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Alexandra Soliman,' Chinelo Udemgba,? Ian Fan,' Xin Xu,' Laura Miler,' Pablo Rusjan,' Sylvain Houle,'

Alan A. Wilson,' Jens Pruessner,>* Xiao-Ming Ou,? and Jeffrey H. Meyer!

ICAMH Research Imaging Centre and Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health and Department of
Psychiatry, University of Toronto, Toronto, Ontario M5T 1R8, Canada, 2Department of Psychiatry and Human Behavior, University of Mississippi Medical
Center, Jackson, Mississippi 39216, *Department of Psychiatry, McGill University, Montreal, Quebec H3A 1A1, Canada, and “Douglas Hospital Research
Centre and McConnell Brain Imaging Centre, Montreal Neurological Institute, Montreal, Quebec H3A 2B4, Canada

Monoamine oxidase-A (MAO-A), a key brain enzyme which metabolizes monoamines, is implicated in the pathophysiology of stress-
related illnesses, including major depressive disorder, addiction, and violent behavior. Chronic stressors and glucocorticoid-
administration typically associate with elevated MAO-A levels/activity. However, the relationship of shorter stress or glucocorticoid
exposures and MAO-A levels/activity is not well established. Our objectives are to assess effects of acute stress upon MAO-A V. an index
of MAO-A density, in human brain and acute glucocorticoid exposure upon MAO-A levels in human neuronal and glial cell lines. Twelve
healthy, non-smoking participants aged 18 -50 underwent [''C]harmine positron emission tomography to measure brain MAO-A V;- on
two different days: One under acute psychosocial stress (via Trier Social Stress and Montreal Imaging Stress Tasks) and one under a
non-stress condition. MAO-A density (by Western blot) and activity (by [ **C]-5-HT metabolism and liquid scintillation spectroscopy)
were measured in human neuronal and glial cell lines after 4 h exposure to dexamethasone. We observed a significant reduction in
whole-brain MAO-A binding as reflected by reductions in 10 of 11 brain regions. Acute dexamethasone exposure in neuronal and glial
cells significantly decreased MAO-A activity and protein levels. We observed a highly consistent relationship between acute stressors and
glucocorticoid administration and decreased MAO-A binding, activity and protein levels. Since MAO-A metabolizes monoamines, this

phenomenon may explain why acute stressors benefit healthy animals even though chronic stress is associated with illness.

Introduction

Monoamine oxidase A (MAO-A) is an enzyme with several key
roles including metabolizing monoamines, promoting oxida-
tion, and contributing to apoptosis (Manoli et al., 2005; Ou et al.,
2006a). Abnormally high or low MAO-A occur in the pathophys-
iology of high-impact conditions such as major depressive disor-
der, addiction, and violent behavior (Fowler et al., 1996; Meyer et
al., 2006, 2009; Alia-Klein et al., 2008; Johnson et al., 2011; Soli-
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man et al., 2011); which are also often exacerbated by acute stress
(Kessler, 1997; Kim-Cohen et al., 2006; Dagher et al., 2009).
However, most investigations have focused on the relationship of
chronic stress and MAO-A level or activity.

Stress and glucocorticoid exposures lasting 24 h or longer have
been associated with greater MAO-A synthesis, levels, and activ-
ity. Five day administration of dexamethasone or hydrocortisone
caused 6- to 14-fold increases in MAO-A activity in human skin
fibroblasts (Edelstein and Breakefield, 1986). Seven day dexa-
methasone administration to human myocytes revealed MAO-
A-mRNA upregulation and a sevenfold elevation of MAO-A
protein levels (Manoli et al., 2005). Twenty four-hour, but not
12 h dexamethasone, treatment of human brain cells (neuronal
and glial cell lines) was associated with greater MAO-A gene ex-
pression (Ou et al., 2006b). Dexamethasone administration over
26 d caused 300% increase in frontal/parietal cortex MAO-A ac-
tivity in adult male Sprague Dawley rats (Slotkin et al., 1998), and
chronic social stress from the social-defeat paradigm led to 2-3
times increased MAO-A-mRNA levels in the raphe nucleus of
CBA/Lac mice (Filipenko et al., 2002). Hence, across cell lines and
brain tissue, 24 h or longer exposures to stress or glucocorticoids
are associated with greater MAO-A-mRNA, protein, or activity.

