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The formation of new sound categories is fundamental to everyday goal-directed behavior. Categorization requires the abstraction of
discrete classes from continuous physical features as required by context and task. Electrophysiology in animals has shown that learning
to categorize novel sounds alters their spatiotemporal neural representation at the level of early auditory cortex. However, functional
magnetic resonance imaging (fMRI) studies so far did not yield insight into the effects of category learning on sound representations in
human auditory cortex. This may be due to the use of overlearned speech-like categories and fMRI subtraction paradigms, leading to
insufficient sensitivity to distinguish the responses to learning-induced, novel sound categories. Here, we used fMRI pattern analysis to
investigate changes in human auditory cortical response patterns induced by category learning. We created complex novel sound
categories and analyzed distributed activation patterns during passive listening to a sound continuum before and after category learning.
We show that only after training, sound categories could be successfully decoded from early auditory areas and that learning-induced
pattern changes were specific to the category-distinctive sound feature (i.e., pitch). Notably, the similarity between fMRI response
patterns for the sound continuum mirrored the sigmoid shape of the behavioral category identification function. Our results indicate that
perceptual representations of novel sound categories emerge from neural changes at early levels of the human auditory processing
hierarchy.

Introduction
Categorical perception (CP) refers to the discrepancy between
perceptual similarity and physical similarity of stimuli when they
are grouped into distinct but meaningful classes (Harnad, 1987).
Depending on situation and task, the relevant feature(s) defining
the classes might differ. In the course of minimizing within-
category and maximizing between-category differences, contin-
uous physical variations between stimuli are overruled such that
seemingly dissimilar stimuli may be considered “same.” In audi-
tion, these perceptual transformations likely result in more ab-
stract representations of sound similarity. Several attempts have
been made to identify the neural source of these perceptual
changes; however, to date, the effects of category learning on
sound representations could not be resolved in humans. Previous
fMRI studies have relied on subtraction paradigms lacking
sufficient sensitivity to distinguish the responses to novel
sound categories and allowing only indirect inferences about the
underlying changes in representation (Desai et al., 2008; Leech et
al., 2009; Liebenthal et al., 2010). Furthermore, the use of speech-

like sounds might obstruct the emergence of novel learning-
induced category representations due to interference with
existing phoneme representations.

In the visual domain, category learning is traditionally as-
sumed to involve at least two different encoding stages: Whereas
areas in the inferior temporal cortex are engaged in stimulus
specific processes such as feature extraction, activation in the
prefrontal cortex (PFC) codes more abstract, categorical infor-
mation (Freedman et al., 2001, 2003; Seger and Miller, 2010). In
contrast, animal electrophysiology in the auditory domain sug-
gests that categorical sound information is encoded in spatiotem-
poral variations of neural firing already in early auditory cortex
(Ohl et al., 2001; Selezneva et al., 2006). These changes in firing
patterns might not necessarily lead to increases in overall activa-
tion level (Ohl et al., 2001; Schnupp et al., 2006). It has been
proposed that multivoxel pattern analysis (MVPA) is sensitive to
changes in distributed activation patterns in absence of changes
in overall activation level (Haxby et al., 2001). This method has
been successfully used to reveal subtle differences in overlapping
sound representations (Formisano et al., 2008; Staeren et al.,
2009) and purely perceptual processes in the visual (Li et al., 2007,
2009) and auditory (Kilian-Hütten et al., 2011) domain.

Here, we used fMRI and MVPA techniques in combination
with a recursive feature elimination (RFE) procedure (De Mar-
tino et al., 2008) to reveal changes in sound representations in
human auditory cortex induced by the formation of new sound
categories. Our sound categories comprised complex moving
ripples (Kowalski et al., 1996a,b) that share important spectro-
temporal properties with natural sounds but cannot be associated
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with any preexisting category. Using novel auditory categories,
we avoided any confounding effects related to prior experience.
We trained subjects to categorize the sounds into two distinct
classes and measured fMRI responses to new sounds from the
same categories before and after successful category learning dur-
ing passive listening. We then aimed to decode the novel percep-
tual sound categories from the auditory response patterns in the
absence of an active categorization task.

Materials and Methods
Participants. Eight volunteers (three males; mean age, 23.38 years) par-
ticipated in the study after providing informed consent. Participants
reported normal hearing abilities and were naive to sounds and research
question. The study procedures were approved by the local ethics com-
mittee (Ethische Commissie Psychologie at Maastricht University).

