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The axons of spinal projection neurons transmit sensory information to the brain by ascending within highly organized longitudinal
tracts. However, the molecular mechanisms that control the sorting of these axons within the spinal cord and their directed growth to
poorly defined targets are not understood. Here, we show that an interplay between Robo and the cell adhesion molecule, N-cadherin,
sorts spinal commissural axons into appropriate longitudinal tracts within the spinal cord, and thereby facilitates their brain targeting.
Specifically, we show that d1 and d2 spinal commissural axons join the lateral funiculus within the spinal cord and target the cerebellum
in chick embryos, and that these axons contribute to the spinocerebellar projection in transgenic reporter mice. Disabling Robo signaling
or overexpressing N-cadherin on these axons prevents the formation of the lateral funiculus and the spinocerebellar tract, and simulta-
neously perturbing Robo and N-cadherin function rescues both phenotypes in chick embryos. Consistent with these observations,
disabling Robo function in conditional N-cadherin knock-out mice results in a wild-type-like lateral funiculus. Together, these findings
suggest that spinal projection axons must be sorted into distinct longitudinal tracts within the spinal cord proper to project to their brain

targets.

Introduction

The stereotypical growth of axons to their synaptic targets is a
crucial phase of neural circuit formation. In the vertebrate spinal
cord, ascending projection neurons extend axons into the mar-
ginal zone where they are arranged within distinct longitudinal
tracts, based on the locations of their brain targets (Brodal, 1998;
Willis, 2007). Topographically organized axonal projections es-
tablish stereotyped patterns of connectivity throughout the ner-
vous system and can define the routes that axons follow to reach
their synaptic targets (Garel and Rubenstein, 2004; Luo and
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Flanagan, 2007; Sakano, 2010). Accordingly, the spatial arrange-
ment of ascending axons within distinct longitudinal funiculi in
the spinal cord proper may dictate their long-range projections to
appropriate brain targets.

Dorsal spinal commissural neurons are a major class of pro-
jection neurons whose axons cross the midline en route to the
brain (Brodal, 1998). Although some evidence suggests that
Atohl1-derived d1 axons project to the cerebellum (Bermingham
et al., 2001), the brain targets of genetically distinct classes of
dorsal spinal neurons have not been explicitly identified. After
crossing the midline, most spinal commissural axons execute a
rostral turn and project along a medial longitudinal commissural
(MLc) trajectory adjacent to the floor plate and form the ventral
funiculus (VF) (Bovolenta and Dodd, 1990; Imondi and Kapri-
elian, 2001; Kadison and Kaprielian, 2004). A subset of these
axons, termed intermediate longitudinal commissural (ILc) ax-
ons, ultimately leave the VF and project in an arcuate manner
into the lateral funiculus (LF).

The relative positioning of longitudinal axon tracts in the ver-
tebrate spinal cord is in part controlled by the Robo-Slit guidance
system. In the chick spinal cord, postcrossing spinal commissural
axons lacking Robo signaling fail to elaborate ILc projections and,
instead, extend in hyperfasciculated MLc tracts within the VF
(Reeber etal., 2008). A similar phenotype is observed in the spinal
cord of mouse embryos lacking Robol and Robo2 or all three Slits
(Long et al., 2004; Jaworski et al., 2010). Nevertheless, the molec-
ular mechanisms that confine postcrossing commissural axons to
the contralateral VF in the absence of Robo function are not
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known. The cell adhesion molecule, N-cadherin (Ncad) is re-
quired for the proper positioning of longitudinal axon tracts in
Drosophila (Iwai et al., 1997), and Robos are capable of attenuat-
ing Ncad function in a variety of systems (Rhee et al., 2002, 2007;
Wong et al., 2012). Thus, it is conceivable that Robo-mediated
inhibition of Ncad-dependent fasciculation regulates funiculi
formation in the developing CNS.

Here, we use genetic labeling strategies to show that dorsal
spinal d1 and d2 axons project to multiple brain regions includ-
ing the cerebellum. Moreover, we show that disabling Robo sig-
naling or overexpressing Ncad on spinal commissural axons
prevents these axons from joining the LF, and subsequently dis-
rupts spinocerebellar tract formation. Importantly, the simulta-
neous perturbation of Robo and Ncad function rescues these
axon positioning and targeting phenotypes. Together, our find-
ings suggest that Robo-mediated inhibition of Ncad is required
for sorting spinal projection neuron axons into distinct longitu-
dinal tracts and that this facilitates their projection to the
cerebellum.

Materials and Methods

Animals. Fertilized White Leghorn eggs were obtained from Charles River
and incubated at 39°C. Nead™** (Kostetskii et al., 2005), Atoh1 CreER™? (Ma-
chold and Fishell, 2005), Neurogl CreER™? (Koundakjian et al., 2007), and
Rosa26-lacZ’"** (Soriano, 1999) mice were obtained from the The Jackson
Laboratory.

In ovo and in utero electroporation. For in ovo electroporation, plasmid
construct(s) either alone or together with morpholinos (see below) were
injected into the central canal of E2.5-E3.5 chick neural tubes. Unilateral
transfection of the spinal cord was performed by applying five 20-21 V
pulses for 50 ms at 100 ms intervals (Krull, 2004). In utero electropora-
tion was performed as previously described (Bultje et al., 2009) except
that plasmids were injected into the central canal of E11-E11.5 mouse
embryos, and five 40 V 50 ms pulses at 950 ms intervals were applied to
the spinal cord. Chick and mouse embryos of either sex were used for
electroporation.