In contrast, MAO-A levels or activity in relation to shortened
exposures to stress and glucocorticoids is not well established.
One research group reported decreased MAO-A whole-brain ac-
tivity in rodents after one course of inescapable footshock (Lem-
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Experimental design, PET study, acute stress and non-stressful control scan days. Acute stress involves difficult public speaking (TSST), followed by mental arithmetic tasks (MIST) under

strict time pressure. Confederate audience gives scripted negative feedback. Non-stressful control involves questionnaires and a simple mental arithmetic control task with no time pressure. No
confederate feedback given. Order of conditions was counterbalanced among subjects (acute stress vs non-stressful control).

oine et al., 1990; Armando et al.,, 1993). The data tentatively
suggest a reduction in activity (which is correlated strongly with
MAO-A enzyme levels in brain). However, to the best of our
knowledge, no studies in humans have been performed investi-
gating the effects of acute stress and glucocorticoid exposure on
MAO-A levels.

To investigate the effects of acute stress upon MAO-A levels,
we measured MAO-A density and activity after acute stress expo-
sure. Our first objective was to assess the effects of acute stress
upon MAO-A V. in human brain using [''C]harmine positron
emission tomography. MAO-A V. is an in vivo index of MAO-A
density and affinity, elevated during major depressive episodes (a
chronically high-stress state; Meyer et al., 2006, 2009; Johnson et
al., 2011). Next, we sought to determine whether the stressor’s
effects are mediated by increases in glucocorticoids. Our second
objective was to assess the effect of acute (4 h) glucocorticoid
exposure upon MAO-A density and activity in human neuronal
and glial cell lines. We hypothesized that acute psychosocial stress
would be associated with reduced brain MAO-A binding in vivo;
and acute glucocorticoid administration with lower MAO-A lev-
els and activity in cell lines.

Materials and Methods

There were two main sets of experiments. Experiment one studied the
acute effects of stress upon MAO-A V. in living humans using
[''CJharmine positron emission tomography (PET); experiment two
studied the effects of acute glucocorticoid administration on MAO-A
protein density and activity in human neuroblastoma and glioblastoma
brain-derived cell lines, respectively.

Experiment One—PET imaging in vivo and psychosocial stressors

Subjects. Twelve healthy, non-smoking volunteers aged 19—46, with no
history of neurotoxin, psychotropic, or antipsychotic use (mean age
31.1 * 8.0; 6 males, 6 females) participated in the imaging study. Peri-
and postmenopausal women were excluded: women >42 years and those
reporting symptoms of perimenopause at a younger age were also ex-
cluded. The Structured Clinical Interview for DSM-IV (First et al., 1995)

screened subjects for the exclusionary criteria which included current or
past Axis I disorders, neurological conditions, current use of prescription
medication including oral contraceptives, pregnancy, claustrophobia,
metal in the body, use of over-the-counter medications within the last
month, and herbal remedies within 3 months before scanning. Family
history was determined by a structured set of questions that focused
upon first degree relatives. On each [''Clharmine PET scan day, partic-
ipants underwent common blood tests to rule out medical causes of
disturbed mood (thyroid function, electrolyte levels, and complete blood
cell count), and a urine drug screen which included over-the counter,
psychotropic, and illicit drugs. After subjects were given complete de-
scription of procedures, written informed consent was obtained. The
recruitment and experiments were approved by Research Ethics Board
for Human Subjects at the Centre for Addiction and Mental Health,
University of Toronto.

Overview of scan day protocol. Each subject underwent two [''C]
harmine PET scans, one immediately following completion of the stress
protocol and one immediately following the control task, on different
days separated by 4—8 weeks. Women were scanned in all phases of the
menstrual cycle, and their phase was recorded by self report. In a previ-
ously collected sample, we observed no relationship between phase of
menstrual cycle and MAO-A V.. (Meyer et al., 2009). Every PET scan
began at the same time of day (between 2:30 and 3:30 P.M.), and Stress/
Control tasks and questionnaires commenced ~3.5 h before. Scan order
was counterbalanced across subjects. For the stress scanning session,
subjects performed both the Trier Social Stress Test (TSST) and the
Montreal Imaging Stress Task (MIST; see below), and completed associ-
ated questionnaires, continuously from ~3.5 h before, until ~60 min
before the [''C]harmine scan (Fig. 1). The control session was identical
in questionnaires and time spent before the scan, except that there was a
motor control computer task in place of the MIST, comprising simple
arithmetic questions with no time limit or peer evaluation. The after-
noon hours are chosen because the circadian changes in cortisol are less
pronounced in the afternoon, thereby enhancing our ability to detect an
effect of our experimental manipulation upon cortisol levels.