Stimuli. Ripple stimuli (Fig. 1 A) have successfully been used in the past
for characterizing spectrotemporal response fields in animals and hu-
mans (Kowalski et al., 1996a,b; Shamma, 1996; Depireux et al., 2001;
Langers et al., 2003). Here, ripples were composed of 50 sinusoids with
logarithmically spaced frequencies spanning four octaves. The lowest
frequency component ( f0) of the complex was shifted between on aver-
age 168 –236 Hz to modulate ripple pitch. To create different ripple
densities, their spectral envelope was modulated sinusoidally along the
frequency axis on a linear amplitude scale by 0.25 and 0.125 cycles/
octave. Additionally, a constant envelope drift along the frequency axis
was introduced by shifting the phase of the sinusoid over time. The
angular velocity of this drift was varied in equal steps between 1 and 6
cycles/s. Drift direction was upward with an initial phase of 0. The stimuli
were of 1 s duration and their energy was matched by adjusting their root
mean square values. Linear amplitude ramps of 5 ms duration were
added at ripple onsets and offsets. All stimuli were sampled at 44.1 kHz
using 16-bit resolution and processed in Matlab (MathWorks).

Stimulus calibration. As previous experiments have shown that inter-
subject differences in stimulus discrimination ability can be rather large
(Guenther et al., 1999), participants underwent a short calibration pro-
cedure in which pitch and velocity discrimination sensitivity of the ripple
sounds used for category learning were measured to match task diffi-
culty. For this purpose, an adaptive up– down staircase procedure (AX
same– different paradigm) was used. Following the procedure devised by
Levitt (Wetherill and Levitt, 1965; Levitt, 1971), we estimated a just no-
ticeable difference (JND) at a probability of 71% “different” responses at
convergence based on 15 response reversals. Participants were exposed to

a sequence of three sounds, which consisted of two ripple sounds (A and
X) separated by a noise burst. The participants were instructed to com-
pare the two ripple sounds and ignore the noise burst, which could be
considered a “masker” as it was introduced to interfere with the sensory
trace of A and to promote the transformation of the feature-based rep-
resentations into a categorical percept (Guenther et al., 1999). Impor-
tantly, the noise burst did not disrupt the perception of the preceding and
following ripple sound. All sound features except the relevant one were
kept constant during the calibration procedure. The pitch discrimination
threshold measured around the category boundary served as a global
estimate for the small range of frequencies used in the experiment. The
average JND of ripple pitch [baseline value ( f0), 200 Hz] was 21.76 Hz
(SEM, 3.51). The average JND for velocity (baseline value, 1 cycle/s) was
0.21 cycles/s (SEM, 0.04), which was well below the step size of 1 cycle/s
used in the construction of the sound categories. We therefore assume
that the velocity differences in the sounds are sufficiently salient.

Category distributions. To partition a continuous stimulus space (Fig.
1 B) into different categories, we used a combination of several spectral
and temporal features (pitch, velocity, and density). We used two distinct
sets of sounds for category training and testing. Category training was
restricted to one dimension (i.e., “low pitch” vs “high pitch”). The addi-
tional spectral and temporal variations were introduced to encourage the
extraction of the category-distinctive sound feature under variable stim-
ulus conditions and to promote the abstraction across task-irrelevant
features. Categories were named A and B to avoid any explicit cues about
the relevant sound feature. Instead, learning of the two pitch categories
was encouraged by means of distributional information: For training,
pitch values were sampled from two non-overlapping normal distribu-
tions with equal variance but different means defined on a logarithmic
frequency scale (equivalent rectangular bandwidth) (Glasberg and
Moore, 1990). Sampling was denser within categories than at the cate-
gory border (Fig. 1 B, gray circles). In contrast to pitch, the irrelevant
dimensions (velocity and density) were linearly sampled. For fMRI ses-
sions and to assess categorization performance in behavioral sessions
outside the scanner, we used new test sounds (Fig. 1 B, green crosses).
Crucially, these test sounds were evenly sampled from a psychophysical
continuum between category means and therefore conveyed no informa-
tion about the category boundary in terms of acoustic similarity. Due to
the lack of distributional information, the test stimulus space was defined
by equal variance in the relevant (i.e., pitch) as well as one of the irrele-
vant (i.e., velocity) dimensions and therefore allowed two equally feasible
category partitions (Fig. 1 B, trained and untrained category boundary).