Plasmid constructs and morpholinos. The cBactin-NcadFL construct
(a gift from R. Bradley), which contains a chick B-actin promoter, was
used to overexpress the full-length form of chick Ncad. The following
plasmids containing a CAG promoter (Niwa et al., 1991) were used for
manipulating gene function via electroporation: CAG-humanRobolAC-
GFP (Hammond et al., 2005; Reeber et al., 2008) and CAG-xenopusNcadAE-
myc (Bozdagi et al, 2004). We used CAG-nisCre-IRES-GFP for
eliminating Ncad expression in Ncad™* mice and CAG-IRES-GEP as the
corresponding control, and delivered these plasmids into mouse em-
bryos via in utero electroporation. CAG-RobolAC-taumCherry was
constructed by replacing the GFP sequence in CAG-RobolAC-GFP
plasmid (Hammond et al., 2005) with taumCherry, which was ob-
tained by PCR from a NeurogltaumCherry construct (Reeber et al.,
2008). We wused AtohltauGFP or AtohltaumCherry, and
NeurogltauGFP or NeurogltaumCherry plasmids as reporter con-
structs to visualize the cell bodies and axons of d1 and d2 neurons,
respectively (Lumpkin et al., 2003; Nakada et al., 2004; Reeber et al.,
2008). The Neurogl-reporter construct contains a previously de-
scribed 0.8 kb dorsal-specific enhancer element, TgN1-13 (Nakada et
al., 2004; Reeber et al., 2008). We used CAG-tauGFP and CAG-
taumCherry, in which tauGFP and taumCherry sequences from
NeurogltauGFP and NeurogltaumCherry, respectively, were sub-
cloned into the pPB-CAG vector (Yusa et al., 2009), as well as CAG-
GPI-AP, which expresses GPI-anchored human placental alkaline
phosphatase (AP; Arakawa et al.,, 2008), as pan neuronal/axonal
markers. Ncad and standard control morpholino oligomers (MO)
with 3’-fluorescein or lissamine tags were obtained from Gene
Tools. The antisense oligo sequence for the Ncad MO is 5'-
GCGGCGTTCCCGCTATCCGGCACAT-3', which targets the trans-
lational start region of chick Ncad (Shiau and Bronner-Fraser, 2009).
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Histochemistry. All fluorescence immunostaining was performed on
20-50 wm cryosections as previously described (Jevince et al., 2006).
Primary antibodies used for immunohistochemistry were anti-mouse
Ncad (6B3, 1:5; Developmental Studies Hybridoma Bank) and anti-
rabbit B-galactosidase (f-gal, 1:500; AbD Serotec). Appropriate Al-
exa Fluor 488, 568, (1:1000; Invitrogen) or Cy3 (1:200; Jackson
ImmunoResearch) conjugates were used as secondary antibodies. For
3,3'-diaminobenzidine (DAB) photoconversion of fluorescence sig-
nals, we stained, as whole mounts, CNS tissues transfected with the d1
or d2 reporter, with anti-rabbit green fluorescent protein (GFP,
1:1000; Invitrogen), and subsequently with biotin-conjugated anti-
rabbit secondary antibody (1:50; Vector Laboratories). The tissue was
further incubated with avidin-biotin—peroxide complex and pro-
cessed for DAB reaction (Vector Laboratories) as previously de-
scribed (Jevince et al., 2006). AP reaction in whole mounts of CNS
transfected with CAG-GPI-AP was performed as previously described
(Imondi et al., 2000; Arakawa et al., 2008). For 3-gal staining, 20 pm
cryosections from P6 lacZ-reporter mice were fixed in cold 4% para-
formaldehyde for 5 min, washed in 5-bromo-4-chloro-3-indolyl-f-
p-galactopyranoside (X-gal) washing buffer, which contains 2 mm
MgCl,, 0.05% sodium deoxycholate, and 0.1% Igepal Ca-630 (Sigma-
Aldrich) in PBS, two times for 10 min at 25°C, and incubated in X-gal
reaction solution (1 mg/ml X-gal, 5 mm K;Fe(CN), and 5 mm
K,Fe(CN), ’H,0 in X-gal washing buffer) at 37°C for 12-18 h.

Lineage mapping and retrograde tracing. To carry out fate mapping, we
crossed Rosa26-lacZ’™ Cre reporter mice with Atohl1CreER™ or
Neurogl CreER™ mice. Tamoxifen (Sigma-Aldrich) in corn oil was ad-
ministered by oral gavage at 2—4 mg per 40 g of 10.5 d pregnant mice. At
P4, pups were genotyped for CreER alleles by PCR with following prim-
ers: forward 5'-GCCTGGTCTGGACACAGTGCC-3" and reverse 5'-CT
GTCTGCCAGGTTGGTCAGTAAGC-3'. Genotyping of Rosa26-lacZ"™*
was performed as described previously (Soriano, 1999). B-Gal staining of
Atoh1CreER;Rosa26-lacZ"™ mice spinal cord was performed at P6 as
described above. For retrograde tracing of spinocerebellar axons/tracts
originating from Atohl progenitor-derived d1 and Neurogl-lineage neu-
rons, we injected 2% Alexa Fluor 555-conjugated wheat germ agglutinin
(WGA) tracer (Invitrogen) in PBS into lobules V-VIII of the cerebellum
of P5 AtohlCreER;Rosa26-lacZ'* and Neurogl CreER;Ro0sa26-lacZ"*
pups. The surgery was conducted as previously described (Reeber et al.,
2011). For colabeling, 1 d later, at P6, we dissected out the spinal cord and
performed anti-B-gal immunostaining of cryosections as described
above.

Photodocumentation. Epifluorescence images were captured using a
Nikon Eclipse TE300 microscope. The confocal images were obtained
using a Fluoview 500 microscope (Olympus) and processed with Im-
ageJ64 (National Institutes of Health). The images of DAB- or AP-
stained CNS whole mounts were acquired on a Zeiss Stemi-2000C stereo
dissecting microscope (Carl Zeiss). Brightness and contrast of images
were adjusted using Adobe Photoshop CS.

