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Long-term facilitation in Aplysia is accompanied by the growth of new synaptic connections between the sensory and motor neurons of
the gill-withdrawal reflex. One of the initial steps leading to the growth of these synapses is the internalization, induced by 5-HT, of the
transmembrane isoform of Aplysia cell-adhesion molecule (TM–apCAM) from the plasma membrane of sensory neurons (Bailey et al.,
1992). However, the mechanisms that govern the internalization of TM–apCAM and how this internalization is coupled to the molecular
events that initiate the structural changes are not fully understood. Here, we report that the synthesis of membrane phosphatidylinositol
4,5-bisphosphate [PI(4,5)P2], which is known to be mediated by a signaling cascade through Aplysia Sec7 protein (ApSec7) and
phosphatidylinositol-4-phosphate 5-kinase type I � (PIP5KI�) is required for both the internalization of TM–apCAM and the initiation
of synaptic growth during 5-HT-induced long-term facilitation. Pharmacological blockade of PI(4,5)P2 synthesis by the application of the
inhibitor phenylarsine oxide blocked the internalization of apCAM. Furthermore, perturbation of the endogenous activation of ApSec7
and its downstream target PIP5KI� also blocked 5-HT-mediated internalization of TM–apCAM and synaptic growth. Finally, long-term
facilitation was specifically impaired by blocking the ApSec7 signaling pathway at sensory-to-motor neuron synapses. These data indi-
cate that the ApSec7/PIP5KI� signaling pathway is actively recruited during learning-related 5-HT signaling and acts as a key regulator
of apCAM internalization associated with the formation of new synaptic connections during long-term facilitation.

Introduction
Synapses undergo structural changes in neurons that are engaged
in memory-related long-term synaptic plasticity (Bailey and
Kandel, 2008; Kandel, 2012). Synaptic growth and the subse-

quent formation of new functionally competent sensory neuron
varicosities induced by the application of the modulatory neu-
rotransmitter serotonin (5-HT) have been found to be critical for
the persistence of facilitation beyond 24 h and thus are consid-
ered as key cellular mechanisms for the storage of long-term
memory (Bailey et al., 2004; Lee et al., 2008). Synaptic growth
during long-term facilitation (LTF) requires internalization of
the transmembrane isoform of Aplysia cell adhesion molecule
(TM–apCAM) (Mayford et al., 1992). Removal of TM–apCAM
from the membrane surface is a necessary and permissive step for
the initiation of learning-related synaptic growth (Bailey and
Kandel, 2008). Immunoelectron microscopy has revealed that
5-HT stimuli that induce LTF also lead to the clathrin-mediated
endocytosis of TM–apCAM from the surface membrane of sen-
sory neurons (Bailey et al., 1992). The intracellular domain of
TM–apCAM and its phosphorylation by MAPK is necessary for
this process to occur (Bailey et al., 1997; Han et al., 2004), and
CAMAP, a cytoplasmic binding partner of TM–apCAM, has
been found recently to play an important role in stabilizing TM–
apCAM at the membrane surface (Lee et al., 2007). However, the
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molecular pathway whereby 5-HT signaling initiates the internal-
ization of TM–apCAM at the plasma membrane of the sensory
neurons to induce the synaptic growth that accompanies LTF is
still not known.

It is generally thought that lipid signaling is critical for the
membrane dynamics and subsequent protein internalization
from the surface membrane (Simons and Gerl, 2010). For
example, membrane phosphatidylinositol 4,5-bisphosphate
[PI(4,5)P2], which is mostly generated from phosphatidylinositol
4-phosphate by phosphatidylinositol-4-phosphate 5-kinases
(PIP5Ks) (Yin and Janmey, 2003; Rameh et al., 1997; Jang et al.,
2009), regulates the rearrangement of actin cytoskeletons and
endo-exocytosis by binding to transmembrane or adaptor pro-
teins and recruiting downstream signaling pathways (Raucher et
al., 2000; Di Paolo and De Camilli, 2006). The major upstream
molecules of PIP5Ks are the ADP ribosylation factor (ARF) fam-
ily of small GTPases and their guanine nucleotide exchange fac-
tors (GEFs), the Sec7 protein family (Honda et al., 1999;
Hernández-Deviez et al., 2004; Funakoshi et al., 2011; Casanova,
2007). In Aplysia neurons, overexpression of msec7-1, a mamma-
lian homolog of Sec7 proteins, produces extensive neurite out-
growth, increases the number of synaptic varicosities, and
enhances synaptic transmission (Huh et al., 2003). During LTF,

application of 5-HT induces rapid and permanent changes in the
structure of the plasma membrane and internal membrane com-
ponent of the cytoplasm, leading to synaptic growth and synaptic
facilitation (Bailey et al., 2004). We therefore tested the possible
role of the PI(4,5)P2 synthetic pathway in regulating the internal-
ization of TM–apCAM and initiating synaptic growth. We found
that PI(4,5)P2 synthesis and its major upstream signaling path-
way of the Aplysia Sec7 protein (ApSec7)/PIP5KI� pathway are
critical for the internalization of TM–apCAM, synaptic growth,
and facilitation. Our data support the idea that 5-HT-induced
LTF requires activation of the ApSec7/PIP5KI� signaling path-
way to induce membrane PI(4,5)P2 synthesis, which is important
for the internalization of TM–apCAM, synaptic growth, and the
induction of LTF.