Stress protocol. Psychological stress was induced by sequentially apply-
ing two procedures which have been found to be reliable, repeatable, and
ethically sound: the TSST (Kirschbaum et al., 1993) and the MIST (De-
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dovic et al., 2005). The TSST consists of a period of stress-expectancy
followed by subjects’ performing a public speech, and subsequent verbal
mental arithmetic; it consistently elicits a stress response in healthy hu-
mans (Kirschbaum et al., 1995). The MIST involves mental arithmetic
challenges that must be answered under time pressure (see Dedovic et al.,
2005, for full description). Both tasks are standardized psychosocial
stress tasks, which use elements of uncontrollability and additional social
evaluative threat via disapproving verbal feedback given after each
testing-block, and both tasks have been shown to induce behavioral and
physiological stress and anxiety responses (Pruessner et al., 1999; De-
dovic et al,, 2005). During the non-stress control PET session, subjects
performed a control arithmetic/motor task at the same time of day, but
without time constraints, visible accuracy feedback or negative verbal
feedback from a confederate experimenter, and completed identical
questionnaires throughout the day.

Subjects completed the Spielberger State-Trait Anxiety Inventory
(STAI) (Spielberger, 1977). The STAI measures state- and trait-
dependent anxiety; perception of stress was assessed four times during
each PET scan day (arrival, after each stress task, and after the PET scan,
before debriefing) by asking subjects to complete the STAI (Spielberger,
1977) as well as two visual analog scales (Pruessner et al., 2004) to assess
feelings of negativity and uncontrollability, as well as affect, four times
during each scan day. Saliva samples were collected every 12 min
throughout the experiment. Saliva-derived cortisol was analyzed using a
time-resolved fluorescence immunoassay (Dressendorfer et al., 1992),
and quantification of cortisol data was done using area under the curve
(total area under the curve, AUCg, representing total cortisol, and area
under the curve with respect to cortisol increase, AUCI; cortisol in nano-
moles per liter by time in minutes) calculations for each subject and each
scanning session (Pruessner et al., 2003). The latter value equals AUCg
minus the area under a straight line created by extending a straight line
from the initial cortisol rise through to the completion of the cortisol rise.
AUCI may be viewed as the differential effect of the stress protocol.

PET image acquisition and analysis. PET scans were obtained with a
high resolution research tomograph (HRRT) PET camera (in-plane res-
olution; full width at half maximum, 3.1 mm; 207 axial sections of 1.2
mm, Siemens Molecular Imaging). A dose of ~370 MBq of intravenous
["'C]harmine was administered as a bolus for the PET scan and emission
data were then acquired over a 90 min period. [''C]Harmine was of high
radiochemical purity (mean = SD; 98.9 £ 0.8%; n = 24) and high
specific activity (mean = SD, TBq * mmol ~', 85.8 = 33) at time of in-
jection. Measurement of radioactivity in whole blood and plasma was
done as described previously (Meyer et al., 2009), and procedures used
for frame acquisition and reconstruction have also been described pre-
viously (Meyer et al., 2006, 2009).

To complete region of interest (ROI) analysis, we acquired a T1-
weighted magnetic resonance imaging (MRI) scan on each subject for
anatomical localization (GE Signa 1.5-T scanner; fast spoiled gradient
echo, T,-weighted image; x, y, z voxel dimensions, 0.78, 0.78, and 1.5
mm, GE Healthcare). PET emission frames were summed and the indi-
vidual’s MRI was coregistered to each summed PET image using a mu-
tual information algorithm (Studholme et al., 1999). ROIs were
determined using a semiautomated method whereby regions on a tem-
plate MRI are transformed onto the individual MRI via a series of trans-
formations and deformations that match the template image to the
coregistered MRI (Ashburner and Friston, 1997, 1999), followed by se-
lection of gray matter voxels within the ROI (Ashburner and Friston,
1997; Rusjan et al., 2006). Each ROI was overlaid upon both the coregis-
tered MRI and summated [''C]harmine PET image for visual anatomical
confirmation.

The ROIs were selected for their functional or neurochemical rele-
vance in humans to stress-responses, emotional regulation, and/or im-
pulsivity (Drevets, 2000; Pruessner et al., 2004; Frokjaer et al., 2008;
Soliman et al., 2008; Love et al., 2009). The ROIs sampled were the whole
prefrontal cortex (and subregional ROI of orbitofrontal and dorsolateral
prefrontal cortex), anterior cingulate cortex (including Brodmann areas
24, part of 32), putamen, caudate, thalamus, anterior temporal cortex
(Brodmann areas 38, part of 20, 21, 22), occipital cortex, midbrain, and
hippocampus. Total volume of distribution (V) is an index of harmine
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binding and represents the concentration of the total radiotracer in tissue
relative to plasma concentration at equilibrium (Ginovart et al., 2006).
MAO-A V. was calculated using the Logan method with a plasma arterial
input (Logan et al., 1990). When using [''C]harmine PET, the Logan
method for MAO-A V.is comparably robust in magnitude alongside the
kinetically determined two-tissue compartment model, and computa-
tionally efficient (Ginovart et al., 2006).