Quantification and data analysis. For quantification of d2 ILc axons,
we selected a 0.5 mm 2 region in the center of the electroporated area of a
given open-book preparation. All labeled decussated axons that did not
project parallel to, and in the vicinity of, the floor plate were regarded as
ILc axons. We first normalized d2 commissural axon counts, defined as
the number of labeled d2 axons within the floor plate, to the respective
counts of transfected cell bodies, and verified that the resulting ratios
were comparable across preparations. The numbers of d2 ILc axons were
normalized to the total number of labeled d2 commissural axons. For
quantification of spinal cord-derived axons in the brain, the numbers of
ipsilaterally and contralaterally projecting d1 and d2 axons were counted
in the hindbrain, cerebellum, and around the isthmus at the hind-
brain—midbrain border. In the hindbrain, only rostrally projecting
axons were counted. Rostrally projecting axons anterior to the cere-
bellar peduncles of the spinocerebellar tract were counted as axons
projecting to the isthmus. In each case, axon counts were normalized
to the corresponding numbers of all transfected cell bodies in a given
spinal cord. All data analyses were performed using the unpaired
Student’s t test and GraphPad Prism (Version 5.0d), and p < 0.05 was
considered statistically significant.
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Results

d1 and d2 axons project to the chick hindbrain, cerebellum,
and isthmus along MLc and ILc trajectories

After crossing the midline, ascending d1 and d2 dorsal spinal com-
missural axons contribute to both the VF and LF by projecting along
MLc and ILc trajectories, respectively, within the spinal cord mar-
ginal zone (Reeber et al., 2008; Avraham et al., 2009) (Fig. 1]). How-
ever, the brain targets of these neurons have not been explicitly
identified, and whether the positioning of the corresponding axons
within particular funiculi in the spinal cord proper influences their
projection to these targets has not been addressed. Toward investi-
gating these issues we first performed unilateral in ovo electropora-
tion with specific reporter constructs (Lumpkin et al., 2003; Nakada
etal., 2004; Reeber et al., 2008) to identify the brain targets of d1 and
d2 neurons/axons in chick embryos. Specifically, we analyzed the
long-range projections of d1 and d2 axons in whole-mount prepa-
rations derived from the electroporated embryos by photoconvert-
ing the GFP labeling of d1 and d2 axons to more robust colorimetric
signals (Fig. 1A—H,J). The perdurance of reporter expression made
it possible to trace d1 and d2 axons in embryos electroporated at
E2.5-E3 and harvested as late as E10—E14. The majority of d1 and d2
axons projected anteriorly, and these axons were readily visible as far
rostrally as the isthmus or hindbrain—midbrain border located be-
tween the cerebellum and tectum, on both the contralateral and
ipsilateral (electroporated) sides of the spinal cord (Fig. 1A-H,J).
Importantly, most d1 and d2 axons within the LF projected to the
cerebellum, forming the inferior portion of the cerebellar peduncles
(Fig. 1A-D, GJ), whereas the majority of these axons within the VF
projected further rostrally to the isthmus (Fig. 1A-H,]).

To further characterize the projections of d1 and d2 axons as
they extend to their brain targets, we quantified the number of
longitudinally projecting axons that reached the hindbrain (Fig.
1C,FI), cerebellum (Fig. 1D,G,), and the isthmus (Fig.
1E,H,I), on both the contralateral and ipsilateral sides of the
electroporated embryos. In all cases, the numbers of labeled ax-
ons were normalized to the numbers of transfected neurons (Fig.
11). Of the axons that reached the hindbrain, the small number
(and/or collaterals emanating from these axons), which executed
a ventral turn within the hindbrain proper, were excluded from
the quantification (Fig. 1C,F). Together, our findings show that
dl and d2 spinal axons project to at least three distinct brain
regions through the VF and LF (Fig. 1K) and that similar num-
bers of these axons project to a given region.

Retrograde labeling of spinocerebellar tract: Atohl and
Neurogl progenitor-derived neurons project to the
cerebellum in mice

To further confirm that d1 and d2 axons target the cerebellum,
we performed retrograde tracing of spinocerebellar axons in
postnatal Atohl (Atoh1CreER;Rosa26-LacZ"*) (Soriano, 1999;
Machold and Fishell, 2005) and NeurogI (Neurogl CreER;Rosa26-
lacZ") (Koundakjian et al., 2007) reporter mice following ta-
moxifen administration at E10.5. Specifically, we injected Alexa
Fluor 555-conjugated WGA into the cerebellum of P5
Atoh1CreER;Rosa26-LacZ'™ and Neurogl CreER;Rosa26-lacZ"™
mice. Subsequently, X-gal staining and/or B-gal expression in
spinal cord sections obtained from these animals at P6 was used
to visualize fate-mapped Atohl progenitor-derived d1 and Neu-
rogl progenitor-derived neurons (Fig. 2A, B, D, E,G). These anal-
yses revealed that a subset of (-gal-expressing Atohl- and
Neurogl-derived cell bodies was colabeled with the retrogradely
transported WGA tracer in the spinal cord (Fig. 2 B-G). Among 9
B-gal-positive d1 neurons contained within one side of a given
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spinal cord section, ~4 cell bodies colabeled with retrogradely
transferred WGA, whereas ~6 cells of 45 labeled Neurongl
progenitor-derived neurons were also labeled with WGA. Given
that the colabeled cell bodies were located in lamina VI and VII of
Atoh1CreER;Rosa26-LacZ™ (Fig. 2B-D) and Neurogl CreER;
Rosa26-LacZ" (Fig. 2 E-G) mice, respectively, and both laminae
contain spinocerebellar neurons in mammals (Brodal, 1998; Xu
and Grant, 2005), these findings indicate that, just as in chick
embryos, d1 and d2 axons contribute to the spinocerebellar tract
in mice.