Figure 1. Sound spectrograms and stimulus space. A, Three example spectrograms of moving ripples with low (bottom), medium (middle), and high (top) velocities at constant pitch and density
values. B, Multidimensional stimulus space spanning the two categories A and B. The third dimension (density) is only partially indicated for clarity reasons. Similar to previous studies (Smits et al.,
2006), pitch categories were defined by two non-overlapping one-dimensional Gaussian probability density functions (pdfs) on a logarithmic frequency scale. The distance between category means
(�A and �B) was determined by individual psychometric measures (see Materials and Methods, Stimulus calibration) to match task difficulty. The category boundary was fixed at 200 Hz ( f0); SDs
(�) were set to one JND. During training, pdfs were linearly sampled resulting in two distinct pitch clusters containing six different values each (gray circles). In line with former behavioral studies
on category learning (Smits et al., 2006; Goudbeek et al., 2009), six novel equidistant pitch values lying on a psychophysical continuum between category means were used for scanning and to assess
categorization performance outside the scanner (green crosses). Each pitch exemplar was presented with six different velocity and two different density values.
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The division into two “untrained” velocity classes (“slow” vs “fast”)
served as a control for the behavioral relevance of our results during the
fMRI analysis (see below).

Experimental procedure. To ensure compatibility of sound quality during
behavioral training and scanning, stimulus calibration and category training
were performed inside the scanner room with the same hardware and audio
settings as used during fMR imaging. Participants were seated on the scanner
bed in comfortable viewing distance from the screen.

During behavioral sessions, training and test blocks were interleaved. The
latter served to obtain consecutive measures of categorization performance
and monitor the level of CP. For this purpose, we adapted a standard proce-
dure from speech research (Liberman et al., 1957) in which subjects labeled
the test sounds from the continuum without corrective feedback. Partici-
pants always started with a test block, in which they were instructed to group
the 72 sounds into two discrete classes (A vs B) in a two-alternative forced-
choice procedure without instructions about the relevant stimulus dimen-
sion. The test block was followed by a training block comprising 144 sounds
from the normal distributions. During training, visual feedback was pro-
vided after each response by means of a small red (incorrect) or green (cor-
rect) square appearing for 700 ms in the screen center. One training block
lasted 12 min and allowed a short break after one-half of the trails. A test
block lasted 6 min and was completed in one run. The number of repetitions
and thereby the length of a behavioral training session was determined by the
performance level (successful learning was determined by at least 85% cor-
rect in one of the test blocks) as well as the motivation and condition of the
participant but never exceeded 1 h.

We measured fMRI responses to the 72 test sounds before and after
successful category learning during passive listening (see Imaging). The
first scan session was followed by a variable number (3–7) of behavioral
training blocks, spread over 2– 4 d so as to match subjects’ performance
before the second scanning session.

Curve fitting. We used a curve-fitting procedure (using Matlab’s “fit”
function) to describe the learning-induced changes in sound labeling.
Previous research (McMurray and Spivey, 2000) has shown that the
s-shaped identification function in CP experiments resembles the logistic
function, given by Equation 1 as follows:

y �
a

1 � e
�� x-d�

c

� b. (1)

Here, a provides a measure of the amplitude of the function, b corre-
sponds to the y-axis location of the lower asymptote, c reflects the slope of
the function, and d indicates the location of the category boundary on the
x-axis. We fitted the logistic function to the individual category identifi-
cation functions. The nonlinear least-squares parameter estimation was
subject to the following constraints: 0 � a � 100; 0 � b � 100; 0.1 � c �
10; 1 � d � 6. The liberal parameter settings were chosen to achieve a
good fit and thereby provide an accurate description of the shape of the
curve and the underlying trend in the response data.

Imaging. Brain imaging was performed with a 3 tesla Siemens Allegra
MR head scanner at the Maastricht Brain Imaging Center. For each sub-
ject, there were two scanning sessions, one before and the other after
category learning. In both of these sessions, three runs (each consisting of
364 volumes and including the 72 test sounds; total number of sounds:
72 � 3 � 216) of functional MRI data were acquired in 30 slices, covering
the temporal and parts of the frontal lobe with an eight-channel head coil
using a standard echo-planar imaging sequence in a slow event-related
design with the following parameters: repetition time (TR), 3.5 s; acqui-
sition time, 2.1 s; field of view, 224 � 224 mm; matrix size, 112 � 112;
echo time, 30 ms; voxel dimensions, 2 � 2 � 2 mm. Additionally, ana-
tomical T1-weighted images (voxel dimensions, 1 � 1 � 1 mm) were
acquired with optimal gray–white matter contrast for cortex reconstruc-
tion purposes. The average intertrial interval between two stimuli was 17.5 s
(jittered between 4, 5, and 6 TR). Sounds were delivered binaurally via MRI-
compatible headphones (Visual Stim Digital, Resonance Technology; or
Sensimetrics S14, Sensimetrics Corporation) in the 1.4 s silent gaps between
volume acquisitions. Stimulus order was randomized using the randperm
function implemented in Matlab; stimulus delivery was synchronized with
MR pulses using Presentation software (Neurobehavioralsystems).