Materials and Methods
Cloning of ApSec7 and generation of ApSec7E159K mutant. To identify the
Sec7 proteins in Aplysia, the standard hybridization screening of Aplysia
kurodai CNS cDNA library was performed using the 32P-labeled Sec7
domain of msec7-1 as a probe (GenBank accession number JX458713).
Based on the nucleotide sequences of identified clones, recombinant
PCR was used to generate a dominant-negative (DN) mutant of ApSec7,
which has null catalytic activity of GEF at the conserved sec7 domain. The
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Figure 1. 5-HT-induced TM–apCAM internalization requires the PI(4,5)P2 synthetic pathway. A, Effect of PAO treatment on GFP–PHD localization in Aplysia sensory cells. Treatment with 20 �M

PAO but not the vehicle treatment induced cytosolic dispersion of membrane localized GFP–PHD. Scale bar, 40 �m. White dotted line, Area within which the level of fluorescent was measured. B,
Quantification of the dispersion of membrane GFP–PHD. Normalized fluorescent intensities in the area of soma corresponding to white dotted lines in A were plotted from the most cytoplasmic area
(left of x-axis) to the plasma membrane (right of x-axis). Same area of the soma was measured at 0 h (gray dotted line), 1 h (black solid line), and 2 h (gray solid line). Note that the PAO treatment
decreased the level of membrane-localized GFP–PHD in 1 h. C, Live-cell immunostaining of surface TM–apCAM. Either vehicle (DMSO) or PAO (20 �M) was concurrently treated with 5-HT. Images
were taken at 0 h (top) and 1 h after 5-HT treatment (bottom) in the same cell. Scale bar, 40 �m. D, Percentage fluorescence changes of surface-stained TM–apCAM without (�5-HT) or with 5-HT
treatment (�5-HT) in the presence of vehicle or PAO (vehicle, �5-HT, n � 6; vehicle, �5-HT, n � 10; PAO, �5-HT, n � 9; PAO, �5-HT, n � 9; mean � SEM; **p � 0.01, unpaired t test).
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mutant fragments of ApSec7–E159K was generated by recombinant PCR
using specific sense or antisense primers (sense primer containing
E159K, 5�-CCCGGTAAAGCACAGAAGA-3�; antisense primer contain-
ing E159K, 5�-TCTTCTGTGCTTTACCGGG-3�). The PCR products
containing mutation (E159K) in ApSec7 amino acid residues were sub-
cloned into HindIII–XbaI digested pNEX� vector.

RT-PCR. Total RNAs were extracted from Aplysia central ganglia us-
ing Trizol Reagent. The cDNA was synthesized by Superscript III reverse
transcriptase with oligo-dT or random hexamer as a primer. The cDNA
was used as templates for PCR reactions for ApSec7 (sense, 5�-ATGAAG
CAAGGTGTCCCTAAAAT-3�; antisense, 5�-CTTTCCGTCCGAGTCA
ACTTT-3�) and S4 (sense, 5�-GACCCTCTGGTG-AAGGTGAA-3�;
antisense, 5�-TGGACAGCTTCACACCTTTG-3�). Amplification was
performed for 28 –35 cycles (94°C, 15 s; 52°C, 15 s; 72°C, 30 s). PCR
products were visualized on 1% agarose gel.

Double-strand RNA synthesis. Partial sequences of ApSec7 containing
Sec7 and pleckstrin homology domains (PHDs) cut by HindIII and XbaI
were subcloned into a pLITMUS28i vector (New England Biolabs).
Double-strand RNA (dsRNA) of ApSec7 and firefly luciferase were syn-

thesized by an in vitro transcription using MEGAscript RNAi kit (Am-
bion) according to the protocol of the manufacturer. The resulting
dsRNA was dissolved in a microinjection buffer containing 0.1% fast
green, 10 mM Tris-Cl, pH 7.3, and 100 mM KCl.

