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Supplementary Eye Field Encodes Reward Prediction Error
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The outcomes of many decisions are uncertain and therefore need to be evaluated. We studied this evaluation process by recording
neuronal activity in the supplementary eye field (SEF) during an oculomotor gambling task. While the monkeys awaited the outcome, SEF
neurons represented attributes of the chosen option, namely, its expected value and the uncertainty of this value signal. After the gamble
result was revealed, a number of neurons reflected the actual reward outcome. Other neurons evaluated the outcome by encoding the
difference between the reward expectation represented during the delay period and the actual reward amount (i.e., the reward prediction
error). Thus, SEF encodes not only reward prediction error but also all the components necessary for its computation: the expected and
the actual outcome. This suggests that SEF might actively evaluate value-based decisions in the oculomotor domain, independent of other

brain regions.

Introduction

In most real-life decisions, the outcomes are uncertain or can
change over time. The values assigned to particular options or
actions are only approximations and need to be continually up-
dated. This evaluation process can be conceptualized in terms of
two different signals: valence and salience, which describe the
sign and size of the mismatch between expected and actual out-
come, respectively. Valence reflects rewards and punishments in
an opponent-like manner, while salience reflects their motiva-
tional importance, independent of value.

Various neuronal correlates of outcome evaluation signals
have been reported (Stuphorn et al., 2000; Belova et al., 2007;
Hayden et al., 2008; Matsumoto and Hikosaka, 2009b; Roesch et
al., 2010). Progress in understanding these signals has come from
reinforcement learning models (Rescorla and Wagner, 1972;
Pearce and Hall, 1980). A key element in many of these models is
the “reward prediction error” (RPE) (i.e., the difference between
the expected and the actual reward outcome) (Sutton and Barto,
1998). The RPE reflects both valence and salience of an outcome
using its sign and magnitude. Although many studies reported
RPE-related signals in various brain areas, it is still unclear where
these evaluative signals originate.

The outcomes of many real-life decisions not only are uncer-
tain but also manifest themselves only after some delay. To com-
pute a RPE signal, it is therefore necessary to represent
information about the choice during this delay period. As a re-
sult, investigating these two temporally and qualitatively differ-
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ent evaluative stages can indicate whether a brain area contains all
the neuronal signals sufficient to compute RPE signals.

We hypothesized that the supplementary eye field (SEF) plays
a critical role in the evaluation of value-based decisions. SEF
encodes the incentive value of saccades (i.e., their action value)
(So and Stuphorn, 2010; Stuphorn et al., 2010) and therefore
likely plays an important role in value-based decisions in the
oculomotor domain. It has appropriate anatomical connections
both to limbic and prefrontal areas that encode value signals and
oculomotor areas that generate eye movements (Huerta and
Kaas, 1990). However, SEF neurons responded also to the antic-
ipation of reward delivery (Amador et al., 2000; Stuphorn et al.,
2000), as well as to errors and response conflict (Stuphorn et al.,
2000; Nakamura et al., 2005). Thus, the SEF contains in the same
cortical area both action value signals and evaluative signals that
could be used to update the action value signals.

To investigate the role of SEF neurons in value-based decision
making, we designed an oculomotor gambling task (see Fig. 1).
Our results show that, during the delay period, SEF neurons rep-
resented the subjective value of the chosen option and the uncer-
tainty associated with this outcome prediction. After the gamble
result was revealed, some neurons represented the actual out-
come, while others encoded the difference between the predicted
and the actual reward amount (i.e., the RPE). These findings
suggest that SEF is capable of independently evaluating value-
based decisions, as all the necessary components for the compu-
tation of the RPE signals are represented there.

Materials and Methods

General

Two rhesus monkeys (both male; monkey A, 7.5 kg; monkey B, 8.5 kg)
were trained to perform the tasks used in this study. All animal care and
experimental procedures were approved by The Johns Hopkins Univer-
sity Animal Care and Use Committee. During the experimental sessions,
each monkey was seated in a primate chair, with its head restrained,
facing a video screen. Eye position was monitored with an infrared cor-
neal reflection system (Eye Link; SR Research) and recorded with the
PLEXON system (Plexon) at a sampling rate of 1000 Hz. We used a newly
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developed fluid delivery system that was based on two syringe pumps
connected to a fluid container that were controlled by a stepper motor.
This system was highly accurate across the entire range of fluid amounts
used in the experiment.

