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Humans are able to flexibly devise and implement rules to reach their desired goals. For simple situations, we can use single rules, such
as “if traffic light is green then cross the street.” In most cases, however, more complex rule sets are required, involving the integration of
multiple layers of control. Although it has been shown that prefrontal cortex is important for rule representation, it has remained unclear
how the brain encodes more complex rule sets. Here, we investigate how the brain represents the order in which different parts of a rule
set are evaluated. Participants had to follow compound rule sets that involved the concurrent application of two single rules in a specific
order, where one of the rules always had to be evaluated first. The rules and their assigned order were independently manipulated. By
applying multivariate decoding to fMRI data, we found that the identity of the current rule was encoded in a frontostriatal network
involving right ventrolateral prefrontal cortex, right superior frontal gyrus, and dorsal striatum. In contrast, rule order could be decoded
in the dorsal striatum and in the right premotor cortex. The nonhomogeneous distribution of information across brain areas was confirmed by
follow-up analyses focused on relevant regions of interest. We argue that the brain encodes complex rule sets by “decomposing” them in their

constituent features, which are represented in different brain areas, according to the aspect of information to be maintained.

Introduction

Humans use rules to organize their thoughts and actions to reach
their desired goals (Bunge and Wallis, 2007). The complexity of
the required rule sets varies widely. For simple situations, a single
rule that links a triggering condition (“if the phone is ringing”) to
a consequence (“then answer the phone”) might be sufficient. In
other cases, more complex rule sets are required. Consider, for
example, the large number of nested rules involved in the profes-
sional use of a digital camera.

Prefrontal cortex is involved in rule representation. In mon-
keys, a network that includes the prefrontal cortex and striatum
encodes information on active rules (Hoshi et al., 1998; White
and Wise, 1999; Asaad et al., 2000; Wallis et al., 2001; Genovesio
et al., 2005; Muhammad et al., 2006). In humans, the lateral
prefrontal cortex has been associated with rule representation
and implementation (Bunge et al., 2003; Sakai and Passingham,
2003, 2006; Bengtsson et al., 2009; Bode and Haynes, 2009; Wool-
gar et al., 2011; Reverberi et al., 2012a,b).

Most studies on neural representation of rules have explored
relatively simple rule sets. This has left aside the critical issue of
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how prefrontal cortex encodes more complex rule sets. From a
theoretical viewpoint, there are several possibilities of how such
complex rules might be encoded in the brain. For example, all
rule sets might be represented in the same “rule-specific” pre-
frontal area, regardless of their complexity. Alternatively, more
complex rule sets, which, for example, require the application of
multiple rules at different hierarchical levels, may progressively
be represented in more anterior prefrontal areas (Koechlin et al.,
2003; Bunge and Zelazo, 2006; Badre and D’Esposito, 2007;
Christoff and Keramatian, 2007).

Recent work by our group hints at a different possibility. We
showed (Reverberi et al., 2012b) that ventrolateral prefrontal cor-
tex (VLPFC) uses a compositional code to represent complex
rules that consist of multiple parts: the neural representation of a
rule set composed of two independent rules A and B is coded as
the superposition of the neural representation for A and B alone.
In other words, the compound rule set AB is not represented as a
unique token “AB” but it is “decomposed” into the neural repre-
sentations of its constituent features A and B. In this case, the
individual rules were encoded as patterns of brain activity in the
same area (VLPFC). But this raises the question of how the neural
representation of an additional hierarchical order or sequence
between the two rules would be encoded. The order could
either be coded in VLPFC as well, or there might be a separate
region that encodes the rule order independent from the rules
themselves.

The present study investigates where and how two features
defining a rule set—the identity of multiple rules and their exe-
cution order—are represented in the brain. For this, multivariate
decoding was applied to fMRI data collected while participants
represented rule sets.
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Schema of the experimental paradigm. 4, Experimental rules used in the paradigm: four different single rules (S1-54) were combined in two experimental compound rules (C1, (2) and

four catch compound rules ((3—C6; Table 1). Furthermore, two alternative orders were implemented for each compound rule, thereby generating four different experimental rule sets (C1ex, C13,
Q2a, (23) and eight catch rule sets (Table 1). B, Each of the four single rules used in the experiment were associated with two visual cues. The resulting redundancy of the cue code made it possible
to disentangle visual features of the cues from their meaning (i.e., the rule). , Timeline of the experiment. At the beginning of each trial, two cues were presented. The cues informed the participants
which compound rule had to be applied in the current trial. The top cue always coded the rule to be evaluated first. A delay of 6 s followed cue presentation. A fixation cross was shown during delay.
After the delay, the targetimage was presented. Participants had to apply the active rules to the target stimuli and derive as fast as possible which symbols to choose (A, B, or both) and in which order
(ABorBA, in case both symbols had to be chosen). After having chosen the symbol(s), the participants had to press the right, left, or both buttons, depending on the position of the relevant symbols
on the target screen. The short time available during target presentation forced the participants to retrieve and represent the relevant rule set as soon as the cue was presented. Following target
presentation and before the succeeding trial, a blank screen was presented for a variable time. D, Examples of correct answers given a specific target screen and an active rule set. In the first two cases

only the rule order changes.

Materials and Methods

Participants

Seventeen healthy subjects participated in the experiment. Of those,
three participants were discarded: one because of technical problems
during data acquisition and two because of too wide head movements
inside the scanner. The 14 remaining participants had a mean age of 24.3
years (range 19-28). Five were males. All participants gave written in-
formed consent. They were right-handed and had normal or corrected to
normal vision, no neurological or psychiatric history, and no structural
brain abnormalities. Participants received monetary reward. The study
was approved by the local ethics committee.

Experimental stimuli

Our task required participants to retrieve, maintain, and then apply sets
of conditional rules to different target stimuli (Fig. 1). Each rule set was
composed of two single rules (Fig. 1 A). Each single rule (e.g., “if there is
furniture, then B”) linked the presence of an object from one category
(e.g., “furniture”) to a consequence ( press either “A” or “B”). When the
relevant category was present in the target screen, subjects had to press
the button corresponding to the position of the letter specified by the rule
(Fig. 1C, “A” or “B” could be presented either to left or right of fixation).
Four different single rules were used (S1-S4). For the subject subgroup 1
(n = 6), the single rules (S) were as follows: S1, “if there is a musical
instrument, then A”; S2, “if there is food, then B”; S3, “if there is a musical
instrument, then B”; S4, “if there is food, then A.” For the subgroup 2

Table 1. Type of trials used during fMRI scanning”

Order o Order

Experimental trials

Q1 1,52 $2,51

Q 3,54 54,53
(atch trials

(€] $1,$3 3,51

4 S2,54 54,52

(€ 1,54 54,51

6 $2,53 3,52

“For each different “compound rule” (e.g., (1), the composing single rule (e.g., S1, S2; Figure 1) and the relevant
order (c or B) are reported. The first single rule mentioned is always the single rule to be evaluated first (order
factor).

