion that dysregulation of MRF in NPC1 or
other diseases could feasibly have a key role in the ultimate loss of
myelin. Although roles for MRF in human myelination have not
yet been formally established, it is known that the human or-
tholog C11Orf9 is enriched in myelin-rich regions of the human
brain (Oldham et al., 2008), downregulated in human fetuses
with a lethal motor neuron/oligodendrocyte disease (Pakkasjarvi
et al., 2005), and upregulated during differentiation of oligoden-
drocytes from human ES cells (Letzen et al., 2010), suggesting
conserved roles in myelination between mice and humans. As
such, identification of the mechanisms by which MRF expression
is regulated and its roles in human diseases will be an important
subject of future work.
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