Microinjection into Aplysia sensory neurons cocultured with motor neu-
rons. Neurons were isolated from ganglia of Aplysia kurodai and cultured
in the poly-L-lysine-coated plates. Microinjection into Aplysia neurons
was as described previously (Kaang, 1996). Sensory neurons in sensori-
motor neuron cocultures were microinjected with an injection solution
containing 0.5 �g/�l pNEX�–EGFP and 0.5 �g/�l dsRNA of ApSec7,
pNEX�–ApSec7, pNEX�–ApSec7E159K, or pNEX�–PIP5KI�KD (Gen-
Bank accession number U78575; Loijens and Anderson, 1996; Coppo-
lino et al., 2002) 24 h before the 5-HT treatment. Successful RNA or DNA
microinjections were determined 24 h after the microinjection into the
sensory neurons by the expression of GFP fluorescence.

Electrophysiological recording. All the recordings were performed as
described previously (Lee et al., 2003; Jang et al., 2010, 2011). Lateral
funiculus motor neurons, which are cocultured with sensory neurons,
were impaled with glass microelectrodes to measure the EPSP. To ana-
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Figure 2. Cloning and characterization of ApSec7 in Aplysia sensory neurons. A, Multiple sequence alignment of ApSec7 with mammalian mSec7-1 and mSec7-2. Red bar, Homologous Sec7
domain; blue bar, PH domain. B, RT-PCR analysis in cultured sensory neurons. Both a housekeeping gene S4 and ApSec7 mRNAs are present in cultured sensory neurons. C, Expression of ApSec7 or
ApSec7E159K in Aplysia sensory neurons. Top, Schematic for ApSec7 and the targeted mutation of E159K. Bottom, Immunostaining for the overexpressed ApSec7 or ApSec7E159K (red). Note that
wild-type ApSec7, but not the mutant ApSec7E159K, enhanced neuritogenesis. Scale bar, 40 �m. D, E, Subcellular localization of ApSec7/PIP5KI�/TM–apCAM in Aplysia sensory neurons. D,
Coexpression of ApSec7 (red), TM–apCAM (blue), and SYP–EGFP (green) in the distal neurites and varicosities of Aplysia sensory neurons contacting motor neurons. Merge shows colocalization
(pink) between ApSec7 and TM–apCAM at the membrane of the varicosities (arrows) as well as colocalization (cyan) between TM–apCAM and SYP–EGFP. E, Colocalization (yellow) of ApSec7 (green)
and PIP5KI�KD (red) in the distal neurites of Aplysia sensory neurons. Scale bars, 20 �m.
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lyze the effect of knockdown or overexpression of ApSec7 on LTF, the
initial EPSP was measured 24 h after the microinjection, and then five
pulses of 5-HT (10 �M) were applied with an interstimulus interval (ISI)
of 15 min. Twenty-four hours after the 5-HT treatment, final EPSP was
measured. For depression recording, series of EPSP in response to 10
repeated stimuli with ISIs of 20 s were measured.

Immunocytochemistry and analysis of the neuritogenesis. cDNAs of ApSec7,
PIP5KI�KD, DN-ApCdc42, or DN-ApRac1 were subcloned into the Aplysia
neuronal expression vector pNEX� with flag or HA tag on their C terminus.
These constructs were expressed in the Aplysia sensory neurons by microin-
jection. Neurons were fixed and immunostained using anti-flag M2 an-
tibodies (Abs) (Sigma) or anti-ApSec7 antiserum 36 h after expression.
Fluorescent and differential interference contrast (DIC) images were taken
under laser scanning confocal microscope (LSM510; Carl Zeiss). Total area
of neurons including newly synthesized neurites were measured by total
number of pixels of stained neurons based on the fluorescence images. The
threshold of fluorescent signal was determined based on the actual neurite
morphology in the DIC images to match the fluorescent signal within the
neurite areas. Soma size was measured based on the DIC images. Net area of
neurites was calculated as follows: pixel number of total area � pixel number
of soma area.

Varicosity measurement. To measure total number of varicosities together
with synaptophysin (SYP)–EGFP-filled varicosities, pNEX3–SYP–EGFP
was coinjected with pNEX�–ApSec7 or pNEX� control vector into sensory
neurons cocultured with motor neurons. Thirty-six hours after expression,
the total morphology of sensory neurons was imaged by microinjecting the
whole-cell fluorescence dye Alexa Fluor 594. Green and red fluorescence
images were taken under the fluorescence microscope (Olympus IX51). To
measure changes in total number of varicosities during LTF, we injected
pNEX3–EGFP together with pNEX�–ApSec7E159K or with pNEX�–
PIP5KI�KD. Twenty-four hours after injection, each sensory neuron was
imaged 3 h before and 24 h after five pulses of 5-HT treatment under the

confocal microscope. Z-stack images were taken to measure total number of
varicosities. Identification of varicosities was as reported previously (Glan-
zman et al., 1990; Kim et al., 2003).