FMRI preprocessing and univariate analysis. MRI data were first ana-
lyzed with BrainVoyager QX (Brain Innovations). The first four volumes
per run were discarded from the analysis to allow for T1 equilibrium.
Functional data preprocessing included three-dimensional head motion
correction, slice scan-time correction (using sinc interpolation), tempo-
ral high-pass filtering (three cycles), linear trend removal, coregistration
to individual structural images, and normalization of anatomical and
functional data to Talairach space. Individual cortical surfaces were re-
constructed from gray–white matter segmentations and aligned using a
moving target-group average approach based on curvature information
(cortex-based alignment) (Goebel et al., 2006) to obtain an average 3D
surface representation. For univariate statistical analysis of the functional
data, a general linear model (GLM) was computed by fitting the blood
oxygen level-dependent (BOLD) response time course with the predicted
time series for the two pitch classes in the two sessions, pooling pitch
levels 1–3 and 4 – 6, respectively, independent of velocity and density
values. This trial division corresponded to the trained category boundary
(Fig. 1 B). The hemodynamic response delay was corrected for by con-
volving the predicted time courses with a canonical (double gamma)
hemodynamic response function. We performed both single-subject and
group (fixed-effects) analyses of the contrast “high pitch” versus “low
pitch” both for the prelearning and postlearning session. Thresholds for
contrast maps were corrected for multiple comparisons based on false
discovery rate (q � 0.05).

Multivariate data analysis. All multivariate pattern analyses were per-
formed on a single-subject basis. Activity patterns were estimated trial by
trial (72 � 3) in an anatomically defined auditory cortex mask, covering
the superior temporal gyrus (STG) including Heschl’s gyrus (HG) and its
adjacency [i.e., its anterior and posterior borders reaching into planum
polare (PP) and planum temporale (PT)] as well as the superior temporal
sulcus (STS). Anatomical masks were delineated on an inflated cortex
mesh for each subject and hemisphere separately to account for differ-
ences in gross anatomy. At each voxel, the trial response was extracted by
fitting a GLM with one predictor for the expected BOLD response and
one predictor accounting for the trial mean. A multivoxel pattern was
defined from the response-related � coefficients (De Martino et al., 2008;
Formisano et al., 2008). The shape of the hemodynamic response func-
tion was optimized per subject.

The multivoxel response patterns to the different sound classes were
analyzed by means of linear support vector machines (SVMs) in combi-
nation with an iterative voxel selection algorithm (RFE) (De Martino et
al., 2008) to derive the most informative voxels. We followed two differ-
ent strategies to label each single-trial response pattern. In a first ap-
proach, trials were divided based on the trained dimension: trials with
pitch levels 1–3 and 4 – 6 were assigned to class 1 and class 2, respectively,
independent of the other stimulus dimensions. In an alternative control
approach, trials were labeled according to the untrained dimension (i.e.,
velocity), resulting in two classes comprising trials with either slow (1–3
cycles/s) or fast (4 – 6 cycles/s) velocity values, regardless of pitch and
density. Both strategies resulted in 36 trials per class in each run. In four
of the eight subjects—to estimate the � coefficients in an appropriate
time window of four TRs per trial—we needed to remove the last trial of
each run due to insufficient data supply. A trial from the respective other
class was equally deleted to balance the number of trials per class result-
ing in 35 trials.

For classifier training, trials were divided into a training and a test set
using a leave-one run-out approach resulting in three different splits.
Two runs (i.e., 72 trials per class) were used for classifier training while
the remaining run (i.e., 36 trials per class) was used to assess classifier
performance and test its generalization ability. This procedure was re-
peated for the number of splits. This validation procedure avoids poten-
tial overfitting of the model to irrelevant fluctuations in the training data.
Final accuracy values at each voxel selection level were computed as the
mean over the three splits for the test data set only. Each split of the
leave-one run-out cross-validation procedure included a univariate
(GLM-based) feature selection based on the training data only. Using
one predictor per class, we selected the 5000 most active voxels (overall
main effect, F ). This constrains the classification procedure to those
voxels that exhibit a general response to the used stimuli and limits the
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classification to an equal number of voxels in
each subject (for details, see De Martino et al.,
2008). This was followed by 160 iterations of
the RFE algorithm. In each of the iterations, a
different subset of the training trials (95%) was
used to train the classifier and to retrieve the
discriminative weights of the voxels. These
weights provide information about the relative
contribution of voxels to class discrimination.
Classification accuracy at each level was as-
sessed on the independent test data set. After
four consecutive trainings, the ranked discrim-
ination weights were averaged and the lowest
10% were discarded while the rest was used to
retrain the classifier. This procedure resulted in
40 voxel selection levels per split.