Overexpression of Ncad results in a reduction of ILc axons
within the LF, phenocopying the effects of disabling Robo-Slit
signaling

Toward determining how the axons of spinal projection neurons
project to their brain targets, we next investigated the molecular
mechanisms that sort these axons into distinct longitudinal tracts
within the spinal cord proper. As a consequence of disabling Robo-
Slit signaling in the chick spinal cord, decussated commissural axons
fail to grow away from the ventral midline along ILc trajectories and,
instead, exclusively extend adjacent to the floor plate as MLc projec-
tions in the VF (Reeber et al., 2008) (Fig. 3A,E,H). To explore the
possibility that Robo-mediated inhibition of Ncad (see Introduc-
tion) might account for this phenotype, we first investigated the
distribution of Ncad in the chick spinal cord. Ncad is expressed on
spinal commissural axons, including those extended by genetically
distinct d1 and d2 neurons (data not shown; Fig. 3 B, C). These ob-
servations raised the possibility that postcrossing spinal commis-
sural axons hyperfasciculate within the VF in an Ncad-dependent
manner following the disruption of Robo-Slit signaling (Fig. 3A). A
straightforward prediction of this hypothesis is that overexpression
of full-length Ncad (NcadFL) on commissural axons would abro-
gate Robo-mediated inhibition of Ncad, leading to an increase in
MLc axons and a corresponding decrease in ILc axons, effectively
recapitulating the pathfinding phenotype that results from disrupt-
ing Robo-Slit signaling.

As a first step toward testing this prediction, we asked whether
it would be possible to overexpress Ncad on spinal commissural
axons in vivo via unilateral electroporation of E3—-E3.5 chick em-
bryos with a chick NcadFL expression construct and a CAG-
tauGFP pan-axonal reporter plasmid. At E4.5, immunostaining
with anti-chick Ncad confirmed an increased level of Ncad ex-
pression on tauGFP-labeled commissural axons on the trans-
fected side of the spinal cord (Fig. 3C). We then coexpressed
NcadFL and a pan-axonal marker, CAG-taumCherry, or the d2
reporter (NeurogltaumCherry) to assess the consequences of
overexpressing Ncad on the axons of all transfected neurons or
only the d2 subset. It is important to note that electroporation of
either the pan-neuronal/axonal or the d2 reporter labels both ILc
and MLc projections (Reeber et al., 2008) (Fig. 3D, G). Also, here
and throughout this study we quantified the various misexpres-
sion phenotypes by selectively counting the numbers of d2 axons.
Three days after coelectroporating E3 chick embryos with
NcadFL and pan-axonal or d2 reporter constructs we observed a
significant reduction in the numbers of ILc axons and an abnor-
mally thick MLc axon bundle in open-book preparations derived
from these embryos (Fig. 3F,I). Consistent with a potential role
for Robo inhibition of Ncad adhesion in directing a subset of
postcrossing commissural axons along ILc trajectories and into
the LF, these defects resemble those observed in embryos electro-
porated with a cytoplasmic truncation (dominant-negative
form) of Robo, CAG-RoboIAC-GFP (Fig. 3E,H).
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Figure 1. d1and d2 axons project to the hindbrain, cerebellum, and isthmus in chick embryos. A, B, Lateral view of E10.5 (4)
and E11.5 (B) chick brain shows d1 () and d2 (B) commissural axons projecting to the hindbrain (Hb), the cerebellum (Cb; black
arrows), and the isthmus (white arrows). Arrowheads in the hindbrain indicate the axons and/or collaterals, which make orthog-
onal turns and project ventrally. C—H, Lateral view of E11 chick brain shows d1 (C~E) and d2 (F-H ) commissural axons in the brain.
In the hindbrain (C, F), rostrally projecting and ventrally terminating (arrowheads) d1 (C) and d2 (F) commissural axons/
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We quantified the NcadFL phenotype by
analyzing the pathfinding defects displayed
by d2 commissural axons in further detail.
First, we confirmed that similar numbers of
d2 commissural axons, normalized to the
numbers of labeled cell bodies, crossed the
floor plate (Fig. 3],K, “crossing axons”) in
embryos electroporated with the reporter
plasmids alone (control) and coelectropo-
rated with the reporter and cBactin-NcadFL
plasmids (NcadFL; Fig. 3]). This confirmed
that similar transfection efficiencies were
achieved in control and experimental
electroporations and revealed that d2 ax-
ons successfully crossed the floor plate fol-
lowing misexpression of NcadFL. We
next quantified the postcrossing com-
missural axon phenotype resulting from
the misexpression of NcadFL by deter-
mining the ratio of d2 ILc axons to de-
cussated d2 axons. Consistent with our
qualitative observations, the number of
d2 ILc axons is significantly reduced in
embryos electroporated with cBactin-
NcadFL, compared with control condi-
tions (Fig. 3K). Collectively, our findings
suggest that the hyperfasciculation of
postcrossing MLc axons resulting from
the misexpression of NcadFL prevents de-
cussated commissural axons from pro-
jecting away from the floor plate along ILc
trajectories and joining the LF.

Loss of Ncad function alone does not
perturb the pathfinding of postcrossing
commissural axons

Our findings raised the possibility that
Ncad is normally required for the fascicu-

<«

collaterals are shown. d1 (D) and d2 (G) commissural axons
form peduncles (black arrows) directed toward the cerebel-
lum. White arrows indicate d1 (E) and d2 (H) commissural
axons projecting to the isthmus. Midbrain (Mb) tectum is re-
moved for visual clarity. /, Quantification of d1 (n = 4) and d2
(n= 4) axons projecting in the hindbrain, the cerebellum, and
isthmus on the contralateral and ipsilateral (electroporated)
sides of the E10 chick brain. J, d2 axons in the ventral (top
down) view of whole-mount E10 chick spinal cord and brain.
Spinal cord is shown in open-book view. White line indicates
the transfected area on the electroporated side. White arrows
point to the two hemispheres of the cerebellum. In the spinal
cord, the left boxed region locates at the thoracic level in the
contralateral side, and the right box covers the cervical level.
Black arrows indicate contralaterally projecting ILc axons. In
the hindbrain, red arrows point to the axons within the LF that
target the cerebellum, and green arrows point to the axons
projecting to the isthmus from the VF. K, Schematic of spinal
commissural axon trajectories in open-book view of the spinal
cord and brain. Red axons follow ILc trajectories contributing
to the LF and projecting to the cerebellum. On the other hand,
the green axons adopt an MLc trajectory, join the VF, and proj-
ect to, and most likely beyond, the isthmus. fp, floor plate; rp,
roof plate; P, posterior; A, anterior; D, dorsal; V, ventral.
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Figure 2.