(n = 9), musical instrument/food were changed with furniture/trans-
port, respectively. Analogously to a previous study (Reverberi et al.,
2012b), the four single rules were combined to create six compound rules
(C1-C6), each formed by two single rules (Fig. 1, Table 1). The identity of
a compound rule was uniquely determined by the single rules composing it.
For example, the compound rule C1 (S1 + S2) is different from C2 (S3 + S4)
because C1 and C2 are composed of different single rules. Compound rules
from 3 to 6 (Table 1) were only used in catch trials (see below).

During the target phase, subjects had to evaluate the single rules com-
posing the active compound rule in a specific order. To check that this
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requirement was met, the responses associated to the rules had also to be
generated according to the order of evaluation (Fig. 1 D). Two alternative
orders per each compound rule were considered (Fig. 1A, Table 1). In
particular, four rule sets were used as experimental trials (Cle, CIf,
C2a, C2), differing either in rule identity (C1 vs C2) or in rule order
(Clavs C1B3; C2a vs C23). The remaining eight rule sets were only used
in catch trials.

Two visually unrelated cues were used to code for each single rule (Fig.
1 B) composing a compound rule, thus resulting in a total of eight cues.
This redundant code was used to allow the decoding of individual rules
independently of the visual properties of the cues (Reverberi et al.,
2012b). Participants learned the cues and their associated rules in
separate training sessions. The assignment of cues was randomized
across participants, so that each participant used different cue-rule
associations.

The target images were colored 3D drawings belonging to four cate-
gories: furniture, musical instruments, food, and means of transporta-
tion. For each category, we had three different exemplars (images
courtesy of Michael J. Tarr, Carnegie Mellon University, http://www.
tarrlab.org/). For each participant, two of four categories were used in
rules, while the other two were never used. The two relevant categories
changed across participants. The experiment was devised and adminis-
tered using Cogent 2000 developed by the Cogent 2000 team at the FIL and
the ICN, and Cogent Graphics developed by John Romaya at the LON at the
Wellcome Department of Imaging Neuroscience.

Experimental procedure

At the beginning of each trial, two cues were presented for 1 s. The two
cues were displayed one above the other on the vertical midline of the
screen. The cues informed participants about the active rule set for the
current trial and the order assignment. Each cue always corresponded to
one single rule, thus informing about the rule identity. The relative po-
sition of the two cues informed the participants about the order: the
single rule corresponding to the cue at the top had to be evaluated first. A
delay of 6 s followed the presentation of the cue screen in all but catch
trials (see below). During the delay, subjects had to keep the fixation on a
cross. Finally, the response screen was presented for =1.2 s. It disap-
peared as soon as a button was pressed. The response screen contained
two target images, presented one above the other aligned to the midline,
and the letters “A” and “B”, displayed on the right and the left side of the
target images (Fig. 1). The subjects had to evaluate the active compound
rule following the order instructed by the cues, infer which letter(s) are
appropriate (e.g., “B and then A”), and then press the button(s) corre-
sponding to the side in which the relevant letter(s) are displayed on the
response screen (e.g., “right and then left button”, since B is on the right
of the midline). The position of A and B was randomly changed on a
trial-by-trial basis. In this way, participants could not anticipate the side
where a specific letter would be presented and, consequently, could not
prepare any motor act during the delay. Responses had to be produced as
fast as possible: participants were informed that they had to respond
before the response screen disappeared. The short time available for the
response, as well as the short duration between cue and target presenta-
tion in catch trials, forced participants to retrieve the relevant rule set as
soon as the cue screen was presented.

Twenty percent of all trials administered were catch trials. Catch trials
differed from experimental trials in two ways. First, all catch trials used
compound rules (C3-C6) different from those used in regular experi-
mental trials. These alternative compound rules were important to pre-
vent the presence in the stimuli of strong associations between single
rules (e.g., “SI is always together with S2”). The alternative compound
rules, used in catch trials, were S1-S3, S1-S4, S2-S3, S2-S4 and their
respective alternative order $3-S1, S4-S1, S3-S2, S4-S2 (Table 1). Second,
in 50% of the catch trials, we shortened the delay between cue and re-
sponse screen (2 s instead of 6 s). Shorter delays were used both to force
the participants to represent the relevant rule set as soon as possible after
cue presentation, and to assess whether participants indeed quickly rep-
resented the rule sets.

Given the type of rules and target images in the task, three outcomes
were possible: (1) all criteria of both single rules composing the active
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compound rule are met; (2) only the criterion of the single rule to be
evaluated first is met; or (3) only the triggering criterion of the single rule
to be evaluated last is met. For the first outcome, two button presses had
to be produced, one per rule, in the assigned order. For the other two
outcomes, only one button press had to be produced. Without consid-
ering catch trials, the first outcome was present in 40% of all trials, the
second in 20%, and last in 40%. Outcome 1 is critical for allowing us to
assess whether subjects correctly followed the instructions on rule order.
Outcome 3 was the only in which responses associated to the rule to be
evaluated last were implemented first. This is why both Outcomes 1 and
3 were overrepresented compared with Outcome 2. On one hand, we
wanted to have enough trials for assessing whether subjects correctly
applied order assignments (Outcome 1). On the other hand, we wanted
to make sure that subjects did not apply extreme strategies to reduce the
cognitive load, like ignoring the order dimension or ignoring the single
rule to be evaluated second. In catch trials, Outcome 1 was present in
50% of the trials, Outcome 2 and 3 in 16% of the trials each, and in the
remaining 16% of the catch trials no response should be generated.

Before scanning, participants performed a short “warm-up” training
of ~10 min. During scanning, participants performed 360 trials divided
into six runs. In each run, participant performed 48 experimental trials,
12 for each different experimental rule set (Table 1), and 12 catch trials,
six with short delay and six with normal delay. Catch trials were selected
pseudorandomly from eight alternatives (Table 1), so that each alterna-
tive was presented at least once in each fMRI run. Trial order was ran-
domized so that the same cue combination never appeared twice in a
row.