Behavioral task

In the gambling task, the monkeys had to make saccades to peripheral
targets that were associated with different amounts of water reward (see
Fig. 1 A). The fixation window around the central fixation point was *+1°
of visual angle. The targets were squares of various colors, 2.25 X 2.25° of
visual angle in size. They were always presented 10° away from the central
fixation point at a 45, 135, 225, or 315° angle. The luminance of the
background was 11.87 cd/m?. The luminance of the targets varied with
color (ranging from 25.81 to 61.29 cd/m?) but was in all cases highly
salient. The task consisted of two types of trials, choice trials and no-
choice trials. In choice trials, two targets appeared on the screen and the
monkeys were free to choose between them by making an eye movement
to the target that was associated with the desired option. In no-choice
trials, only one target appeared on the screen so that the monkeys were
forced to make a saccade to the given target. No-choice trials were de-
signed as a control to compare the behavior of the monkeys and the cell
activities when no decision was required.

Two targets in each choice trial were associated with a gamble option
and a sure option, respectively. The sure option always led to a certain
reward amount. The gamble option led with a certain set of probabilities
to one of two possible reward amounts. We designed a system of color
cues, to explicitly indicate to the monkeys the reward amounts and prob-
abilities associated with a particular target (see Fig. 1 B). Seven different
colors indicated seven reward amounts (increasing from 1 to 7 units of
water, where 1 unit equaled 30 ul). Targets indicating a sure option
consisted of only one color (see Fig. 1B, left column). Targets indicating
a gamble option consisted of two colors corresponding to the two possi-
ble reward amounts. The portion of a color within the target corre-
sponded to the probability of receiving that reward amount. In the
experiments, we used gamble options with two different sets of reward
outcomes. One set of gambles resulted in either 1 or 4 units of water (30
or 120 pl), while the other set resulted in either 4 or 7 units of water (120
or 210 ul). Each of the sets of possible reward outcomes was offered with
three different probabilities of getting the maximum reward (Py;,: 10,
50, and 75%), resulting in six different gambles (see Fig. 1 B, right col-
umn). In choice trials, the monkeys could always choose between a gam-
ble and a sure option. We systematically paired each of the six gamble
options with each of the four sure options that ranged in value from the
minimum to the maximum reward outcome of the gamble (as indicated
by the dotted lines in Fig. 1 B). This resulted in 24 different combinations
of options that were offered in choice trials.

A choice trial started with the appearance of a fixation point at the
center of the screen (see Fig. 1A). After the monkeys successfully fixated
for 800-900 ms, two targets appeared on two randomly chosen locations
among the four quadrants on the screen. Simultaneously, the fixation
point went off and the monkeys were allowed to make their choice by
making a saccade toward one of the targets. Following the choice, the
unchosen target disappeared from the screen. The monkeys were re-
quired to keep fixating the chosen target for 800—1000 ms, after which
the target changed either color or shape. If the chosen target was associ-
ated with a gamble option, it changed from a two-colored square to a
single-colored square associated with the final reward amount. This in-
dicated the result of the gamble to the monkeys. If the chosen target was
associated with a sure option, the target changed its shape from a square
to either a circle or a triangle. This change of shape served as a control for
the change in visual display during sure choices and did not convey any
behaviorally meaningful information to the monkeys. Following the tar-
get change, the monkeys were required to continue to fixate the target for
another 450 ms, until the water reward was delivered.

The monkey was required to maintain fixation of the fixation spot
until it disappeared and of the target until reward delivery. If the monkey
broke fixation in either one of the two time periods, the trial was aborted
and no reward was delivered. After the usual intertrial interval (1500—
2000 ms), a new trial started. In this trial, the target or targets represented
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the same reward options as in the aborted trial. In this way, the monkey
was forced to sample every reward contingency evenly. The location of
the targets, however, was randomized, so that the monkey could not
prepare a saccade in advance.

The sequence of events in no-choice trials was the same as in choice
trials, except that only one target was presented (see Fig. 1 A). The loca-
tion of the target was randomized across the same four quadrants on the
screen that were used during choice trials. In no-choice trials, we used
individually all seven sure and six gamble options that were presented in
combination during choice trials. We presented no-choice and choice
trials interleaved in a pseudorandomized schedule in blocks of trials that
consisted of all 24 different choice trials and 13 different no-choice trials.
This procedure ensured that the monkeys were exposed to all the trial
types equally often. Within a block, the order of appearance was random-
ized and a particular trial was never repeated, so that the monkeys could
not make a decision before the targets were shown. Randomized loca-
tions of the targets in each trial also prevented the monkeys from prepar-
ing a movement toward a certain direction before the target appearance.
In addition, presenting a target associated with the same option in dif-
ferent locations allowed us to separate the motor decision from the value
decision.