High-magnification views and merged image of boxed areas in Eand F.

lation of postcrossing MLc axons and, subsequently, VF forma-
tion. We tested this hypothesis by carrying out a variety of loss-
of-function manipulations. First, we used an MO to knock down
Ncad protein expression and assessed the consequences of this
manipulation on commissural axon pathfinding. Consistent with
a previous report (Shiau and Bronner-Fraser, 2009), transfection
of Ncad MO significantly reduced Ncad expression in the chick
spinal cord (Fig. 4A,B). If Ncad-mediated fasciculation is re-
quired for the formation of MLc axon tracts, the loss of Ncad
might be expected to result in a decrease in the number of MLc
axons and a concomitant increase in the number of ILc axons.
However, after transfecting E3—E3.5 chick spinal cord with the
Ncad MO and pan-axonal or d2 reporters we observed no obvi-
ous alterations in the numbers of ILc and MLc axons (Fig. 4C-F).
In separate experiments, we found that electroporation of sev-
eral different dominant-negative Ncad expression constructs
capable of perturbing Ncad function (see below) also failed to

Retrograde tracing of spinocerebellar tract labels Atoh1 progenitor-derived d1 and Neurog1-lineage neurons in
mouse spinal cord. A-D, P6 spinal cord of Atoh7CrefR;Rosa26-LacZ™ mouse showing fate-mapped d1 cell bodies stained with
X-gal (A). Arrows identify the d1 cell body colabeled with 3-gal and a retrograde tracer, Alexa Fluor 555 conjugate of WGA, which
was injected into the cerebellum at P5 (B—D). D, High-magnification views and merged image of boxed regions in B and . E-G,
P6 spinal cord of Neurog1CreFR;Rosa26-lacZ™ mouse showing a NeurogT-derived cell body colabeled with WGA (see arrows). G,
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disrupt the pathfinding of postcrossing
commissural axons (data not shown).
Together, these findings indicate that
the loss of Ncad function alone does not
interfere with the directed growth of
postcrossing spinal commissural axons
into the VF or LF.

Simultaneous perturbation of Ncad and
Robo function restores ILc axons and
the contralateral lateral funiculus

Our findings to this point are consistent
with a mechanism in which Robo normally
inhibits Ncad function on postcrossing
commissural axons and that this selectively
facilitates the formation of the ILc axon-
containing LF. To provide further support
for this model, we co-electroporated E3—
E3.5 chick embryo spinal cords with both
CAG-RoboIAC-GFP and NcadMO and as-
sessed the consequences of simultaneously
perturbing Ncad and Robo function on the
formation of postcrossing MLc and ILc ax-
ons. As revealed by the expression of GFP in
open-book preparations derived from these
embryos, interfering with both Robo-Slit
signaling and Ncad partially rescued the
dominant-negative Robo phenotype (Fig.
5A,B). d2 ILc axons were also rescued to a
similar extent in the absence of both Robo
and Ncad function (Fig. 5C,D). Quantifica-
tion of these phenotypes revealed a signifi-
cant increase in the number of d2 ILc axons
within spinal cords transfected with both
CAG-RobolAC-GFP and Ncad MO, as
compared with those electroporated with
the dominant-negative Robo! construct and
control MO (Fig. 5I).

Utilizing a complementary strategy to
eliminate Ncad function we misexpressed
a dominant-negative form of Ncad, CAG-
NcadAE. This plasmid encodes an extra-
cellular truncation of Ncad, which is
incapable of interacting with NcadFL, but
can bind downstream signaling molecules
such as B-catenin via its cytoplasmic do-
main and, thus, represents a dominant-negative form of Ncad
(Bozdagi et al., 2004). Consistent with the phenotype of chick
embryos transfected with both CAG-RobolAC-GFP and
NcadMO, co-electroporation of dominant-negative Robol and
Ncad constructs partially rescued ILc projections (Fig. 5E-H).
Together with the NcadFL overexpression phenotypes, these
findings suggest that Robo-mediated inhibition of Ncad nor-
mally facilitates the formation of ILc axons and, consequently,
the LF, by preventing the hyperfasciculation of postcrossing ax-
ons within the VF.

Knockdown of Ncad via in utero electroporation in Ncad
conditional mutant mice rescues the RoboAC perturbation
To provide further support for Robo-mediated inhibition of Ncad
function regulating contralateral commissural projections, and to
determine whether this mechanism is conserved in mammals, we
used in utero electroporation to ask whether interfering with Ncad
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Misexpression of NcadFL on spinal commissural axons leads to areduction in the number of ILc axons. A, Schematic of commissural axon trajectories in open-book view of the spinal cord unilaterally

electroporated with reporter constructs. Axons from red and green neurons cross the floor plate (fp) and elaborate contralateral projections. In our model, Robo inhibition of Ncad directs red axon to elaborate an
ILc trajectory and join the LF. Perturbing Robo function forces red axon to grow exclusively alongside the fp within the VF as a MLc projection. a, anterior; p, posterior; rp, roof plate. B, Ncad expression on d2
commissural axons in E4.5 chick spinal cord. Arrows identify precrossing segments of commissural axons. Arrowheads point to the ventral commissure. €, Overexpression of NcadFL in E5 chick spinal cord
following electroporation of ¢ Bactin-NcadFL and CAG-tauGFP constructs at E3. White arrows indicate misexpressed Ncad on precrossing, and yellow arrows point to postcrossing segments of GFP ™ commissural
axons. Arrowheads identify the ventral commissure. D1, Decussated axons labeled with the pan-axonal marker CAG-taumCherry (D—F) or d2 marker Neurog TtaumCherry (G—I) on the contralateral side of the
electroporated embryo are shown in open-book view. Compared with control embryos (D, G), misexpression of NcadFL resultsin fewer ILcaxons and larger MLc bundles (F, /), phenocopying the effect of disabling
Robo function (E, H) in E6 chick spinal cord. Scale bars: D (for D—F), G (for G—I), 100 m. J, K, Quantification of d2 ILc axon phenotype in wild-type and NcadFL-misexpressing embryos. The difference between
normalized counts of d2 commissural axons in control (n = 5) and experiment (n = 5) conditions is not statistically significant, (/) whereas normalized counts of d2 ILc axons misexpressing NcadFL are

significantly reduced as compared with controls (K, *p << 0.05). All values show mean == SEM.