All participants underwent an extensive training before fMRI scan-
ning. The training sessions were scheduled on two separate days, at most
3 d before scanning. During training, the participants first learned the
specific cue—rule associations. Afterward, they practiced the flexible ap-
plication of the relevant rules in a way similar to the final experimental
paradigm described above, the only difference being the presence of
correctness feedback. The training procedure lasted overall ~2 h. The
training procedure stopped when participants correctly responded four
times in a row to each of the four experimental rule sets.

Image acquisition

Functional imaging was conducted on a 3 tesla Siemens Trio scanner
equipped with a 12-channel head coil. In each of the six scanning ses-
sions, 305 T2*-weighted gradient-echo echo-planar images (EPI) con-
taining 32 slices (3 mm thick) separated by a gap of 0.75 mm were
acquired. Imaging parameters were as follows: repetition time (TR), 2000
ms; echo time (TE), 30 ms; flip angle, 90° matrix size, 64 X 64; and a field
of view (FOV), 192 mm; thus yielding an in-plane voxel resolution of 3
mm?, resulting in a voxel size of 3 X 3 X 3.75 mm. A Tl-weighted
structural dataset was also collected. The parameters were as follows: TR,
1900 ms; TE, 2.52 ms; matrix size, 256 X 256; FOV, 256 mm; 192 slices (1
mm thick); flip angle, 9°.

Data analysis

Preprocessing and first-level analysis. Preprocessing, parameter estima-
tion, and group statistics of the functional data were performed using
SPM8 (Wellcome Department of Imaging Neuroscience, Institute of
Neurology, London, UK). Images were slice-time corrected and re-
aligned. To preserve fine-grained patterns of individual voxels, no spatial
normalization or spatial smoothing was applied at this point of the anal-
ysis. A finite impulse response (FIR) model was applied to the realigned
and slice-timed images (Henson, 2004). Each condition was modeled
using 16 time bins of 2 s each. We considered eight conditions corre-
sponding to the cells of a 2 (compound rules: C1 vs C2) X 2 (order
assignments: o vs 3) X 2 (cue sets) factorial design (Table 1). Only
correct trials were used for the estimation of the parameters. The onset
time for all regressors was the cue appearance. Separate regressors were
estimated for each of the six runs.

Multivariate pattern analysis using “searchlights.” To identify where the
brain codes information about rule identity and rule order, we applied
multivariate pattern analysis (Kamitani and Tong, 2005; Haynes and
Rees, 2006; Norman et al., 2006; Pereira et al., 2009) using a “searchlight”
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A, The factors considered in the two main analyses on rule identity and rule order. The rule identity analysis contrasts different compound rules. Notice that in both rule classes, the same

basic elements are involved: furniture/transport and A/B symbols. Rule-order analysis contrasts the same compound rules but with different order assignments. B, Schema of the searchlight
decoding analyses. We considered only the brain activation during the cue and the delay phase. Local pattern of activation in spherical clusters were extracted for each condition and in each fMRI run.
The data were then separated into a training set and a test set. A pattern classifier, Support Vector Classification (SVC) was trained to distinguish the two experimental classes (e.g., C1vs (2) using
only the data from the training set. The performance of the classifier was then assessed on the test set and the computed accuracy assigned to the voxel at the center of the spherical cluster. The
position of the spherical cluster was then systematically changed to explore the whole brain. The result of this iterative process is a whole-brain accuracy map showing the distribution of local

information on the two considered experimental classes.

approach (Kriegeskorte et al., 2006; Haynes et al., 2007). The searchlight
approach (Fig. 2B) examines whether two given classes can be distin-
guished based on the local fMRI patterns surrounding a voxel v;, thus
providing evidence on whether a brain region contains information
about the two classes. For a given voxel v;, a small spherical cluster (e.g.,
radius, 4 voxels) is defined centered on v;. For each voxel in this local
cluster, the parameter estimates are separately extracted for two given
classes and separated in two independent datasets: a training dataset and
a test dataset. A linear support vector pattern classifier (Miiller et al.,
2001) with a fixed regularization parameter C = 1 is trained to distin-
guish the two classes using only the data from the training set. The per-
formance of the classifier is then evaluated on the test dataset to assess
how much information could be extracted about the conditions from the
training dataset. The same procedure is repeated for all voxels in the
analyzed image. The decoding accuracy for each local searchlight posi-
tion v; is used to create a decoding accuracy map that has the same
dimensions as the original EPT images. A decoding accuracy significantly
above chance implies that the local pattern of activation in the sphere v;
encodes information about the relevant conditions.

The accuracy maps are normalized to MNI-space using the parameters
estimated during preprocessing, and then submitted to a second-level
analysis in SPM8 to test where in the brain decoding accuracies differ
significantly from chance level (50% in the present case) across all par-
ticipants at group level. Statistic images were assessed for cluster-wise
significance using a cluster-defining threshold of p = 0.0005. The mini-
mum cluster size was then set to obtain a probability of familywise error
(FWE) of 0.05 at cluster level. This restricted to a maximum of 0.05 the
probability of falsely finding a cluster with a size equal or above a critical
threshold. The minimum cluster size was variable and automatically
computed by SPM8 for each analysis on the basis of the estimated
smoothness of the accuracy images (Friston et al., 1996; Worsley et al.,
1996; Kiebel et al., 1999; Hayasaka et al., 2004).

Decoding rule identity. The first decoding analysis aimed at exploring
where information on the active compound rules is encoded in the brain,
irrespective of the order assigned (Fig. 2). This analysis was devised so
that information concerning visual appearance of the cues could not
contribute to classifier performance. Classifiers were trained to distin-
guish the two experimental compound rules C1 and C2, introduced by
one set of cues (e.g., by Cue Set 1). This classifier was then tested on an
independent test dataset, containing the same two compound rules (C1
vs C2) but this time introduced by the alternative cue set (e.g., the Cue Set
2). In this way, the classifiers could only use information on the active
rule sets (i.e., the meaning of the cues), but not on the visual features of
the associated cues. Notice that this implements a cross-validation pro-
cedure across cue sets, preventing overfitting of the data. Decoding of
rule identity was independent of rule order: each class contained data
with all possible order assignment for each compound rule.