apCAM internalization assay. Imaging and quantification of apCAM
internalization in live sensory neurons were performed as described pre-
viously (Han et al., 2004; Lee et al., 2007). Briefly, cultured sensory neu-
rons were overexpressed with TM–apCAM that was tagged with HA at
the extracellular domain of apCAM. Twenty-four hours after the expres-
sion, cultures were rinsed with perfusion media [1:1 mixture of isotonic
L15 and artificial seawater (ASW)] and incubated with the anti-HA Ab
12CA5 (first Ab; 1:100; HA-7; Sigma) for 40 min. After being rinsed with
perfusion media, cultures were incubated with the Cy3-conjugated anti-
mouse IgG (second Ab; 1:100) for 40 min. Then cultures were rinsed with
perfusion media, and fluorescently labeled apCAM on the surface of
sensory neurons was imaged under the confocal microscope (LSM510;
Carl Zeiss). Immediately after the cells were viewed, each culture was
treated with either control solution (isotonic L15 plus ASW) or 10 �M

5-HT in control solution for 1 h. Changes in fluorescence intensity in
each cell before and after 5-HT treatment were analyzed.

Results
Membrane PI(4,5)P2 synthesis is required for the
internalization of TM–apCAM
To begin to elucidate the molecular mechanisms that underlie
apCAM internalization, we tested a possible role of membrane
PI(4,5)P2 synthesis (Czech, 2003) after the application of 5-HT.
Phenylarsine oxide (PAO) has been found to inhibit PI(4,5)P2

synthesis at the plasma membrane by blocking the activity of
PIP5K, which catalyzes synthesis of PI(4,5)P2 on the lipid plasma
membrane (Wiedemann et al., 1996; Doughman et al., 2003). In
Aplysia sensory neurons, 20 �M PAO treatment induced cytosolic
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dispersion of the membrane PI(4,5)P2 indicator GFP–PHD
[phospholipase C�1 (PLC�1)] (Fig. 1A,B) (Di Paolo and De Ca-
milli, 2006). These data indicate that PAO blocks membrane
PI(4,5)P2 synthesis and depletes PI(4,5)P2 from the plasma mem-
brane in cultured Aplysia neurons. In the presence of PAO, 5-HT-
induced internalization of TM–apCAM was totally abolished in
Aplysia sensory neurons (Fig. 1C,D). Thus, the supplement of
PI(4,5)P2 by PIP5K at the plasma membrane is required for
5-HT-induced TM–apCAM internalization.

ApSec7 and PIP5KI� is a potential upstream signaling
molecule of membrane PI(4,5)P2 synthesis in Aplysia sensory
neurons
Because we have found that PIP5K activity is critical for the
5-HT-mediated internalization of TM–apCAM, we hypothesized
that the major upstream activator of PIP5Ks, ARF small GTPase
and its GEF Sec7 proteins (Honda et al., 1999; Hernández-Deviez
et al., 2004; Funakoshi et al., 2011; Casanova, 2007), might also be
important for the internalization of TM–apCAM. We, therefore,

cloned ApSec7 by conventional cDNA library screening as a po-
tential upstream target molecule that modulates the ARF/PIP5K
signaling pathway and synthesis of PI(4,5)P2 (see Materials and
Methods; Fig. 2). ApSec7 is homologous to mammalian Sec7
proteins (msec7-1) and contains a highly conserved domain
structure with N-terminal coiled-coil domain, middle Sec7 do-
main, and C-terminal PHD (Fig. 2A) (Telemenakis et al., 1997;
Cherfils et al., 1998; Mossessova et al., 1998). We confirmed the
presence of ApSec7 mRNA transcript in the total RNA extract
from isolated cultured sensory neurons (Fig. 2B). The Sec7 do-
main is the catalytic domain for the GDP–GTP exchange, and the
point mutation substituting highly conserved glutamate (E) in
the Sec7 domain to lysine (K) leads to an impairment of GEF
activity in Sec7 proteins but preserves their ARF-binding prop-
erty (Cherfils et al., 1998; Mossessova et al., 1998). In Aplysia
neurons, overexpression of the mouse homolog of sec7 protein
homolog, msec7-1, induced extensive neuritogenesis, and this
effect was not observed when the null mutant msec7-1, msec7-1
E157K, was overexpressed (Huh et al., 2003). Similarly, enhanced
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ApSec7 signaling by overexpression of ApSec7 induced massive
neuritogenesis from somata of cultured sensory neurons,
whereas overexpression of the null mutant ApSec7E159K did
not induce any neuritogenesis (Fig. 2C). ApSec7 was colocalized at
the plasma membrane with TM–apCAM (Fig. 2D), and this coin-
cided with where PI(4,5)P2 was located (Fig. 1A).