To assess whether our classification accura-
cies significantly differed from chance level, we
used a permutation test (Nichols and Holmes,
2002). For this purpose, the same RFE proce-
dure used for the experimental protocols was
repeated 100 times per subject, session, and
trial division (i.e., trained/untrained), with
scrambled trial labels (using the randperm function in Matlab). Classifi-
cation accuracies for permutations are based on the maximum accuracy
across 40 RFE levels (averaged across splits) in each permutation aver-
aged over 100 iterations for each subject and fMRI session separately.
This procedure controls for the potential bias in the accuracy estimation
introduced by considering the best feature selection level.

To investigate the cortical regions involved in discrimination of the
newly learned categories, group discriminative maps were visualized on
an average cortex reconstruction following cortex-based alignment of
single-subject discrimination maps. In Figure 3B, we display those vox-
els, which consistently survived at least 10 of the 40 RFE selection levels in
six of eight subjects. Maps were corrected by applying a cluster size
threshold of 25 mm 2. An identical procedure for the fMRI data collected
before learning did not lead to consistent voxels.

Learning-induced fMRI pattern changes and relationship to behavior. To
examine the relationship between learning-induced changes in fMRI pat-
terns and behavioral changes, we performed the following analysis. First, for
each subject and for both pre- and post-fMRI sessions, we defined a proto-
typical response pattern for category A and B by considering the average
response pattern (training data) for pitch levels 1–3 and 4–6, respectively, in
the 500 voxels with the largest SVM weights in the 10th voxel selection level.
Second, we correlated the prototypical response patterns with the response
patterns for each individual pitch level (1–6), estimated from the same vox-
els and using test trials only. Per subject, thus we obtained four vectors
describing the similarity of the response patterns to the prototypical response
to category A and B, before and after learning [i.e., values ci(pApre), ci(pBpre),
ci(pApost), ci(pApost), where i � 1. . .6 indicates the pitch level]. To re-
move the intrinsic correlation between responses, difference scores
were calculated in each subject as di

pre � ci(pB pre) � ci(pA pre),
di

post � ci(pB post) � ci(pA post) after all correlation values were trans-
formed using Fisher’s z. The curve plotted in Figure 5 indicates the
differences in fMRI pattern similarities between pre- and post-fMRI session,
obtained by fitting the difference di

post � di
pre (by Eq. 1), averaged across sub-

jects. Analogously, we computed the post � pre difference in behavioral identi-
fication functions (% B responses) to reveal the learning-induced changes in
perceptual similarity. For visualization purposes, both fMRI and behavioral
curves were standardized using the z transformation.

Results
Behavioral results
Average categorization performance reflected successful learning
of pitch classes in 2 training days (corresponding on average to
324 feedback trials). Accuracy, as measured in nonfeedback test
blocks before training and after one and two/three training
blocks, increased gradually and significantly (F(2,14) � 31.10; p �

0.001) with training (Fig. 2A). Figure 2B shows that, before
learning, the average sound identification curve was rather flat
and had a small amplitude (estimated parameters of the fit: a �
33.51; b � 40.6; c � 0.46; d � 4.22) reflecting the ambiguity of the
classes with respect to the sound dimensions and the continuous
nature of ripple pitch. With learning, the curve expanded along
the y-axis, indicating that the category extremes were classified
with higher confidence, and changed into a steep sigmoid shape
with a sharp transition at the category boundary (a � 98.3; b � 0;
c � 0.44; d � 3.41), a characteristic signature of CP (Harnad,
1987). Average goodness of fit expressed in adjusted R 2 was 0.96
and 0.99 for prelearning and postlearning, respectively.

Imaging results: univariate statistical analysis of fMRI data
Ripple sounds significantly activated extended regions on bilat-
eral superior temporal cortex. FMRI responses included large
parts of the STG, including HG, Heschl’s sulcus (HS), and PT, as
well as smaller portions of the STS and insular cortex. Univariate
contrasts between trained categories did not yield any significant
response differences for the group (fixed effect) and for each
single subject separately (FDR-corrected threshold, q � 0.05)
neither before nor after learning. These results are consistent with
the hypothesis that learning may induce subtle neural changes
without significant changes in overall activation (Ohl et al., 2001;
Schnupp et al., 2006).