More in detail, four decoding analyses were implemented (see Table 1
for the notation). These analyses were as follows: first analysis: training,
C1 (Cue Set 1) versus C2 (Cue Set 1); test, C1 (Cue Set 2) versus C2 (Cue
Set 2); second analysis: same as first, but with training and test dataset
switched; third analysis: training, C1 (Cue Set 1) versus C2 (Cue Set 2);
test, C1 (Cue Set 2) versus C2 (Cue Set 1); fourth analysis: same as third,
but with training and test dataset switched. Only data from the FIR time
bins from 2 to 4 were used, corresponding to the time interval from 2 to
8 s after stimulus onset. This time window is the same used in a previous
related study by our group (Reverberi et al., 2012b). Considering the
delay of the hemodynamic response function, this time window grants
that only the cue phase and the delay phase are considered in the analysis.
Opverall, 72 images were available for the training set, and other 72 images
were available for the test set (2 orders X 6 runs X 3 time bins X 2 cue
sets). For each participant, the four accuracy maps resulting from the
four analyses described above were averaged before submission to the
final second-level analysis.
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Decoding rule order. The procedure to iden- 1
tify regions containing information about or-
der (Fig. 2) was similar to the one used for the
analysis on rule identity. In contrast to rule
identity, eight different decoding analyses were
performed. In each analysis, a classifier was
trained and tested to distinguish the alternative
orders assigned to the same compound rule
(e.g., to distinguish Cla from C13). Again, dif-
ferent cue sets were used for training and
testing.

Specifically, we performed the following
eight analyses: first analysis: training, Cla ver-
sus C1B (both Cue set 1); test, Cla versus C13
(both Cue set 2); second analysis: same as first,
but with training and test dataset switched;
third analysis: training, Cla (Cue set 1) versus
C1B (Cue set 2); test, Cla (Cue set 2) versus
C1B (Cue set 1); fourth analysis: same as third,
but with training and test dataset switched; fifth
analysis: training, C2« versus C2f3 (both Cue set
1); test, C2a versus C2f3 (both Cue set 2); sixth All
analysis: same as fifth, but with training and test
dataset switched; seventh analysis: training, C2a
(Cueset 1) versus C23 (Cue set 2); test, C2a (Cue
set 2) versus C2f8 (Cue set 1); eighth analysis:
same as the seventh, but with training and test
dataset switched. For each participant, the four
resulting accuracy maps for compound rule 1
(analyses 1-4) and compound rule 2 (analyses
5-8) were averaged before the second-level anal-
ysis. Thus, two accuracy maps per subject were used in the second-level
analysis for each participant.

Univariate control analysis. Standard GLM analyses were also run. For
these analyses, the data were spatially smoothed after movement and
slice-time correction (kernel size, 6 voxels FWHM), by contrast with the
decoding analysis where no smoothing was applied. A standard first-level
GLM HRF model was estimated for each subject, using one regressor for
each compound rule—order combination, yielding four regressors per
subject: Cla, C1B, C2a, C2. Cue-onset times were used as onsets for
the regressors; duration was set to 0. In contrast to the decoding analyses,
all runs were used for the estimation of the regressors, and trials were not
separated according to the use of different visual cues: neither of these
two features of the decoding analyses (i.e., the separation into runs and
the separation according to cue identity) was relevant in a standard GLM
analysis. Contrasts between the conditions were calculated for each par-
ticipant. Specifically, the rule identity contrast (one image per subject)
was calculated as Clae + C13 — C2a — C23, thus without considering
rule order. For rule order, two contrast images were calculated per par-
ticipant: Clae — C1B and C2a — C23. The resulting two contrast images
were averaged for each participant. The contrast images were then nor-
malized to MNI space, and submitted to one-sample ¢ tests to check for
differences between compound rules, and between alternative order as-
signments.

Results

Behavioral results

During scanning, participants applied the relevant rules with
high accuracy. The average proportion of correct responses in
experimental trials was 86.7% (SD, 5.6%). Participants were
also very fast in generating the responses: the average reaction
time (RT) from target appearance to first button press was 884
ms (SD, 81 ms) when only one answer had to be produced and
809 ms (SD, 67 ms) when two answers had to be produced. The
mean RT until the second button press when two answers had
to be produced was 1009 ms (SD, 86 ms; Fig. 3). In trials where
one response was required, the single rule generating the re-
sponse should be either evaluated first or last (order dimen-
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R2 R3 R4 both first last

Response

exp catch short

Trial Type

R2 R3 R4 both1 first last both2

exp catch short

Single Rule Trial Type Response

Plot of the average response accuracy (top) and average reaction times (bottom) in different trials. All: average across
all trial types. R1—R4: single rule 1— 4. Exp: experimental trials. Catch: catch trials. Short: catch trials with short delay (2 s). Both:
trials requiring a response involving both A and B (i.e. AB or BA). First: trials in which the response should be derived from the rule
to be evaluated first. Last: trials in which the response should be derived from the rule to be evaluated last. Both1, Both2, reaction
times to the first and second response, respectively, when two responses are due. Error bars display SEM.

sion). If the participants correctly processed rule order, then
responses following rules to be evaluated first should have
been produced faster than responses following rules to be eval-
uated last. We found that participants were faster in producing
an answer associated to a rule to be evaluated first [839 ms
(SD, 64 ms) vs 928 ms (SD, 71 ms), t,3, = 8.75, p < 0.001].
This shows that participants prepared, as required, after cue
presentation not only to apply the active rule set, but also to
first evaluate the appropriate single rule. At the same time,
however, participants allocated enough cognitive resources
for adequately processing both the rules to be evaluated first
and the rules to be evaluated second, so that accuracy re-
mained similar in the two situations. With 84.9% (SD = 0.06)
and 82.8% (SD = 0.07), respectively, accuracy was not signif-
icantly different (¢,5) = 1.51, p = 0.15).