As an independent approach to blocking the activity of the
PIP5K, we targeted expression of a DN [kinase-dead (KD)] form
of human PIP5KI� (PIP5KI�KD) (Coppolino et al., 2002) into
cultured sensory neurons. Ectopically expressed human
PIP5KI�KD was highly colocalized with the ApSec7 at the mem-
brane (Fig. 2E). Furthermore, the enhanced neuritic outgrowth
by overexpressed ApSec7 was significantly suppressed by coex-
pression of PIP5KI�KD (Fig. 3A), suggesting that PIP5KI� is one
of the major downstream signaling molecules of ApSec7. Neither
DN-ApCdc42 nor DN-ApRac1 suppressed the neuritogenesis in
ApSec7-expressed neurons (Fig. 3B), supporting the specific and
critical role of PIP5KI� as a downstream signaling molecule of
ApSec7 in Aplysia sensory neurons.

ApSec7/PIP5KI� signaling pathway is required for the
internalization of TM–apCAM
We next tested the role of ApSec7/PIP5KI� in regulating inter-
nalization of TM–apCAM. Similar to results from PAO treat-
ment (Fig. 1C,D), overexpression of PIP5KI�KD significantly
blocked 5-HT-induced TM–apCAM internalization when com-
pared with control sensory neurons without expression (Fig. 4A,B;
control vs PIP5KI�KD). These data further support the idea that
the signaling pathway for synthesis of membrane PI(4,5)P2 is

critical for initiating TM–apCAM inter-
nalization. Furthermore, overexpres-
sion of ApSec7E159K, like PIP5KI�KD,
significantly blocked TM–apCAM inter-
nalization after exposure to 5-HT (Fig.
4A,B; ApSec7E159K). These results indi-
cate that ApSec7 as well as PIP5KI� are
critical mediators for TM–apCAM inter-
nalization. Collectively, our data sup-
port the idea that 5-HT-induced
TM–apCAM internalization is mediated
by PI(4,5)P2 synthesis via the ApSec7/
PIP5KI� signaling pathway in Aplysia
sensory neurons.

ApSec7/PIP5KI� signaling pathway is
required for synaptic growth
during LTF
Internalization of TM–apCAM is criti-
cal for the learning-related synaptic
growth in cultured sensory neurons
forming synapses with motor neurons
in vitro (Bailey et al., 1992; Mayford et
al., 1992; Han et al., 2004). We next
tested whether ApSec7/PIP5KI� signal-
ing activation was also required for
5-HT-inducedsynapticgrowth.Weexpressed
either PIP5KI�KD or ApSec7E159K in the
presynaptic sensory neuron cocultured
with a postsynaptic motor neuron and
counted the total number of sensory neu-
ron varicosities formed on the initial seg-
ment and major axons of the motor
neuron before and 24 h after five pulses of

5-HT treatment that induces LTF (Kandel, 2001; Kim et al., 2003;
Bailey and Kandel, 2008). In the control cells, repeated pulses of
5-HT induced a significant increase in the total number of vari-
cosities. This synaptic growth was completely blocked by expres-
sion of either PIP5KI�KD or ApSec7E159K (Fig. 5A,B). Thus, in
addition to its role in internalization of TM–apCAM, ApSec7/
PIP5KI� is also a key mediator for the 5-HT-induced formation
of new sensory neuron varicosities in Aplysia.

ApSec7 signaling pathway is critical for the induction of LTF
To further test whether inhibition of synaptic growth by disrupt-
ing the ApSec7/PIP5KI� signaling pathway directly affects LTF,
we manipulated ApSec7 signaling in the presynaptic sensory neu-
rons. First, we attempted to disrupt the ApSec7 signaling pathway
by overexpressing ApSec7E159K in sensory neurons. We found
that short-term facilitation (STF) was induced normally after
acute exposure to 5-HT, whereas LTF was blocked at the same
synapses at 24 h after repeated pulses of 5-HT (Fig. 6). In Aplysia
neurons, targeted knockdown of specific genes can be achieved
by microinjection of sequence-specific dsRNAs (Lee et al., 2001).
Based on the newly cloned gene ApSec7, we generated dsRNA
against partial sequences (�500 nt) of Sec7–PHD of ApSec7
(dsApSec7). As a control, we used dsRNAs against a partial se-
quence (�500 nt) of the firefly luciferase gene (dsLuci) (Lee et al.,
2001). Knockdown effect by dsApSec7 was confirmed by its sig-
nificant blockage of the expression of ApSec7 compared with
dsLuci (Fig. 7A). Injection of dsApSec7 into sensory neurons signif-
icantly blocked the induction of LTF at sensory-to-motor neuron
synapses without changing the level of basal synaptic transmission,
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Figure 5. ApSec7/PIP5KI� signaling pathway is required for the 5-HT-induced synaptic growth in Aplysia sensory-to-motor
neuron synapses. A, Varicosity number changes after 5-HT treatment. Varicosities of sensory neurons contacting major axons of the
postsynaptic motor neurons were counted in the sensory neurons expressing only EGFP (Control), EGFP with PIP5KI�KD, or EGFP
with ApSec7E159K. Green, EGFP-filled neurites and varicosities of sensory neurons. Gray, DIC images of the areas in which the
varicosities were measured. Arrowheads, Newly synthesized varicosities. Pre, 3 h before 5-HT treatment; Post, 24 h after five pulses
of 5-HT treatment. Scale bar, 40 �m. B, Percentage change of the varicosity number (control, n � 18; PIP5KI�KD, n � 13;
ApSec7E159K, n � 11; mean � SEM; ***p � 0.001, one-way ANOVA followed by Dunnett’s multiple comparison test).
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whereas dsLuci-injected cells displayed nor-
mal induction of LTF (Fig. 7B).