Statistical analyses of neuroimaging data. The primary analyses used
repeated-measures multivariate ANOVA (MANOVA) to determine
whether there is a whole-brain effect of condition (stress/control) on
MAO-A V., the dependent measure. We hypothesized that the effect
would be widespread as the evidence to support a region-specific effect
on MAO-A in particular is limited. The regional ANOVAs were explored
only if there was a significant omnibus effect in the MANOVA. We also
conducted paired ¢ tests on the total cortisol output in the stress condi-
tion compared with the control (using AUC calculations as described
above) to examine whether the stress condition elicited more salivary
cortisol secretion over the test time-period than the control condition. It
was planned not to include age or gender in the primary analyses as it was
expected that these would have no effect upon MAO-A binding based on
the absence of a relationship between either of these factors and MAO-A
level or MAO-A V.. (Saura et al., 1997; Meyer et al., 2006, 2009).

Experiment Two—Cell lines and acute glucocorticoid treatment

Cell lines, cell culture, and treatment. Human neuroblastoma cell line,
SH-SY5Y, was purchased from the American Type Culture Collection.
1242-MG, human glioblastoma cell line, was acquired from Dr. B.
Westermark (Department of Pathology, University Hospital, Uppsala,
Sweden; Tazik et al., 2009). Both cell lines were cultured in DMEM
(Invitrogen) supplemented with glutamine and 10% fetal bovine serum.

SH-SY5Y and 1242-MG cells were seeded into 10 cm dishes for each
cell line and cultured in supplemented DMEM at 37°C in 5% CO, and
95% humidity until cells were 80% confluent. The cells in each dish were
then treated with or without dexamethasone (100 nm) for 4 h represent-
ing acute stress.

MAO-A catalytic activity assay. Dexamethasone-treated SH-SY5Y and
1242-MG cells were washed and harvested using PBS and centrifuged for
10 min at 4°C (8000 X g); the cell pellets were resuspended in 140 ul of
assay buffer (50 mm sodium phosphate buffer, pH 7.4), homogenized,
and sonicated. One hundred microliters of the total protein were incu-
bated with 100 um [ '*C]-5-HT in the assay buffer for 20 min at 37°C. The
reaction was terminated by adding 100 ul of 6N HCIL Benzene/ethyl
acetate (1:1) was incorporated and the reaction product was extracted
after centrifugation at room temperature for 7 min. Radioactivity was
measured by liquid scintillation spectroscopy. The values were normal-
ized using total protein concentration (Ou et al., 2006b; Johnson et al.,
2011).

Western blot analysis. Following dexamethasone treatment, SH-SY5Y
and 1242-MG cells were washed in PBS and harvested in radioimmuno-
precipitation assay buffer (RIPA buffer, Sigma) plus protease inhibitor
(1:1). After centrifugation for 10 min at 4°C (8000 X g), the supernatant
was collected and sonicated. Sixty micrograms of total protein was sepa-
rated by 10% SDS-PAGE and transferred to polyvinylidene fluoride
membrane. The membrane was then blocked with 5% nonfat dry milk in
Tris-buffered saline (10 nm Tris-HCI, pH 7.5, 150 mm NaCl) at room
temperature for 45 min. Afterward, the membrane was incubated with
mouse anti-MAO-A antibody (1:125; Santa Cruz Biotechnology) over-
night at 4°C and, subsequently, incubated with the secondary antibody
(1:1000; Santa Cruz Biotechnology) for 2 h. The bands were visualized
using ChemiDoc XRS+ Imaging System (Bio-Rad; Lu et al., 2008; John-
son et al., 2011).

B-Actin levels, used as a loading control, were determined by stripping
the same immunoblotted membrane and incubating the membrane
overnight at 4°C in mouse anti-f-actin antibody (1:10,000; Millipore)
followed by incubation in secondary antibody (1:2000; Santa Cruz Bio-
technology) for 2 h. The band intensities for MAO-A and B-actin were
obtained by Quantity One analysis software. 3-Actin levels were used to
normalize the final band intensities for MAO-A protein levels.
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effect to be significant in all regions except for the midbrain.