Two types of catch trials were also administered. In both,
participants performed similar to the experimental trials. In
catch trials with normal and short delays, participants had an
overall accuracy of respectively 87.4% (SD, 10%) and 84.6%
(SD, 11.9%), while they answered in respectively 774 ms (SD,
88 ms) and 786 ms (SD, 73 ms). Accuracy was not significantly
different from experimental trials, while RTs in catch trials
were faster (normal-delay catch trials: accuracy, t,5, = 0.28,
p = 0.79; RT, t(,3, = 5.70, p < 0.001; short-delay catch trials:
accuracy, t(;3) = 0.85, p = 0.41; RT, t,;, = 4.00, p = 0.0015).
The faster RTs in catch trials are arguably due to the fact that
they are easier to process on the target phase: in all catch trials,
the two active rules either share the same trigger (e.g., “food”),
or they share the same consequence (e.g., “A”). Together, the
high accuracy and fast reaction times in both catch and exper-
imental trials confirm that participants encoded the relevant
rule sets immediately after cue presentation. These findings
also show that participants explicitly represented both single
rules composing the active rule set in experimental and catch
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trials. Otherwise this would have surfaced in measurable be-
havioral differences between catch and experimental trials.

Assessment of behavioral differences across rules

For each single rule we extracted all trials in which participants
had to apply only that specific single rule. We then compared
mean accuracies and reaction times for all these trials (Fig. 3). No
significant difference between either accuracy or RT between any
of the four single rules could be found (accuracy, F(; 5,, = 1.66,
p = 0.19; RT, F(5 5, = 0.07, p = 0.97).

Participants produced on average 13.3% errors when experi-
mental and catch trials were considered together. Participants
made errors for different reasons. They made order errors: when
required, they correctly produced two responses, but without
observing the order assignments. Participants also produced in-
sertions and omissions. In the first case, participants gave two
answers instead of one (e.g., correct response, left; answer, left-
right); in the second case they gave one answer instead of two
(e.g., correct response, left-right; answer, left). Finally, partici-
pants might have substituted one button press with the alterna-
tive one, thus producing a substitution error (e.g., correct
response, left; answer, right). Order errors are due to a failure in
considering the specific order in which rules should be evaluated,
while insertions, omissions, and substitutions are related to the
appropriate selection and application of the single rules involved
in the active compound rule. Some error kinds could be pro-
duced only in a subset of trials. For example, order errors could
only be produced in trials requiring two answers. When this fact
was taken into account, the probability of producing order errors
was on average 2.3% (SD, 2.3%); for insertions, it was 2.8% (SD,
1.7%); for omissions, it was 7.1% (SD, 3.6%); and finally for
substitutions, it was 3.7% (SD, 1.9%). Overall, the probability of
producing an error related to the selection and application of the
relevant single rules was 12.1% (SD, 5.2%). The distribution of
error types suggests that selecting and applying the rules was
more demanding than complying with the order assignments.

Imaging results

Decoding rule identity

The aim of this first decoding analysis was to identify the brain
areas coding the identity of the active compound rule, regardless
of the order assigned to the composing single rules (Fig. 4, Table
2). Two key features of the paradigm assured independence be-
tween decoding identity and decoding rule order. First, each
compound rule was administered with all possible rule-order
combinations. Second, the two compound rules considered for
rule identity decoding comprised entirely different single rules:
C1 was composed of S1 and S2, while C2 was composed of S3 and
S4. Given that order information is assigned to single rules, any
order information on S1 or S2 cannot transfer on S3 or S4 and
vice versa. Further paradigm features were important for making
identity decoding specific under other respects. First, each of the
compound rules was instructed by one of two visually different
cues. In this way we could train the pattern classifiers on rule
instances that were introduced by one of the two cues with the
same meaning, and then test on other instances of the same rules,
but introduced by the alternative, visually different cue. This way
the visual appearance of the cues would not interfere with rule
identity decoding. Second, either compound rule was constituted
by the same basic elements. In both compound rules, both letters
A and B, and both musical instruments and food (in group 2,
means of transportation and furniture) were involved. The only
feature changing between the two experimental compound rules
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(i.e., Table 1, CI and C2) was the conditional rule linking the
same basic elements (Fig. 3, Table 1). This also assured that the
same cognitive resources (e.g., working memory) were needed to
represent the two compound rules.

We were able to decode the identity of the active compound
rule from local activation patterns in the right ventrolateral fron-
tal cortex [Brodmann area (BA) 47, p < 0.05 FWE-corrected for
multiple comparisons; accuracy at the ¢ value peak, 62.8%], in the
right superior frontal lobe (BA 8/9, p < 0.05 FWE-corrected;
accuracy at the ¢ value peak, 57.6%), in the right caudate nucleus
(p < 0.05 FWE-corrected; accuracy at the ¢ value peak, 59.0%), in
left temporal pole (BA 21, p < 0.05 FWE-corrected; accuracy at
the ¢ value peak, 57.2%), right posterior temporal lobe (BA 20/
21/37, p < 0.05 FWE-corrected; accuracy at the ¢ value peak,
57.1%), and in the right hippocampus (p < 0.05 FWE-corrected;
accuracy at the # value peak, 56.3%).

Decoding order

The aim of this second decoding analysis was to identify the brain
areas coding the order in which the single rules composing the
rule set (Fig. 4, Table 2) had to be evaluated. We were interested in
exploring in more detail which brain areas encoded the order in
compound rules composed of exactly the same single rules. Thus,
for example, we asked which brain areas encode the difference
between rule set Cla (S1 and S2; S1 to be evaluated first) com-
pared with rule set C183 (S1 and S2; S2 to be evaluated first). As in
the preceding analysis, to control for the correlated visual features
of the cues, we trained the pattern classifiers on rule instances
introduced by one of the two cues with the same meaning, and
then test on other instances of the same rules, but introduced by
the alternative, different cue.

We were able to decode single-rule order associated with the
active compound rule from local patterns of activation in an area
centered in dorsal premotor cortex (PMd; accuracy at the t value
peak, 55.4%; extending also into postcentral cortex) and the right
putamen (accuracy at the t value peak, 55.0%).

There was no overlap between the brain areas in which rule
identity or rule order could be decoded (but see ROI analyses,
below). Even though the right striatum was involved in both
cases, the two types of information did not overlap at a finer scale:
rule identity information was found in the caudate, while rule
order information was found in the putamen.

Univariate analyses

We evaluated by means of a standard GLM analysis whether there
was any reliable difference in the average bold signal between the
two experimental compound rules C1 and C2, and between the
two pairs of alternative order assignment (Table 1). No signifi-
cant differences were found in any of the analyses. In particular,
none of the brain areas that we found to encode information on
rule identity or rule order with the multivariate analysis showed
any reliable univariate difference across conditions.