Overexpression of ApSec7 proteins
enhances synaptic growth and
occludes LTF
Finally, we tested the direct effect of activat-
ing ApSec7 by overexpressing ApSec7 into
sensory neurons in sensorimotor neuron
cocultures. We now observed an increase in
both the total number of presynaptic vari-
cosities, as well as an increase in the ampli-
tude of the evoked EPSPs at the synapses
between sensory and motor neurons (Fig.
8A,B). This effect of ApSec7 was highly sim-
ilar to the effect of overexpressed msec7-1 in
Aplysia neurons (Huh et al., 2003). We fur-
ther found that the induction of LTF was
occluded at these potentiated synapses (Fig.
8C), whereas short-term facilitation (Fig.
8D) or synaptic depression was not altered
(Fig. 8E). Thus, not only is the endogenous
ApSec7-mediated signaling pathway re-
quired for the induction of LTF, but also the
overactivation of ApSec7 signaling can
mimic the induction of LTF by promoting
synaptic growth at the sensory-to-motor
neuron synapse.

Discussion
In this study, we report a novel signaling
pathway in Aplysia, the ApSec7/PIP5KI�/
PI(4,5)P2 pathway that regulates three of
the defining features of long-term mem-
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Figure 7. Knockdown of ApSec7 by dsRNA blocks LTF. A, Coinjected dsApSec7, but not dsLuci, blocked the expression of ApSec7
(red) in cultured sensory neurons. Scale bars, 40 �m. B, Knockdown of endogenous ApSec7 blocks LTF significantly. Control,
Without injection (5�5-HT, n � 4; No 5-HT, n � 11); dsLuci, control dsRNA (5�5-HT, n � 5; No 5-HT, n � 7); dsApSec7, dsRNA
against ApSec7 (5�5-HT, n � 7; No 5-HT, n � 11). *p � 0.05; **p � 0.01; NS, p � 0.20, unpaired t test; #p � 0.05, one-way
ANOVA followed by Dunnett’s multiple comparison test. N.S., Not significant.

Figure 6. Perturbation of ApSec7 signaling pathway impairs the induction of LTF. A, Experimental design. Left, A schematic illustration of the intracellular EPSP recordings at the postsynaptic
motor neurons (MN) in response to the extracellular stimulation of presynaptic sensory neurons (SN). Right, Daily experiments performed on the cultured neurons. DIV, Days in vitro; EPSP1, baseline
measurement; EPSP2, STF induced by one pulse of 5-HT treatment for 5 min; EPSP3, LTF measured at 24 h after five pulses of 5-HT treatment. B, Example traces of evoked EPSP measured as shown
in A. Control, EGFP expression in the presynaptic sensory neurons; ApSec7E159K, overexpression of ApSec7E159K with EGFP. C, Percentage change in EPSP amplitude (control, n � 11; ApSec7E159K,
n � 11; mean � SEM; **p � 0.01, unpaired t test).
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ory storage at the sensory-to-motor neuron synapse of the gill-
withdrawal reflex in Aplysia: (1) 5-HT-induced internalization of
TM–apCAM, (2) learning-induced synaptic growth, and (3)
long-term synaptic facilitation. The analysis of this pathway in
turn has given us new insights into the mechanisms that govern
learning-related internalization of apCAM and how these are
coupled to the molecular changes that initiate the enduring func-
tional and structural changes that underlie long-term memory
storage.