function rescues the dominant-negative Robo phenotype in the
mouse spinal cord. Since Ncad homozygous-null mutant mice die
by E10 (Radice et al., 1997), we electroporated floxed-Ncad
(Nead™) mice (Kostetskii et al., 2005) with a Cre expression con-
struct to selectively eliminate Ncad in the spinal cord of E11.5 ho-
mozygous embryos (Necad™"). Just as we observed in the chick spinal
cord, commissural axons transfected with the general reporter con-
struct, CAG-tauGFP, and a control plasmid, CAG-IRES-GFP, which
lacks a Cre sequence, elaborated both ILc and MLc trajectories in the
Nead™ embryos (Fig. 6A), whereas, unilateral co-electroporation of

Nead™ embryos with CAG-Robol AC-GFP and CAG-IRES-GFP pre-
vented the formation of ILc axons (Fig. 6 B). On the other hand, co-
electroporation of CAG-RobolAC-GFP and CAG-nlsCre-IRES-GFP,
which encodes a Cre sequence with a nuclear localization signal, in
Ncad"" embryos, rescued the dominant-negative Robo phenotype
and resulted in the formation of wild-type-like ILc axons (Fig.
6C,D). These findings provide further support for Robo-mediated
inhibition of Ncad regulating the positioning of longitudinal spinal
axon tracts and indicate that this mechanism is conserved in
mammals.
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transfection of 3'-lissamine-tagged Ncad MO (B), as compared with embryos transfected with control MO (A). Scale bar, 50 pm. (~F, Ncad knockdown (D, F) results in normal ILc and MLc
projections, similar to controls (C, E), as shown by axons labeled with the pan-axonal (C, D) or d2 axon (E, F) reporters in E6 chick spinal cord. Scale bar, 100 m.
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Figure5.  Knockdown of Ncad or mis-expression of a dominant-negative form of Ncad partially rescues the RoboAC phenotype. A-D, Cotransfection of E3—E3.5 chick spinal cord with Ncad MO
and CAG-Robo1A(-GFP (B, D) restores ILc projections compared with controls (4, €) at E6, as shown by GFP-tagged Robo1AC-expressing axons (A, B) and d2 axons (C, D). E-H, Electroporation of
E3—E3.5 chick spinal cord with CAG-Ncad AE and CAG-Robo AC-GFP (F, H) also results in the rescue of Robo AC phenotype in E6 embryos, compared with control conditions (E, G). Axons are labeled
with Robo AC-GFP (E, F) or d2 reporter (G, H) constructs. Scale bar, 100 wm. /, The normalized counts of d2 ILc axons are significantly increased (mean == SEM, *p << 0.05) in chick spinal cords
transfected with Ncad MO and CAG-Robo7AC-GFP (n = 3) compared with the control (n = 3).
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Figure6.  Ncad knockdown restores ILc trajectory in Ncad™" mice. A-C, E13.5 open-hook preparations from Ncad™" mice spinal cord electroporated in utero at E11.5 show ILc and MLc projections
of spinal commissural axons expressing reporter constructs only (4), a reduction in ILc axons following misexpression of RoboAC (B), and the rescue of ILc axons expressing RoboACand Cre (C). D,
Significant increase in ILc axons (mean = SEM, **p < 0.005) within Ncad™” spinal cord electroporated with CAG-Robo7 AC-GFP and CAG-nisCre-IRES-GFP (n = 3), as compared with Ncad™" spinal
cord transfected with CAG-Robo1AC-GFP and control plasmids (n = 3).

Robo function or inhibition of Ncad-mediated adhesion is

geting. Since disabling Robo-Slit signaling results in the loss of
required for the targeting of spinocerebellar axons in the

ILc axons, and the commissural axon-containing portion of the

brain

Given that spinal commissural axons project to multiple brain
regions, including the cerebellum, we asked whether the posi-
tioning of these axons in distinct longitudinal tracts within the
spinal cord marginal zone is required for their proper brain tar-

LF (Fig. 3E,H ), we exploited this manipulation to selectively ask
whether mis-sorted decussated spinal commissural axons project
to their appropriate brain targets. For these analyses, we used a
general axon reporter construct CAG-GPI-AP (Arakawa et al.,
2008), which expresses GPI-anchored human placental AP, to
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commissural axons on the contralateral side of 13 whole-mount chick brain following transfection of E3—E3.5 spinal cord with respective constructs and MO. As compared with wild-type embryos
(A), the contralateral spinocerebellar tract (black arrowhead with asterisk) is reduced in embryos electroporated with CAG-Robo7 AC-GFP and control MO, whereas the projection of axons to the
isthmus (white arrowheads) is increased (B). Simultaneous perturbation of Robo and Ncad function restores the projection of spinal commissural axons to the cerebellum (Cb; indicated by two
asterisks in €). A subset of spinal commissural axons misexpressing NcadFL also fails to project to the cerebellum (D). E-H, In E10 chick brain, there is also a reduction in the projection of RoboTAC
or NcadFL-expressing d2 commissural axons to the cerebellum (asterisk in F,H) compared with the control (E). Cotransfection of (AG-RoboTAC-GFP and Ncad MO in the E3 chick spinal cord restores
the d2 spinocerebellar tract (two asterisks in G). I, Normalized d2 axon counts in the hindbrain, the cerebellum, and the isthmus indicate a significant reduction (**p << 0.01) in the spinocerebellar
tract and a significant increase in projection to the isthmus (*p << 0.05) formed by d2 commissural axons following transfection with CAG-Robo7A(-GFP and control MO (Robo1AG; n = 3),
compared with the control (wild-type, WT; n = 3). Normalized axon counts of d2 commissural axons misexpressing NcadFL (NcadFL; n = 3) are also significantly reduced in the cerebellum,
compared with the control (*p < 0.05). There is no statistically significant difference between normalized d2 commissural axon counts in WT embryos and those transfected with Robo 7 AC-GFPand