Imaging results: decoding of novel sound categories from
fMRI patterns
We compared pretraining and posttraining classifier performance
on unlabeled trials after the algorithm had been trained with a subset
of trials labeled either according to the trained (pitch) or untrained
(velocity) sound dimension, regardless of the other sound features.
We thereby assessed the correspondence of the fMRI pattern dis-
crimination with the behavioral learning rule. A repeated-measures
ANOVA revealed a significant interaction between fMRI session and
trial labels (F(2,14) � 11.82; p � 0.001; Fig. 3A). Before category
learning, the classifier did not succeed in distinguishing two sound
classes based on either dimension. Classification accuracy for test
trials did not significantly differ from empirical chance level, esti-
mated with permutation. After subjects were trained, average classi-
fication accuracy across eight subjects reached 60.19% for the
trained sound classes (pitch) and only 54.47% for the untrained

Figure 2. Group behavioral results (data are represented as mean � SEM). A, Categorization accuracy in three nonfeedback
test blocks before training, and after 1 and 2/3 training blocks, respectively. B, Identification functions (curve-fitting results and
original data points before training and after 2/3 training blocks). A logistic function (Eq. 1) was fitted to the mean probabilities to
categorize a sound as “B” along the pitch continuum. The derivative of the respective curves is indicated in light gray to highlight
the shift and steepening of the category boundary reflected by the maximum of the function.
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sound classes (velocity). Two a priori hypotheses were tested with
Bonferroni-corrected � levels of 0.025. The pairwise comparison of
pitch classification accuracies before and after training revealed a
significant increase in accuracy with category learning (t(7) � 5.67;
p � 0.001). In the posttraining session, accuracies for pitch discrim-
ination were significantly above the empirical chance level of 54%
(t(7) � 9.58; p � 0.001). In seven of eight subjects, the classification
accuracy for trained pitch classes significantly (p � 0.05) differed
from accuracies obtained with permuted trial labels (Fig. 4).

Importantly, category training affected perceptual similarity
expressed in sound identification curves and fMRI pattern
similarity derived from correlation measures in an analogous

manner. After category learning, neural
response patterns for sounds with higher
pitch (pitch levels 4, 5, 6) correlated with
the prototypical response pattern for class
B more strongly than class A, independent
of other acoustic features. The profile of
these correlations on the pitch continuum
closely reflected the sigmoid shape of the be-
havioral category identification function
(Fig. 5). On average, these learning-induced
pattern changes strongly correlated with
the changes in behavioral sound categori-
zation (r � 0.91; p � 0.01).

Imaging results: group
discrimination maps
Voxel patterns discriminative for the
learned pitch classes were distributed bi-
laterally over the auditory cortex and in-
cluded regions of the primary and early
auditory areas (on HG and adjacent re-
gions). Both hemispheres revealed acti-
vation clusters in the posterior lateral
portion of HG (corresponding approxi-
mately to MNI coordinates �45, �20, 12)
extending beyond its posterior border
into HS and PT (mainly left hemisphere,
�45, �30, 12) and anteriorly into the first
transverse sulcus (FTS) (Fig. 3B). Espe-
cially in the right hemisphere, additional
clusters were found on anterior lateral HG
(48, �13, 4) and extended portions of the
middle STG/STS (45, �19, �5). These
voxels were highly consistent across sub-
jects (six of eight) and stable over at least
10 elimination levels.

Discussion
In this fMRI study, we used multivoxel
pattern analysis to reveal changes in
sound representations induced by the for-
mation of new perceptual categories in
human auditory cortex. We trained sub-
jects to dissect a multidimensional sound
space based on one relevant feature and
measured neural responses to the passive
exposure to a sound continuum before
and after successful category learning.

Listeners successfully learned the new
sound categories as reflected in their
categorization accuracy and the shape
of the category identification function.

The gradual increase of categorization performance across training
blocks suggests that a sudden insight into the relevant acoustic
dimension alone was insufficient to achieve precise categori-
zation. Instead, perceptual learning (Ahissar, 1999) at the cate-
gory boundary was required for optimal classification. In
accordance with previous studies (Smits et al., 2006; Goudbeek et
al., 2009), categorization performance transferred well from the
Gaussian training distributions to the continuous stimulus space
and persisted despite lack of feedback. This demonstrates the
generalization of the learned categories to novel sounds without
distributional cues indicative of the category structure or direct

Figure 3. Imaging results: fMRI pattern analysis. A, The left panel shows individual peak classification accuracies based on fMRI
data before category training and after successful category learning for the two types of stimulus space divisions (trained vs
untrained) and the respective trial labeling. Individual subjects are indicated with numbers on the right of each line. Group-
averaged classification accuracies are shown on the right. Mean accuracies are computed from the individual peak values across
voxel elimination levels for each session and trial division. Theoretical and average empirical chance levels (estimated through
permutation) are displayed as dashed black and solid black lines, respectively. B, Group discrimination maps based on the postle-
arning fMRI data for the trained stimulus division (i.e., “low pitch” vs “high pitch”), displayed on an average reconstructed cortical
surface after cortex-based realignment. A certain cortical location (vertex) was color-coded when it survived at least 10 of the
feature elimination levels in at least six of eight subjects (cluster size threshold, 25 mm 2).
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reinforcement in the form of corrective
feedback. This abstraction process is con-
sidered fundamental to categorization
(Kéri, 2003). The sigmoid shape of the
category identification function after
training resembled the labeling data from
natural phoneme categories (Liberman et
al., 1957).