Table 1. Stress-induced differences in brain MAO-A binding

Mean % difference

Measure F Significance [ stress minus control ] SD

Prefrontal cortex 9.5 0.010 —94 1.7
Orbitofrontal cortex 13.0 0.004 —11.1 11.0
dIPFC 15.8 0.002 —154 14.5
ACC 5.2 0.043 =76 12.0
Temporal cortex 12.6 0.005 —10.0 9.8
Occipital cortex 103 0.008 —94 9.7
Putamen 7.2 0.021 =79 1.4
(audate 10.0 0.009 —10.7 1.7
Hippocampus 8.2 0.015 —109 14.0
Thalamus 85 0.014 —10.5 133
Midbrain 2.1 0.176 —54 15.9

Repeated-measures MANOVA examining whole brain (11 regions) showed MAO-A binding was reduced in whole
brain during the stressful condition, compared with the control condition (Multivariate , 1, = 2505, p = 0.016);
individual regions uncorrected for multiple comparisons (MANOVA was significant). ACC, Anterior cingulate cortex;
dIPFC, dorsolateral prefrontal cortex.

Statistical analysis for cell line measurements of MAO-A activity and
density. The statistical significance was evaluated using Student’s ¢ test for
differences between two groups in each cell line. A value of p < 0.05 was
considered to be significant.

Results

Effects of acute stress on MAO-A V.

We hypothesized stress would affect multiple brain regions, and
these were included in a repeated-measures MANOVA. The
repeated-measures MANOVA resulted in a significant omnibus
effect: a decrease in whole-brain MAO-A V- in the stress condi-
tion compared with the control condition, indicative of a de-
crease in available MAO-A for binding by [''Clharmine (F, ;)
= 2505, p = 0.016, Figure 2). We observed a 7.9-15.7% binding
reduction in the significant regions in the stress condition com-
pared with the control scan (Table 1). In Figure 2, there was one
subject who had a change in MAO-A in the opposite direction
and this subject differed from the others in that this subject had

MAO-A Binding in Brain During Stress and Control Conditions
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MANOVA showed a main effect of condition on whole-brain MAO-A binding (F; ;) = 2505, p = 0.016). Pairwise univariate ANOVAs within the MANOVA showed the stress-induced

experienced a recent bereavement (within the previous 12
months). Subsequent pairwise univariate ANOVAs of prefrontal
cortical regions MANOVA showed the stress-induced effect to be
significant in all 3 prefrontal cortex regions: prefrontal (F, ;) =
9.5, p = 0.010), orbitofrontal (F, ,;, = 13.0, p = 0.004 dorsolat-
eral prefrontal (F, ,,) = 15.8, p = 0.002; and every other region
but the midbrain.

Psychological and neuroendocrine effects of acute stress
Greater increases in cortisol on stress day

The stress session resulted in significantly greater increases in
salivary cortisol (nmol/L) compared with control session. All cal-
culations used area under the curve increase during stress (AUCi
units, nmol/L X min; mean AUCi difference 328 *+ 274; t,,, =
3.97; p = 0.003, Fig. 3, top and middle).

Self-report stress increased after stress tasks

Subjects reported significantly increased state-anxiety, as mea-
sured by STAI, after the stress tasks (38.0 * 11.3) compared with
state-anxiety reported upon arrival (28.2 = 5.6), on the stress day
(mean difference 9.75, £10.6, t;,, = 3.20, p = 0.008). At the time
of arrival anxiety was similar on the stress day and control day
(t11) = 0.29, p = 0.777, n.s.). However, state-anxiety scores were
greater at subsequent time-points on the stress day compared
with the control day state-anxiety scores (after stress tasks t,,,, =
3.60, p = 0.004; after scan (o, = 2.33, p = 0.04 (one subject did
not complete the post-scan stress measure; Fig. 3, bottom).