ROI analyses

In the preceding whole-brain analyses, we found that it was pos-
sible to decode identity and order information in several brain
regions. However, we found no brain regions in which it was
possible to decode both types of information. We ran an ROI
analysis with three aims: (1) to further assess the relative perfor-
mance of the two main decoding analyses to check whether a
different analytical approach would find an overlap; (2) to for-
mally check, with a specific focus on VLPFC, whether brain re-
gions are differently involved in representing identity and order
information; and (3) to check whether minor differences in the
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Brain regions from whole-brain analyses where it was possible to decode from local patterns of activation the identity of the active rule set (top), and the rule order (bottom).

Informative brain regions are rendered onto a T1-weighted brain image. The reported effects are all significant at p << 0.05, corrected for multiple comparisons. Color scales (t values) are reported

separately for each plot.

processing difficulty of the rules we decoded might have contrib-
uted to the classifier performance.

A preliminary step for the first analyses is the appropriate
definition of the relevant ROIs. To avoid overfitting and circular
inference, we considered as ROI the brain areas involved in rule-
order representation for the analysis on rule identity, while for
the analysis on rule order we considered brain areas that were
involved in rule-identity representation (Fig. 4, Table 2). We then
computed for each participant the average accuracy attained by
the two classifiers across all voxels in the ROI. Those values were
then submitted to a one-sample ¢ test analysis. In this way, no risk
of circular analyses is introduced for the analyses, given that rule
identity and rule order are two statistically independent features.
We applied Bonferroni correction to the ROI analyses so that the
target a-level was equal to 0.05 divided by the number of ROIs
considered (2 in the identity analysis using order ROIs and six in
the order analysis using identity ROIs), as implemented in the
toolbox MarsBaR (http://marsbar.sourceforge.net). Even by us-
ing ROI-based analyses, we could not find order information in

the brain areas coding the identity of the active rules: in all the
identity ROIs, the average accuracy rate across all voxels did not
differ from chance level (p > 0.1 for all p values, corrected for
multiple comparisons; all clusters, but caudate nucleus, remained
nonsignificant even when noncorrected p values were consid-
ered). By contrast, the ROI analysis showed that the brain areas
involved in order representation also contain information on the
identity of the active rules: it was possible to identify the active
rule with a higher than chance accuracy in both the lateral pre-
motor (£, = 4.06, p < 0.05, corrected) and in the putamen ROI
(tas = 2.71, p < 0.05 corrected).

In the first set of ROI analyses, we showed that both identity
and order information were available in putamen and premotor
cortex, while we found information pertaining only to identity in
other frontal and temporal regions. In particular, no order infor-
mation was found in VLPFC, which has been shown to be in-
volved in rule representation and implementation. The second
set of ROI analyses was a follow-up set devoted to formally test
whether there was a difference in the information that could be
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Table 2. Decoding of rule identity and rule order: brain areas showing decoding accuracies significantly higher than chance (50%)”

Cluster Accuracy at Average cluster
Anatomical region size (k) p (FWE) X y z tpeak accuracy Main BA
Identity decoding
Inferior frontal gyrus 262 <0.001 44 36 —4 62.8 53.2 47
44 40 —16 56.5
34 46 —-10 54.7
Superior frontal gyrus 113 0.03 30 18 62 57.6 53.1 8,9
30 20 44 57.0
34 16 52 56.6
Caudate nucleus 127 0.018 22 12 22 59.0 535
16 12 6 55.1
12 16 24 54.7
Middle temporal gyrus 678 <0.001 60 —36 —12 571 53.8 21,20,37
50 —34 —6 56.8
30 —34 —22 56.8
Superior temporal gyrus 208 0.001 —48 0 —12 573 533 21
—52 -2 —20 55.5
—54 8 -2 55.3
Hippocampus 106 0.038 24 -32 2 56.3 533 27
22 —24 0 55.2
22 —22 12 55.1
Order decoding
Precentral gyrus (premotor cortex) 436 0.002 28 —28 40 55.4 541 6,3
34 —18 36 55.3
42 —6 40 55.2
Putamen 206 0.037 28 8 0 55.0 541
24 10 —-10 54.8
30 16 -2 54.8

“Coordinates x, y, and zin space of MNI template and selection of cluster maxima according to the conventions of SPM8. The reported p values refer to cluster level inference and are familywise corrected for multiple comparisons. We report
the decoding accuracy of the searchlight at each t peak and the average decoding accuracy over all searchlights within clusters.

found across brain regions; more specifically, we were interested
in differences between VLPFC and regions involved in order rep-
resentation. We thus checked for the presence of an interaction
brain region X information across the relevant ROIs. Again, an
important preliminary step is to implement a procedure for de-
fining ROI boundaries that avoids overfitting and circular infer-
ence. Compared with the first set of ROI analyses, in this case it
was necessary to define ROIs independently from decoding anal-
yses on both rule identity and rule order. Therefore, a cross-
validation procedure was implemented. The cross-validation
procedure was applied across subjects by rerunning the two main
analyses on rule identity and rule order. Importantly, one subject
was left out in each cross-validation step (i.e., we ran 2 X 14
analysis with 71,5 = 13 in each step). In this way, we obtained
two functional maps (1 for identity, 1 for order, p < 0.0005,
uncorrected) per each cross-validation run. These maps were
then segmented into different ROIs by intersecting the functional
maps with the anatomical regions of the automatic anatomical
labeling (AAL) map (Tzourio-Mazoyer et al., 2002). Only infor-
mative voxels within each AAL region were considered. Further-
more, to obtain reliable estimates of average decoding accuracies
in the AAL regions, we selected all those functional-anatomical
ROIs that contained at least 20 “informative” voxels for the fol-
lowing analyses. Next, for each subject s;, we extracted the s;’s
decoding accuracies for both identity and order analyses by using
the functional-anatomical ROIs that were calculated leaving out
s;. Overall, this procedure generated slightly different ROIs in
each AAL region for each left-out subject. Besides, this procedure
may identify a particular AAL region only in a subset of subjects.
For our final analyses, we only considered AAL regions present in
all 14 subjects. Overall, we identified four ROIs in the frontal
cortex (orbital and triangular part of the inferior frontal gyrus,
precentral gyrus, and middle frontal gyrus, all right sided), two in