The formation of the category bound-
ary separating the two pitch classes re-
quired the abstraction of discrete classes
from continuous pitch information and
the mapping of pitches to different labels
on either side of the classification bound-
ary. Moreover, subjects had to ignore the
additional irrelevant spectral and tempo-
ral variations and select only pitch as the
basis for the development of abstract rep-
resentations of pitch classes. Perceptual
invariance of sets of objects classified as
belonging to the same category (despite
variations in some aspects) is consid-
ered a vital function underlying object
recognition (Jüttner and Rentschler,
2008; Walker et al., 2011).

Crucially, before learning, the abstract
pitch categories could not be decoded
from the auditory cortex. This argues
against preexisting representations of our
sound categories and suggests that feature
mapping alone is insufficient for categor-
ical representations. Frequencies discrim-
inable in tonotopic maps usually lie much
further apart and reflect the relative pref-
erence of the voxel resulting from best-frequency analysis (i.e.,
color coding of frequency at which the response is maximum)
rather than significant frequency contrasts (Formisano et al.,
2003). Furthermore, the pitch classes contrasted in our analysis
are characterized by large within-class variability, not only in the
irrelevant dimensions (velocity and density) but also along the
relevant dimension (three pitch values are grouped into one
class). After learning, the classifier correctly assigned activation
patterns in the auditory cortex to their corresponding pitch class,
independent of the other spectrotemporal variations present in
the sounds. These results suggest the development of discrimina-
tive response patterns for the pitch classes with learning. It should
be noted that category learning did not affect the representation
of all sound features but selectively enhanced the differences in
the behaviorally relevant dimension at the learned category
boundary. This important differentiation therefore excludes re-
peated stimulus exposure as a potential cause of increased classi-
fier performance (Seitz and Watanabe, 2003) and provides direct
evidence for specific representational changes in human auditory
cortex with category learning.

The widespread activation of auditory areas can be attributed
to the complex spectrotemporal structure of the used rippled
sounds, which engage a multitude of functional processing areas
(Langers et al., 2003; Schönwiesner and Zatorre, 2009). Given the
identical stimulus sets for prelearning and postlearning fMRI ses-
sions and the uniform distribution of the used test sounds, the
changes in sound representations essentially rely on perceptual
reinterpretations of the same acoustic input induced by category
learning. Our results demonstrate the flexibility of sound repre-

Figure 4. Distribution of classification accuracies obtained with permuted trial labels. The values reflect the maximum
classification accuracy across 40 RFE levels (averaged over splits) for 100 permutations for each subject (N � 8) separately.
The normal curve is defined by the mean and SD of the underlying distribution. The red shading reflects the 95% confidence
interval. The red marker indicates the actual accuracy obtained with trial labels according to the trained (i.e., pitch)
dimension. The p values (extracted from the cumulative distribution function) reflect above-chance ( p � 0.05) classifica-
tion in seven of eight subjects.

Figure 5. Changes in pattern similarity and behavioral identification curves. The
learning-induced change in fMRI pattern similarity along the pitch continuum (levels
1– 6) is illustrated by correlation difference scores (di) contrasted between postlearning
and prelearning sessions (for details, please refer to Materials and Methods). Behavioral
data analogously correspond to the post � pre difference in identification functions (% B
responses). Data are visualized in z units and represent the group mean � SEM. The lines
reflect the fit with the sigmoid function (Eq. 1) used for behavioral data analysis (see
Materials and Methods, Curve fitting). Markers are displayed with a slight offset to in-
crease visibility. Pearson’s correlation coefficient (r) indicates strong correspondence be-
tween behavioral and neural measures.
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sentations in early auditory areas and the ability of auditory cor-
tical neural populations to adapt relatively quickly to situation-
dependent changes in the environment. This further supports the
notion that these areas serve higher-order sound analysis beyond
feature extraction in line with previous reports (Nelken, 2004).
The resemblance of the activity pattern similarity and the percep-
tual sound similarity as reflected in the identification curves ob-
tained outside the scanner suggests a link between perception and
neural population coding. The good fit to the specified sigmoid
function (adjusted R 2 of 0.78 for the fMRI and 0.99 for the be-
havioral data), generally used to model categorical data, suggests
that continuous pitch information is represented categorically in
distributed multivoxel patterns after learning.