Self-report stress did not change after control tasks

To rule out coincidental elevated anxiety on the stress day,
paired-sample ¢ tests were used to measure state-anxiety increases
between arrival and post-stress tasks. Finally, there was no change
in state-anxiety scores between arrival and after control tasks on
the same day (mean difference = 2.00 * 6.4, t,,, = 1.08, p =
0.305, n.s.).
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Figure 3.  Greater cortisol output and subjective reports of stress during acute psychosocial

stressors (TSST, MIST) and control motor task in healthy control subjects. The total cortisol
output was greater on the stress vs control test day, and shows the expected stress-induced
peak in cortisol. The control day shows the expected diurnal decline in cortisol. On both days,
saliva samples were collected every 1015 min throughout the experimental and control pro-
cedures. Saliva-derived cortisol was analyzed using a time-resolved fluorescence immunoassay
(Dressenddrfer et al., 1992) and quantification of cortisol data was done using under the curve
(AUG; pg/di/min) calculations for each subject and each scanning session (Pruessner et al.,
2003). The within-subject error bars are 95% confidence intervals based upon the SEM. Top,
Stress day. All subjects performed a series of two psychosocial stress tasks (TSST, MIST) during
the 4 h before PET scanning, and 12 salivary cortisol samples were collected. Sample 0 repre-
sents the mean of the sample immediately before the first stress-related cortisol increase is
observed, which corresponds to the sample taken immediately before performing the TSST.
Middle, Control day. Subjects completed a control (motor-visual) task. Sample 0 represents the
mean of the control-day sample which corresponds to the time of sample 0 from the stress day
(i.e., the sample taken immediately before the stress-related increase in cortisol). Bottom,
Self-report stress measures. The STAI was used to measure self-reported momentary anxiety
throughout each scanning day, with possible scores ranging from 20 to 80. Subjects completed
the STAI three times each scanning day: upon arrival, immediately after all stress-inducing
protocols, and immediately after exiting the PET scanner. For each time point except upon
arrival, Trait Anxiety was significantly higher on the stress day compared with the control day, as
measured by paired samples t test. Difference in State Anxiety: **p = 0.01, *p = 0.05
significance.
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No differences in baseline stress reports between scan days

There was no effect of day (control vs stress days) on baseline
state-anxiety scores (mean difference 0.58, = 7.0, t,,, = 0.29,p =
0.777, n.s.).

Effects of acute dexamethasone exposure upon MAO-A
enzyme activity in human neuronal and glial cells

To examine the effects of acute stress on MAO-A in vitro, the
enzymatic activity of MAO-A was investigated in human brain
cell lines, SH-SY5Y (neuroblastoma) and 1242-MG (glial). Be-
fore the determination of MAO-A catalytic activity, cells were
treated with 100 nM dexamethasone for 4 h as this concentration
of dexamethasone (100 nM) has been reported to increase
MAO-A activity in a chronic treatment model (>12 h). Our ex-
periments with the acute treatment of cells by dexamethasone for
4 h showed that MAO-A enzymatic activity was significantly de-
creased in both cell lines, which is consistent with previous results
obtained from living subjects following acute stress. Acute dexa-
methasone exposure resulted in MAO-A enzyme activity being
significantly decreased compared with untreated (control) cells
by 33% (t,0) = 3.725, p = 0.0039) in neuroblastoma cells and
significantly decreased in glial cells by nearly 29% (t,,, = 3.342,
p = 0.0075).

Effects of acute dexamethasone exposure upon MAO-A
protein levels in human neuronal and glial cells

Because MAO-A enzyme activity was significantly decreased in
both cell lines, we hypothesized that MAO-A protein expression
would also decrease upon acute dexamethasone exposure. To
further investigate changes in MAO-A expression induced by
short-term stress, the protein expression of MAO-A was analyzed
in human SH-SY5Y and 1242-MG cells after undergoing acute
stress which is depicted by treating these human cell lines with
100 nm dexamethasone for 4 h. Upon harvest, total protein ly-
sates of cells were examined by Western blotting. Each MAO-A
protein band was evaluated from six independent preparations
by measuring its relative intensity and normalizing that value to
the density of B-actin for both SH-SY5Y cells and 1242-MG cells.
Student’s t test was used to analyze differences between the two
groups in each cell line. As we expected, protein levels of MAO-A
were decreased compared with untreated (control) cells by 38%
(t(10y = 3.195, p = 0.0096) in neuronal cells and significantly
decreased in glial cells by 35% (%, = 2.860, p = 0.0170) respec-
tively. No change was observed in the housekeeper protein,
B-actin, which was used in the normalization of band intensities.

Discussion
This is the first study exploring the effects of acute stress on brain
MAO-A binding in vivo, in animals of any species. It is also the
first to investigate the effects of acute stress upon MAO-A bind-
ing in the human brain, and to investigate the effects of acute
glucocorticoid exposure upon MAO-A activity and protein levels
in human neuroblastoma and glioblastoma cell lines. These con-
vergent findings have ramifications for understanding the role of
MAO-A in adaptivity of acute stress in contrast to chronic stress.
These findings also suggest specific neural and cellular mecha-
nisms accompanying acute stressors. In addition, the concordant
results of the present study support combining radioligand neu-
roimaging and cell line techniques as multimodal measures for
highly dynamic states (Table 2).