Molecular mechanisms of the internalization of TM–apCAM
and its importance for synaptic growth during LTF
Our study has characterized a novel signaling pathway that plays
a critical role in the 5-HT-induced long-term synaptic plasticity
at the sensory-to-motor neuron synapse in Aplysia. Not only does
the ApSec7/PIP5KI� signaling pathway regulate the internaliza-
tion of TM–apCAM, but it also is required for learning-related
synaptic growth and long-term synaptic facilitation. Our findings
support previous reports that TM–apCAM internalization is im-
portant for both synaptic growth and LTF (Mayford et al., 1992;

Han et al., 2004). Furthermore, we have revealed a new molecular
mechanism that links TM–apCAM internalization with the
5-HT-induced growth of new synaptic connections. Regulation
of structural dynamics via ApSec7/PIP5KI� appears to be more
important for LTF, because we did not observe any changes in
short-term facilitation or synaptic transmission per se by altering
the activity of ApSec7/PIP5KI�. Thus, our data suggest that the
ApSec7/PIP5KI�/PI(4,5)P2 pathway is recruited by stimuli that
induce long-term synaptic plasticity and is required specifically
for the growth of new sensory-to-motor neuron synapses that
accompanies both the induction and persistence of LTF.

How does activation of ApSec7/PIP5KI� induce the internal-
ization of TM–apCAM during 5-HT signaling? It is plausible to
think that local enrichment of PI(4,5)P2 at the plasma membrane
might generate an active platform for the internalization of TM–
apCAM. Membrane PI(4,5)P2 is important for the membrane
recycling and trafficking of other types of cell-adhesion mole-
cules (Brown et al., 2001; Wong and Isberg, 2003; Zimmermann
et al., 2005; Sheetz et al., 2006). An increase in the level of mem-
brane PI(4,5)P2 can recruit signaling molecules with a high affin-

Figure 8. Upregulation of Apsec7 signaling pathway enhances synaptic growth and occludes LTF. A, Top, Representative images of varicosities without (Control) or with expression of ApSec7
(ApSec7). Scale bar, 50 �m. White, Alexa Fluor 594 dye loaded into the whole sensory neurons. Bottom, Total number of varicosities (Control, n � 6; ApSec7, n � 9; mean � SEM; ** p � 0.01,
unpaired t test). B, Percentage EPSP measured after overexpression of Apsec7 compared with the mock injection (Control, n � 6; ApSec7, n � 7; mean � SEM; *p � 0.05, unpaired t test). C,
Percentage EPSP changes 24 h after five pulses of 5-HT treatment (5�5-HT); Control, n � 7; ApSec7, n � 7; mean � SEM; **p � 0.01, unpaired t test. D, Percentage EPSP measured after one pulse
of 5-HT treatment for 5 min. The presynaptic sensory neuron was either overexpressed with ApSec7 (n � 3) or not expressed (Control; n � 3). Pre, Before 5-HT treatment; STF, 5 min after 5-HT
treatment; LTF, 24 h after 5-HT treatment (mean � SEM). E, Synaptic depression (mean � SEM) measured by continuous stimulation of presynaptic neurons either without (Control; n � 5) or with
the overexpression of ApSec7 (n � 4).
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ity for the PI(4,5)P2 lipid, and even PI(4,5)P2 can be directly
involved in the activation of downstream signaling molecules (Di
Paolo and De Camilli, 2006). This leads us to suggest that 5-HT
signaling can activate the ApSec7/PIP5K signaling pathway in
Aplysia sensory neurons, which is required for the internalization
of TM–apCAM and serves to induce the synaptic growth that
accompanies LTF.

Although internalization of TM–apCAM is critical for synap-
tic growth, the specific nature of the structural changes recruited
by the internalization of TM–apCAM remains unknown. In Ap-
lysia, the learning-related formation of new sensory neuron var-
icosities is mediated by at least two processes, either (1) the
budding off or splitting of preexisting varicosities enriched with
synaptic proteins (Bailey and Kandel, 1993; Hatada et al., 2000;
Kim et al., 2003) or (2) the outgrowth of new sensory neuron
filopodia, some of which mature into functionally competent
varicosities (Udo et al., 2005). A major signaling molecule that
induces synaptic growth by promoting the formation of filopodia
is ApCdc42 (Udo et al., 2005). However, it is unlikely that the
internalization of TM–apCAM by the activation of the ApSec7/
PIP5KI� signaling pathway increases the number of varicosities
by generating new filopodia: to begin with, we have not observed
an increase in formation of filopodia on neurites when we over-
expressed ApSec7 in sensory neurons despite the increase in
number of varicosities (Fig. 8A). This is quite different from the
activation of ApCdc42, which dramatically increases the number
of filopodia (Udo et al., 2005). Second, a DN form of ApCdc42
did not suppress ApSec7-mediated neuritogenesis (Fig. 3B). This
result indicates that ApCdc42 is not a downstream molecule of
the ApSec7 signaling pathway. Finally, previous reports have
found that the internalization of TM–apCAM requires PKA ac-
tivity (Bailey et al., 1992; Lee et al., 2007), whereas the formation
of new filopodia does not require PKA but rather requires phos-
phatidylinositol 3-kinase (PI3K)/PLC/ApCdc42 signaling (Udo
et al., 2005). Thus, the ApSec7-mediated signaling pathway that
leads to both the internalization of TM–apCAM and synaptic
growth appears to be independent from the ApCdc42-mediated
pathways that induce the formation of filopodia in sensory neu-
rons. Future studies are required to determine whether the sig-
naling pathways that lead to the internalization of TM–apCAM
may also play a role in the splitting of preexisting enriched vari-
cosities during LTF in Aplysia.