Discriminative maps resulting from multivariate analyses
should be considered as a whole rather than localized hotspots.
The essence of pattern analysis using linear classifiers is the
weighted contribution of multiple voxels rather than the special-
ization of a particular cortical region. Yet, relating the most con-
sistently informative locations with previous fMRI reports is
useful to integrate our data in current knowledge.

The lateral posterior part of HG and the posteriorly adjacent
areas have previously been shown to code perceptual states rather
than purely acoustic differences of sounds (Kilian-Hütten et al.,
2011). Furthermore, these areas have been used to reliably decode
speaker information from natural and variable speech sounds
(Formisano et al., 2008). Thus, they seem to play an important
role in abstract and goal-directed representation of sounds.

Activation in the right STS/STG is strongly related to vocal
processing (Belin et al., 2000; Belin and Zatorre, 2003; Formisano
et al., 2008), specifically the extraction of speaker identity and
other paralinguistic information. As our sounds were nonhar-
monic complexes, the similarity to vocal sounds is rather small;
however, voice identification is predominantly based on the
extraction of the fundamental frequency (Belin et al., 2004;
Baumann and Belin, 2010), which is the underlying acoustic di-
mension upon which ripple classification was based in our exper-
iment. The right anterior lateral HG has been described to be
involved in pitch analysis (Warren and Griffiths, 2003; Barrett
and Hall, 2006). The recruitment of areas specialized in pitch
processing is in line with the previously proposed concept of
reallocation of resources according to task demands (Brechmann
and Scheich, 2005). Altered representations of identical visual
stimuli depending on the task-relevant features (Mirabella et al.,
2007) and increased selectivity for diagnostic features (Sigala and
Logothetis, 2002; De Baene et al., 2008) have previously been
demonstrated in monkeys during active categorization. Despite
the lack of control over the subjects’ performance during scan-
ning, none of our subjects reported to have actively categorized
the sounds. The finding of learning-induced modifications of
stimulus representations in our study during passive listening
suggests that task-related processes shape stimulus representa-
tions beyond the scope of the learning environment, yielding a
multipurpose enhancement of neural sensitivity for the relevant
stimulus differences. This provides neurophysiological support
for the effects of “acquired distinctiveness/equivalence,” where
relevant stimulus dimensions attain elevated discriminability
while perceptual sensitivity for irrelevant dimensions is decreased
after category learning (Goldstone, 1994). The emphasis of
category-relevant processes at the expense of category-irrelevant
processes at the level of the auditory cortex may increase overall
efficiency and facilitate readout in higher order regions, con-
forming with theories of sparse coding (Olshausen and Field,
2004).

Contrary to predictions from earlier reports (Desai et al.,
2008; Leech et al., 2009), increased categorical processing of rip-
ple sounds did not engage left posterior STS. This argues against
a generic role of these speech-related areas in categorical process-
ing but rather proposes that categorically perceived sounds spe-
cifically recruit left STG/STS for mapping onto highly abstract
and overlearned phonemic representations if they share spectro-
temporal speech characteristics.

Despite the prevalent view that the PFC is the main site of
category representations, in the visual domain the contribution
of frontal and higher occipito-temporal and parietal areas in cat-
egory learning remains under debate (Kourtzi and Connor,
2011). While comparisons between the auditory and visual do-
main might be limited by general cortical processing differences,
our results provide direct evidence for representations of abstract
sound categories already at early levels of the auditory processing
hierarchy. While the current experiment cannot exclude the contri-
bution of the PFC in categorical sound processing, recent evidence in
humans suggests that the PFC is predominantly involved in rule
learning and specifically recruited in the context of an active catego-
rization task (Boettiger and D’Esposito, 2005; Li et al., 2009). The
passive design used in the current study seems particularly suitable to
reveal learning-dependent changes in the representations of sound
categories in early processing areas rather than decision-related pro-
cesses in the PFC.

To conclude, our data present direct evidence in humans for
learning-induced formation of categorical sound representations
in early auditory areas. While responses to a psychophysical
sound continuum could not be distinguished before learning, a
few days of category training sufficed to reliably decode newly
formed pitch categories from distributed response patterns in
pitch-encoding areas in the absence of an active categorization
task. Our results are consistent with animal studies and demon-
strate that fMRI pattern analyses are eligible to reveal subtle
changes in sound representations otherwise inscrutable to con-
ventional contrast-based methods. Furthermore, our findings
provide an important demonstration of the plastic nature of
sound representations at early processing stages in human audi-
tory cortex.
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