Ncad MO (Robo1AC + NcadMO; n = 3), indicating the rescue of projections to the cerebellum and isthmus. All values show mean == SEM. Hb, hindbrain; Mb, midbrain.

achieve robust colorimetric labeling of axons in a subset of em-
bryos, and the d2 reporter construct for quantifying the targeting
of labeled spinal commissural axons in a separate set of embryos.
The brains of the embryos electroporated with the pan-axonal
and d2-specific reporters were analyzed at E13 and E10, respec-
tively, after co-electroporation of the E3—E3.5 chick spinal cord
with either control CAG-tauGFP or CAG-RobolAC-GFP con-
structs. The numbers of the transfected d2 cell bodies did not vary
significantly between experiments: 3419 * 266.3 for control,
3214 * 74.27 for CAG-Robol AC-GFP, 2509 * 191.5 for CAG-
RoboIAC-GFP and NcadMO, and 3928 * 52.78 for NcadFL (n =
3 for each experiment). Notably, the normalized counts of ros-
trally projecting axons in the hindbrain were similar in embryos
electroporated with the control or CAG-RobolAC-GFP con-
structs, indicating that spinal axons appropriately reached the
hindbrain in the presence or absence of Robo signaling function
(Fig. 7A-C,E-G,I ). However, the number of commissural axons

projecting to the cerebellum was significantly reduced in em-
bryos transfected with the dominant-negative Robol construct,
(Fig. 7B, F,I), compared with control embryos (Fig. 7A,E,I ). On
the other hand, the number of commissural axons projecting to
the isthmus was significantly increased in the embryos trans-
fected with CAG-Robol AC-GFP (Fig. 7 B, F,I ). Further consistent
with Robo-mediated inhibition of Ncad regulating the targeting
of spinal projection neurons, simultaneously perturbing Robo
and Ncad function rescued the contralateral spinocerebellar tract
(Fig. 7C,G,I). Importantly, a subset of spinal commissural axons
that overexpress NcadFL also fail to project to the cerebellum
(Fig. 7D, H,]).

Together, these results suggest that Robo-mediated inhibition
of Ncad adhesion is required for the proper positioning of post-
crossing spinal commissural axons within the LF of the spinal
cord marginal zone and, in turn, for their targeting to the cere-
bellum (Fig. 8).
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and MLc axons into the LF and VF, re-
spectively (Reeber et al., 2008; Avraham et
al., 2009). We show here that, consistent
with the known anatomy and physiology
of spinal projection neurons, d1 and d2 ax-
ons project to multiple brain regions, and

pQ» Hb
.

Robo loss of function

r

that a significant subset of both populations
targets the cerebellum. This latter observa-
tion is consistent with the results of our ret-
rograde labeling experiments performed in
Atohl and Neurogl reporter mice, as well
as with the findings of an independent
dye-tracing study suggesting that Atohl
progenitor-derived d1 neurons/axons con-
tribute to the spinocerebellar tract (Ber-
mingham et al., 2001). In addition, we show
for the first time that d1 and d2 axons also
contribute to other major ascending tracts,

Mb
tectum

Cb

Figure 8.

Mb, midbrain.

Discussion

Here, we describe, for the first time, a molecular mechanism that
controls the directed growth of spinal axons to brain targets. Accord-
ing to our model, the axons of spinal commissural projection neu-
rons are presorted into distinct longitudinal funiculi within the
marginal zone, via Robo-mediated inhibition of Ncad, and this fa-
cilitates their projection to appropriate brain targets (Fig. 8).

d1 and d2 projection neurons target multiple brain regions
Anatomical and physiological studies in vertebrates have corre-
lated the positions of funiculi within the spinal cord marginal
zone with the particular brain regions that their component ax-
ons ultimately target (Brodal, 1998; Willis, 2007; Sakai and Kapri-
elian, 2012). In particular, the spinocerebellar tract is the only
major ascending projection in the dorsal LF that targets the brain
(Brodal, 1998; Xu and Grant, 2005; Willis, 2007). The ventral LF
harbors additional components of the spinocerebellar tract and a
portion of the anterolateral system, and the VF contains the re-
maining portion of the anterolateral system and the spino-olivary
tract (Kerr, 1975; Giesler Jr. et al., 1981; Richmond et al., 1982;
Brodal, 1998; Xu and Grant, 2005; Willis, 2007). The spatial or-
ganization of longitudinal tracts within the marginal zone re-
vealed by these studies suggests that spinal projection neurons
(including d1 and d2) whose axons contribute to the LF and VF,
connect to multiple brain regions, and that spinal ascending ax-
ons, which join the dorsal LF, project to the cerebellum. How-
ever, the brain targets of specific subtypes of projection neurons
have yet to be explicitly identified.