We show that decreased MAO-A binding in human brain and
decreased MAO-A activity/levels in cell lines follow an acute psy-
chosocial stressor and acute dexamethasone administration, re-
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Table 2. Consistency of main results across methods: stress- or dexamethasone-induced changes in MAO-A binding, levels, and activity

Region or Mean % change Direction
Acute stressor Investigation cell type pvalue [stress minus control] of change
Acute psychosocial stress (TSST and MIST) MAO-A V; from ["'CJharmine PET in humans PFC 0.01 9% Decrease
OFC 0.004 1% Decrease

dIPFC 0.002 15% Decrease

ACC 0.043 8% Decrease

Temporal cortex 0.005 10% Decrease

Occipital cortex 0.008 9% Decrease

Putamen 0.021 8% Decrease

Caudate 0.009 1% Decrease

Hippocampus 0.015 11% Decrease

Thalamus 0.014 1% Decrease

Midbrain 0.176 5% Decrease

Acute dexamethasone administration MAO-A enzyme activity (nmol/20 min/mg) from Neuronal cells 0.004 33% Decrease

(100 nm) radiometric catalytic activity assay

Glial cells 0.008 29% Decrease

MAO-A density (MAO A/actin ratio) from Western blot Neuronal cells 0.01 38% Decrease

Glial cells 0.017 35% Decrease

Comparison of acute stress-induced and acute dexamethasone-induced changes in living brain, neuronal cell, and glial cell lines. Acute stressor-exposures were 4 h in both investigations: Trier Social Stress Task and the Montréal Imaging
Stress Task (Acute psychosocial stress) and 100 nw dexamethasone (Pharmacological stress). In vivo brain MAO-A changes were assessed with [ ''C]harmine PET imaging after acute psychosocial stressors. MAO-A enzyme activity was
assessed by ["C]-5-HT metabolism and liquid scintillation spectroscopy, and MAO-A protein level with Western blot analysis, both in neuronal and glial cell lines, after dexamethasone administration. PFC, Prefrontal cortex; OFC,

orbitofrontal cortex; dIPFC, dorsolateral prefrontal cortex; ACC, anterior cingulate cortex.

spectively. Subjects showed the expected stress-induced cortisol
and subjective stress-report increases in line with past data
(Pruessner et al., 2004). Acute stressors led to in vivo decreases of
7-16% in whole brain MAO-A binding, [''C]harmine binding is
generally viewed as an index of MAO-A density, since V7. is highly
correlated with known MAO-A density and distribution (Saura
et al., 1992; Saura et al., 1996), and data suggest that MAO-A
affinity is stable across different brain regions (Bottlaender et al.,
2010). Since acute glucocorticoid administration led to an abrupt
drop in MAO-A activity and protein levels of 30-33% and 35—
39%, respectively, we feel the mostly likely interpretation of the
collective data is that acute stress reduces MAO-A density in
brain with functionally relevant consequences of reduced
MAO-A activity.

These results are significant in understanding acute stress-
induced rapid adaptation in healthy living humans, particularly
since decreased MAO-A binding in healthy humans is associated
with a normal stress response. This effect of acute stress on
MAO-A binding was rapid, opposite in direction, and we pro-
pose, possibly beneficial. Stress-induced increased brain 5-HT in
particular is viewed as adaptive, since it is key to initiating normal
HPA-axis activation, and is associated with rapid alertness and
adaptive behavioral stress-responses in rodents (e.g., Dinan,
1996; Clow et al., 1997; Beekman et al., 2005; Linthorst and Reul,
2008). MAO-A has a pivotal role in metabolizing serotonin: Ex-
tracellular 5-HT may also be influenced by availability of precur-
sor tryptophan, inhibition of its synthetic enzyme tryptophan
hydroxylase, inhibition of serotonin reuptake, but the manipula-
tion that most robustly raises extracellular serotonin is adminis-
tration of antidepressants that inhibit MAO-A (e.g., Bel and
Artigas, 1995; Adell et al., 1996). Since MAO-A metabolizes
monoamines, stress-induced decreases in MAO-A binding/activ-
ity may be helpful in augmenting the monoamine elevations re-
lated to normal behavioral stress-responses and HPA-axis
activation (see discussion in Clow et al., 1997). This potentially
beneficial effect of acute stress is in line with the stress literature
that suggests that the acute physiological, endocrine and behav-
ioral stress response is adaptive, and necessary to allow the indi-
vidual to mount available energy resources to better cope with an

immediate threat, and restore the body’s homeostasis. Only when
stress becomes a chronic condition it is believed that its effects are
detrimental for the individual (Juster et al., 2010).