the basal ganglia (right caudate and putamen), and six in the
temporal lobe (on the right: hippocampus, parahippocampal
gyrus, fusiform gyrus, middle temporal gyrus; on the left: middle
and superior temporal gyrus, superior temporal pole). We first
checked for region—information interaction between VLPFC (in-
ferior frontal gyrus, both pars orbitalis and pars triangularis) and
“order regions” (putamen and right precentral cortex). We found
that the interaction was significant (F; 39, = 3.44, p = 0.026).
With that established, we tested all possible pairwise comparisons
to understand whether any of these was driving the overall effect.
Each frontal inferior subregion showed a significant region X
information interaction with putamen (pars orbitalis: F, ;5 =
5.00, p = 0.044; pars triangularis: F; ;5) = 6.74, p = 0.022), while
the interactions involving precentral gyrus showed only a statis-
tical trend (p < 0.1 for both p values). By contrast with VLPEC,
caudate and middle frontal gyrus did not show a significant interaction
with putamen and precentral gyrus (p > 0.1 for all p values). Finally, we
checked for the presence of the same interaction between precentral
gyrus/putamen and all temporal regions. The interaction was significant
(F(g,104) = 16.15,p = 0.037). Overall, these analyses corroborate the idea
that the distribution of identity and order information is inhomoge-
neous within the brain regions that we found to be involved in complex
rule representation.

In the third set of ROI analyses, we checked whether the main
decoding analyses exploited small differences in difficulty across
the decoded rule sets (Cole et al., 2011). If this were the case, one
would expect a higher decoding performance in subjects with the
largest difference in difficulty across rules. For each subject, we
computed the average performance of the classifiers: in each
identity cluster for identity decoding, and in each order cluster
for order decoding (Table 2). Furthermore, we computed two
behavioral indices for difficulty: the absolute difference in (1)
accuracy and (2) RT between trials belonging to each of the two
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alternative classes considered for identity and order fMRI decod-
ing. Overall, we had eight decoding values (one decoding value
for each cluster in which information about identity or order
could be detected; Table 2) and four behavioral indices for pro-
cessing difficulty (RT and accuracy in trials relevant for either
identity or order decoding) for each subject. We then tested
whether the classifier performance in any of the ROIs correlated
with the behavioral indices of processing difficulty. We found no
significant correlation in any test (p > 0.1 for all p values, Bon-
ferroni corrected for multiple comparisons). Even when uncor-
rected statistics were considered, only 1 of 16 correlations became
significant: in this case we found a significant correlation between
the classifier for rule identity and the absolute RT difference in the ROI
centered on middle temporal gyrus (R* = 0.47, p = 0.01, uncorrected).
These findings do not corroborate the hypothesis that processing diffi-
culty contributes to the decoding analyses of this study.

Formal comparison with preceding study

We formally compared the findings of the present study to those of a
previous study of our group on rule representation using a paradigm
similar to the one used here (Reverberi et al., 2012b). In that study,
one of the analyses explored the brain structures involved in the
representation of compound rules. Importantly, however, in our
preceding study, we did not introduce any order assignment on the
compound rules: when the single rules of an active compound rule
were both triggered by the target, the participants were free to answer
by choosing any of the two relevant responses. Moreover, in our
preceding study the single rules directly linked a visual stimulus (e.g.,
“house”) to a motor response (e.g., “press left”).

The representation of rule identity in the two studies overlaps
in ventrolateral prefrontal cortex (95 voxels with maximum in
MNI coordinates 44 38 —4), but not in other regions. To increase
sensitivity to the possible presence of small effects in any of the
regions found in the two studies, we assessed whether the average
accuracy in those regions was above chance by using an ROI
analysis. First, we applied the two ROIs extracted from our pre-
ceding study to the present one. The analysis confirmed that the
ventrolateral prefrontal ROI had an average accuracy higher than
chance (t = 4.56, p < 0.001, corrected), while this was not the
case for the parietal ROI. Second, we applied the ROIs extracted
from this study to the preceding one. Again, the only significant
ROI was the VLPFC (¢ = 2.87, p < 0.05, corrected).

Discussion

Humans are able to devise and implement complex rules involv-
ing the integration of multiple layers of control (Badre and
D’Esposito, 2007; Koechlin and Summerfield, 2007). Prefrontal
cortex is involved in the representation and the implementation
of rule sets. However, it is still unclear how representation of
complex rule sets is organized within prefrontal cortex.

In the present study, participants represented compound rule
sets involving the concurrent application of two single rules (Fig.
1). These rules had to be evaluated in a specific order (Table 1).
The compound rules and the rule order were independently
manipulated.

The identity of the active compound rule was encoded in a
network (Fig. 4, Table 2) comprising VLPFC, superior frontal
gyrus, dorsal striatum, and temporal lobe. No information about
rule order could be found in any of these brain areas, neither in a
whole-brain analysis nor in ROI analyses focused on the brain
areas encoding rule identity. The order in which rules were eval-
uated could be decoded in a smaller set of areas comprising dorsal
premotor cortex and dorsal striatum (Fig. 4). No information
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about identity could be found in these areas in a whole-brain
analysis. However, a more sensitive ROI analysis showed that
these two regions also contained information on the identity of
the active rule. Finally, the nonhomogeneous distribution of in-
formation across the relevant brain regions was confirmed in a
further ROI analysis showinga region X information interaction.

Complex rule sets: distributed representation
The finding that rule identity and rule order are represented in
different brain areas suggests that the brain encodes complex
rules by “decomposing” them in their defining aspects. This is
consistent with and extends previous work by our group showing
that the neural code representing compound rules is composi-
tional (Momennejad and Haynes, 2012; Reverberi et al., 2012b).
In a previous study (Reverberi et al., 2012b), the neural code of
the single rules (e.g., “Rule A”) building up a compound rule
(e.g., “Rule AB”) was shown to be similar to the neural code
making up single rules (e.g., “Rule A” and “Rule B”). Thus, also in
that case, the compound rules were decomposed in their elemen-
tary constituents. In contrast with the present study, however, the
two constituents, which belonged to the same control layer,
were represented in the same brain area.

A distributed representation of features is a central hypothesis
in recent theories of prefrontal cortex function (Botvinick, 2007;
Koechlin and Summerfield, 2007; Frank and Badre, 2012). These
theories claim that information on the active rule set anatomi-
cally segregates in different control layers, depending on the level
of abstraction (Frank and Badre, 2012; Badre and Frank, 2012),
or on the time window of the control signal (Koechlin and Sum-
merfield, 2007). However, evidence available to date referred to
brain activation differences during task execution, which may be
only loosely related to representation of task information. Our
findings provide direct evidence that the hypothesized segrega-
tion of information is taking place.