In the chick spinal cord, it has previously been shown that
both d1 and d2 commissural neurons extend postcrossing ILc

Sorting of postcrossing commissural axons via Robo-mediated inhibition of Ncad is required for spinocerebellar tract
formation. Schematic of spinal commissural axon trajectories in open-book view of the spinal cord and brain. In wild-type embryos,
Robo inhibition of Ncad directs red axons along an ILc trajectory, so that they can join the LF and project to the cerebellum (Cb). On
the other hand, the green axons join the VF by adopting an MLc trajectory and project to, and most likely beyond, the isthmus. As
a consequence of perturbing Robo function (Robo loss of function), red axons inappropriately elaborate MLc projections that grow
exclusively alongside the floor plate (fp) within the VF and which, in turn, mis-project to the isthmus. rp, roof plate; Hb, hindbrain;

which project to the brain. For example,
some d1 and d2 axons and/or their collater-
als in the hindbrain execute ventrally di-
rected orthogonal turns, identifying them
as likely components of spino-olivary and
spinoreticular tracts (Kerr, 1975; Brodal,
1998). The remaining sets of labeled axons
appear to be destined for the cerebellum
or more rostrally located targets. How-
ever, we were unable to follow these par-
ticular axons beyond the isthmus, even
using a pan-axonal reporter that provides
more robust labeling of these projections.
This is most likely due to the fact that after
reaching the isthmus ascending spinal ax-
ons, which contribute to the anterolateral system, are no longer
visible as they invade deep interior regions of the midbrain (Kerr,
1975; Bjorkeland and Boivie, 1984; Brodal, 1998).

b
tectum

A critical role for axon sorting regulated by Robo-mediated
inhibition of Ncad-dependent fasciculation in spinocerebellar
tract formation

Although it is well established that ascending longitudinal axons
are positioned within distinct funiculi in the spinal cord marginal
zone, whether this organizational pattern is required for the long-
range guidance and targeting of these axons has not been ad-
dressed. Our findings suggest that ascending projection neuron
axons must be presorted within the spinal cord proper to project
to their appropriate brain targets. Similarly, olfactory sensory
axons are spatially arranged according to their target sites in the
olfactory bulb and this topographic organization is, in part, reg-
ulated by the molecular identities of individual olfactory sensory
neurons, the expression of distinct olfactory receptors, and, ulti-
mately, by axon-associated expression gradients of canonical
guidance cues such as Semaphorins and Neuropilins (Sakano,
2010). Notably, presorting of olfactory sensory axons, as opposed
to target-derived guidance cues, regulates the targeting of these
axons within the olfactory bulb (Imai et al., 2009).

Analogous to the mechanisms underlying axon targeting in
the olfactory system, we propose that Robo inhibition of Ncad
function sorts decussated spinal commissural axons into the LF
within the spinal cord marginal zone, and that this is required for
their correct projection to the cerebellum. Our findings suggest
that the high levels of Robo likely expressed on ILc axons inhibit
Ncad-dependent fasciculation, allowing these axons to break
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away from the VF and join the LF. In support of this model,
simultaneous perturbation of Robo and Ncad function in the
spinal cord partially rescues the formation of not only the con-
tralateral LF, but also the spinocerebellar tract. Although it is
certainly possible that Robo and Ncad regulate the formation of
ILc axons and the LF through distinct parallel signaling pathways,
we favor our model since disabling Robo function has been dem-
onstrated to eliminate virtually all ILc axons (Long et al., 2004;
Reeber et al., 2008; Jaworski et al., 2010) (Figs. 3, 5, 6). Moreover,
elegant biochemical studies have shown that Slit-activation of
Robo inhibits Ncad-mediated adhesion in vitro (Rhee et al., 2002,
2007), and Robo-Slit signaling facilitates retinal ganglion cell de-
velopment by attenuating Ncad activity in zebrafish (Wonget al.,
2012).

Consistent with the Robo-Ncad model we propose, VF forma-
tion, likely driven by the fasciculation of MLc axons, might also
be dependent on Ncad function. Accordingly, the selective dis-
ruption of Ncad could result in a defasciculation of MLc axon
bundles, effectively reducing the thickness of the VF. However,
we show that introducing Ncad MOs into, or misexpressing a
dominant-negative Ncad construct in, the embryonic chick spi-
nal cord does not significantly perturb the pathfinding of post-
crossing commissural axons. Whereas the lack of an axon-sorting
phenotype in these experiments could reflect an incomplete or
insufficient disruption of Ncad function, it is also possible that
Ncad is specifically expressed on the ILc subset of postcrossing
commissural axons and not required for the directed growth of
MLc axons. However, it would be difficult to visualize such an
axon subtype-specific expression pattern since ILc axons must
project through the VF to reach the LF. Alternatively, Ncad may
have a permissive role in longitudinal axon guidance and tract
formation. In this case, the consequences of disrupting Ncad may
only be discernible in the absence of Robo function. Since axon
fasciculation and outgrowth generally require the concerted ac-
tions of a variety of cell adhesion molecules (Van Vactor, 1998;
Raper and Mason, 2010), the selective elimination of Ncad func-
tion might not be expected to result in a clear phenotype. Poten-
tially relevant to either scenario, it is interesting to note that the
spinal cord of mouse embryos lacking the atypical cadherin,
Celsr3, which is the mammalian homolog of Drosophila Fla-
mingo, exhibit an abnormally thick LF and a thinner VF. More-
over, the spinocerebellar tract, which travels within the dorsal LF,
in the hindbrain is also enlarged in Celsr3 mutants (Tissir et al.,
2005). These phenotypes suggest that Celsr3 has a key role in
sorting spinal projection neuron axons along MLc trajectories
within the VF and their proper projection to brain targets, most
likely to and beyond the isthmus.

Notably, Ncad expression levels on ascending axons within
ventrolateral funiculi in the chick spinal cord begin to decrease at
E6 and are extinguished at E7 when spinocerebellar tracts reach
the brain (Redies et al., 1992). As opposed to a direct role for
Robo-Ncad interactions in the targeting of longitudinal tracts to
the brain, this observation supports our contention that Robo-
mediated inhibition of Ncad in the spinal cord proper regulates
the formation of the LF, which in turn facilitates spinocerebellar
tract formation. Although we favor the view that sorting projec-
tion of these axons to the brain, target-derived cues may also have
a role in this process. It is interesting to note in this regard that
Slits are present in the chick hindbrain and cerebellum when
spinocerebellar tracts enter the brain (Gilthorpe et al., 2002).
Whether or not these brain-derived Slits are also required for
spinocerebellar tract formation remains an untested and open
question.

Sakai et al. ® Robo Inhibits Ncad to Form Spinocerebellar Tract
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