Although the major downstream molecule of ApSec7 seems to
be the PIP5KI�, other signaling pathways that regulate cytoskel-
etal rearrangement and membrane recycling may play a critical
role in inducing the observed structural changes in Aplysia neu-
rons. For example, actin remodeling and microtubules are
known to be modulated by various types of Rho GTPases, such as
GEF–H1 (Krendel et al., 2002). Because ApSec7-mediated neuri-
togenesis was not blocked by DN forms of Rac1 or Cdc42 (Fig.
3B), ApSec7-mediated signaling pathway may not modulate the
actin cytoskeletons directly. Rather, we think it more likely that
ApSec7-mediates adhesion-dependent trafficking of other mem-
brane and cytoskeletal components, such as lipid rafts and micro-
tubules (Balasubramanian et al., 2007), and that these may
cooperate with PIP5KI� to play a critical role in promoting ex-
tensive neuritogenesis and structural rearrangements leading to
synaptic growth. Furthermore, the increased level of membrane
PI(4,5)P2 and activated microtubules may affect the kinetics of
synaptic vesicle release and enhance the synaptic transmission
in sensory-to-motor neuron synapses (Fig. 8B). Supporting
this, we have found previously that the overexpression of mu-
tant msec7-1 (msec7-1 E157K) decreased synaptic transmis-

sion without affecting the number of varicosities (Huh et al.,
2003). Additional studies will be required to dissect the role of
ApSec7/PIP5KI� pathway on the structural changes of synap-
tic varicosities and the synaptic vesicles that are released
within a single presynaptic varicosity.

Role of PI(4,5)P2 in LTF: the PI(4,5)P2 synthetic pathway is
important for synaptic growth and the maintenance of
synaptic facilitation
Lipid PI(4,5)P2 is important for regulating lipid signaling and
surface trafficking of membrane proteins in a variety of cell types
(Czech, 2003). In neuronal cells, PI(4,5)P2 synthesis is important
for the regulation of channel gating and for receptor signaling
(Mathie, 2007; Prieto et al., 2011; Ying et al., 2011), and defects in
PI(4,5)P2 synthesis are associated with both memory loss and
other neuronal diseases (Berman et al., 2008; Voronov et al.,
2008; Di Paolo and Kim, 2011). Here, we have found that the
PI(4,5)P2 synthetic signaling pathway is also critical for the inter-
nalization of TM–apCAM in sensory neurons and the subsequent
synaptic growth, thus providing a new insight into the impor-
tance of PI(4,5)P2 synthesis for synaptic growth and facilitation
that underlie learning and memory storage.

Not only does PI(4,5)P2 directly bind to other signaling mole-
cules, to activate or recruit them, but it is also required for subse-
quent production of other second-messenger molecules that are
crucial for various types of cell signaling. Receptor activation of PLC
results in the hydrolysis of membrane PI(4,5)P2, yielding the
well-known second messengers inositol-1,4,5-triphosphate
and diacylglycerol (Hughes and Putney, 1988). Also, PI3K directly
phosphorylates PI(4,5)P2 to generate phosphatidylinositol-(3,4,5)-
triphosphate that recruits other signaling molecules in concert with
PI(4,5)P2 (Di Paolo and De Camilli, 2006). During LTF in Aplysia,
the activity of both PI3K and PLC is required for the ApCdc42-
mediated outgrowth of filopodia and new varicosity formation
(Udo et al., 2005). Although we could not observe any direct forma-
tion of filopodia by activation of ApSec7/PIP5KI�/PI(4,5)P2 signal-
ing pathway (not sufficient), it is plausible that the increased level of
PI(4,5)P2 on the plasma membrane during stimulation with 5-HT
might provide a permissive condition (necessary) for other types of
synaptic remodeling and growth that are induced by different signal-
ing molecules, such as ApCdc42-mediated filopodia formation.

In conclusion, our study suggests membrane PI(4,5)P2 syn-
thesis by ApSec7/PIP5K is a critical component of the initial mo-
lecular steps that lead to long-term synaptic plasticity in Aplysia.
5-HT stimuli recruit ApSec7 and its downstream lipid signaling
pathway to initiate the internalization of TM–apCAM and the
induction of both synaptic growth and LTF.
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