Our data suggest specific cellular mechanisms regarding acute
stressors. One is that acute glucocorticoid treatment may influ-
ence MAO-A function via transcriptional means, i.e., through
transcriptional repression, since a temporal lag of 2—4 h after
treatment of cells with dexamethasone (data not shown) is re-
quired for these acute effects on MAO-A activity to evolve. We
previously reported that R1, a repressor protein for MAO-A
(Chen et al., 2005), was increased in the cell nucleus when cells
were treated with dexamethasone (100 nm) for <12 h in human
neuroblastoma SK-N-BE(2)-C and glioblastoma 1242-MG cell
lines (Ou et al., 2006b). Therefore, it is possible the transcrip-
tional repressor R1 is involved in the transcriptional repression of
MAO-A gene expression during the acute glucocorticoids treat-
ment. Another possible mechanism is that acute stress/dexa-
methasone directly impairs the translational apparatus (protein
synthesis). This has been determined in the skeletal muscle of rat
after intraperitoneal injection of dexamethasone for 4 h, which
diminished protein synthetic rates 80% compared with untreated
control values in skeletal muscle from rat hindlimb (Shah et al.,
2000). Similar results have been found in a rat skeletal muscle cell
line (L6 cells) in vitro when treating cells with dexamethasone (1
uM) for 4 h (Wang et al., 2006).

This study demonstrates the advantages of combining cell
lines and in vivo imaging. The benefit of PET is an in vivo
assessment of brain stress-responses with regional specificity,
and the model is ecologically valid as it uses a psychological
stress-challenge. An advantage of cell line data is the control
over environmental variables surrounding the cell, and the
ability to directly measure protein level and activity. Although
the results are in the opposite direction to the effects of
chronic stress and longer glucocorticoid exposures, we con-
sider these results well supported due to the agreement of
these results across the neuroimaging and cell line investiga-
tions, and the use of procedures consistent with our former
testing of chronic stressor-situations or longer-term glucocor-
ticoid exposure (Meyer et al., 2006, 2009; Ou et al., 2006b).
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Thus, changes in MAO-A found here are unlikely attributable
to spurious results from methodological problems, differences
in perceived stress, or environmental confounds.

Alimitation of PET neuroimaging is that the HRRT PET cam-
era has a spatial resolution of 3.1 mm, thus the changes observed
in MAO-A V. are not specific to cell type. The proportion of
MAO-A V. that is specific binding is extremely high, being 85%
of the total distribution volume, hence the change in MAO-A V.
was interpreted as a change in MAO-A-specific binding. The
overall MAO-A V.. change in the imaging study was 10%, thus, it
is possible a within-subject change in free-and-nonspecific distri-
bution volume (Vi \s) of 67% could create a 10% V. change,
although this is unlikely since 67% is a very large effect. Previous
investigations find that MAO-A V., s tends to be stable for this
radiotracer, and the concordance with the molecular study this
makes it very unlikely that our findings are explained by changes
in Vg, . Limitations in cell line assays include the inability to
yield in vivo data specific to particular brain regions; and it was
not within the scope of this study to determine whether the acute
glucocorticoid-induced decreases in MAO-A protein levels result
via transcriptional mechanisms, translational mechanisms, or
both.

To our knowledge, this is the first study to image stress-induced
brain MAO-A binding-changes in humans, and the first to measure
acute glucocorticoid administration in human brain-derived cell
lines. We observed a highly consistent relationship between acute
stressors/glucocorticoids and decreased MAO-A binding, activity
and protein levels, which we interpret as a rapid decrease in MAO-A
density/activity accompanying acute stress or glucocorticoid admin-
istration in brain and brain-derived cells. A stress-induced decrease
in MAO-A density and activity may be viewed as an adaptive process
that raises brain monoamine levels and promotes coping behavior.
This phenomenon may explain why acute stressors benefit healthy
animals even though chronic stress/glucocorticoids are associated
with illness. Our data also suggest that acute stressors, through rais-
ing glucocorticoids, are likely to affect MAO-A level by influencing
transcriptional repression or by directly regulating protein synthesis.
Finally, our study’s combination of different methodologies helps
decipher the cellular and neural stress mechanisms underlying be-
havioral stress-responses.
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