Rule identity representation in VLPFC

In a preceding study by our group (Reverberi et al., 2012b), we
showed that right VLPFC (approximately BA47) encoded rule
sets simpler than those considered here. Similar to the current
experiment, they involved compound rules, but without order
assignment. Thus, in that case, multiple levels of control were not
necessary. Here, we found that the same VLPFC area also repre-
sented more complex rule sets involving order as an additional
control layer. This is consistent with evidence showing that
VLPEFC is active during maintenance of task rules (Bunge et al,,
2003; Sakai and Passingham, 2003; Rowe et al., 2007; Bengtsson et
al., 2009). Interestingly, however, not all information on the ac-
tive rule set in the present study could be found in VLPFC. In this
region it was possible to decode which rules were active, but not
the order assignments. Furthermore, a follow-up ROI analysis
confirmed a reliable difference in information distribution be-
tween VLPFC and putamen/precentral gyrus. This evidence sug-
gests that VLPFC cannot be considered the general controller of
task set preparation, orchestrating lower level brain areas, as sug-
gested, for example, by the findings of Sakai and collaborators
(Sakai and Passingham, 2003, 2006; Bengtsson et al., 2009).
VLPFEC should rather be conceived as a (specialized) part of a
larger system of control also involving brain structures coding for
other necessary information, such as that on order.

Rule identity representation in temporal lobe
The active rules were also represented in temporal areas including
posterior middle temporal lobe, superior temporal lobe, and fusi-
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form gyrus. It has been shown that these areas are involved in the
representation of object categories (Martin, 2007; Patterson et al.,
2007; Mahon and Caramazza, 2009; Mion et al., 2010; Visser et
al., 2010). However, the decoding analysis on rule identity we
performed here implies not only that those areas were involved in
coding categories, but critically that they were involved in repre-
senting associations between categories and specific symbols like
“A” or “B”. Only the combination of category (e.g., food) and
symbol (“A” or “B”) could differentiate between our rule sets.
This finding is consistent with a recent decoding study (Baron
and Osherson, 2011) showing that the combination of concepts,
such as “male” and “child”, was encoded in a network of brain
areas broadly similar to the one found here. Our findings also
confirm preceding studies showing that the temporal cortex, par-
ticularly the posterior temporal gyrus, is involved in rule retrieval
(Bunge et al., 2003; Donohue et al., 2005). Meanwhile, they sug-
gest that rule information can be kept active in temporal lobes
also during a delay.

Thus, brain areas arguably involved in processing the target ob-
jects represent associations of those categories and symbols already
during preparation. This may be instrumental to the fast application
of the appropriate rules in the time-constrained target phase (Sakai
and Passingham, 2003 ). In line with this interpretation, the temporal
lobes seem to be involved in rule representation only when rules
consist of the combination of =2 visual stimuli (e.g., food items and
letters: “if food, then A”). When the rules are actually directly linking
a visual object with an action (e.g., “if food, then press left”), other
parts of the semantic system are recruited (i.e., those dedicated to
manipulable objects) (Kellenbach et al., 2003; Pobric et al., 2010).
This was indeed the case in our preceding study on rule representa-
tion: information on rules combining a category (house, face) to an
action (left, right button presses) was not found in temporal but in
parietal cortex.

Rule identity and rule order representation in basal ganglia
and premotor cortex

The dorsal striatum (putamen) and dorsal PMd were the only
brain areas in which we could decode information about both
order and rule identity. These two areas are connected in a com-
mon corticostriatal circuit (Haber, 2003; Leh et al., 2007; Cohen
etal., 2008; Draganski et al., 2008). Beside putamen, another area
in the dorsal striatum (caudate nucleus) encoded rule identity.
This area may be connected with the area in the middle frontal
gyrus also encoding identity (Draganski et al., 2008).

The dorsal striatum and its target areas in the frontal cortex
are known to be involved in sequence learning and arbitrary rule
learning (e.g., Toni et al., 2001; Boettiger and D’Esposito, 2005;
Pasupathy and Miller, 2005; Averbeck et al., 2006; Mushiake et
al., 2006; Brovelli et al., 2008; Graybiel, 2008; Jin et al., 2009;
Badre et al., 2010; Yin, 2010). However, published studies mainly
focused on rules involving stable stimulus—response or action—
outcome associations (but see, e.g., Kubota et al., 2009), learned
implicitly by trial and error, without the use of explicit verbal
instructions. In this study, we showed that the dorsal striatum
and PMd are also involved in the representation of explicit, ver-
bally instructed conditional rules, a functional role attributed so
far to prefrontal cortex and/or hippocampus (Poldrack and Pack-
ard, 2003; Yin and Knowlton, 2006). Furthermore, we showed
that the striatum can encode purely cognitive (i.e., not involving
motor actions) rules linking a category (e.g., food) with an ab-
stract symbol (e.g., “A”). Finally, we showed that striatum also
represents stimulus—response associations that change on a trial-
by-trial basis. These findings corroborate recent evidence show-
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ing that the dorsal striatum is involved in flexible switching
between different rule sets (Ragozzino, 2007; Leber et al., 2008) and
recent theories proposing that the dorsal striatum, in coordination
with the hippocampus, is also involved in the implementation of
explicitly learned abstract rules (Doll et al., 2009; Frank, 2011).

In agreement with recent theories of control function (Frank
and Badre, 2012), one might speculate that rule-guided behavior
depends on the functioning of different corticostriatal loops or-
ganized to handle different types of information. Thus, the cau-
date would contribute to select and activate the relevant single
rules in coordination with more anterior frontal areas (middle
frontal gyrus, VLPFC), while the putamen would select or “tag”
the single rule to be evaluated first in coordination with more
posterior frontal areas (premotor cortex).

Conclusions

Multivariate pattern recognition techniques were applied to
fMRI data to assess how and where the human brain encodes
complex rule sets. We found that human frontal cortex and
striatum were involved in representing two independent features
defining complex rule sets. Importantly, these features were encoded
in different brain areas. This shows that the human brain represents
complex rule sets by decomposing them in more elementary fea-
tures. The constituents are then represented in brain structures ap-
propriate for the type of information.
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