Estimation of subjective value of gamble options

In everyday life, a behavioral choice can yield two or more outcomes
of varying value with different probabilities. A decision maker that is
indifferent to risk should base his decision on the sum of values of the
various outcomes weighted by their probabilities (i.e., the expected
value of the gamble). However, humans and animals are not indiffer-
ent to risk and their actual decisions deviate from this prediction in a
systematic fashion. Thus, the subjective value of a gamble depends on
the risk attitude of a decision maker. In this study, we measured the
subjective value of a gamble and the risk attitude of the monkeys with
the following procedure.

We described the behavior of the monkey in the gambling task by
computing a choice function for each of the six gambles from the task
session of each day (see Fig. 8). The choice function of a particular gamble
plots the probability of the monkey to choose this gamble as a function of the
value of the alternative sure option. When the value of an alternative sure
option is small, monkeys are more likely to choose the gamble. As the value
of the sure option increases, monkeys increasingly choose the sure option.
We used a generalized linear model analysis to estimate the probability of
choosing the gamble as a continuous function of the value of the sure option
(EVs), in other words, the choice function as follows:

log[P(G)/1 — P(G)] = b, + b, *EVs. (1)

The choice function reached the indifference point (ip) when the prob-
ability of choosing either the gamble or the sure option are equal [P(G) =
0.5]. By definition, at this point the subjective value of the two options
must be equal, independent of the underlying utility functions that relate
value to physical outcome. Therefore, the subjective value of the gamble
(SVg) is equivalent to the sure option value at the indifference point
[EVs(ip)]. This value, sometimes also referred to as the certainty equiv-
alent (Luce, 2000), can be estimated by using Equation 1 at the indiffer-
ence point as follows:

EVs(ip) = SVg = — by/b,. (2)

If the monkey is insensitive to risk, the indifference point should be
where the expected values of the sure and gamble option are equal. If
the choice function is shifted to the right and the value of the sure
option at the indifference point is larger than the expected value of the
gamble, the risk increases the value of the gamble, so that the equiv-
alent sure reward amount has to be higher to compensate for the
increased attraction of the gamble. The monkey behaves in a risk-seeking
fashion. Conversely, if the choice function is shifted to the left, the value of
the sure option at the indifference point is smaller than the average reward of
the gamble. The gamble is diminished in value, so that a smaller, but sure
reward has the same value as the gamble. In this case, the monkey behaves in
a risk-aversive fashion.
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Behavioral results showed that the monkeys’ choices were based upon
the relative value of the two options (So and Stuphorn, 2010). The prob-
ability of a gamble choice decreased as the alternative sure reward
amount increased. In addition, as the probability of receiving the maxi-
mum reward (i.e., “winning” the gamble) increased, the monkey showed
more preference for the gamble over the sure option. The choice func-
tions allowed us to estimate the subjective value of the gamble to the
monkeys in terms of sure reward amounts, independent of the under-
lying utility functions that relate value to physical outcome. Both
monkeys chose the gamble option more often than expected given the
probabilities and reward amounts of the outcomes, indicating that
the subjective value of the gamble option was larger than its expected
value. Thus, the monkeys behaved in a risk-seeking fashion, similar to
findings in other gambling tasks using macaques (McCoy and Platt,
2005). The reasons for this tendency, as well as for the general ten-
dency for risk-seeking behavior, are not clear. It might be related to
the specific requirements of our experimental setup (i.e., alarge num-
ber of choices with small stakes). From the point of view of the present
experiment, the most important fact is that we can measure the sub-
jective value of the gambles, which is different from the “objective”
expected value.

Effects of reinforcement history on choice behavior

The choice of the current trial (gamble or sure) was described by the value
of the gamble option, the value of the sure option, and the outcome of the
previous trial, such as the following:

G = by + b*Vg + by*Vs + b* W, (3)

where G is the monkey’s choice for the current trial (1 for the gamble, and
0 for the sure choice), Vgis the value of the gamble option, Vs is the value
of the sure option, and W is the outcome of the previous trial (1 for the
win, and 0 for the loss).

Electrophysiology

After training, we placed a square chamber (20 X 20 mm) centered over
the midline, 27 mm (monkey A) and 25 mm (monkey B) anterior of the
interaural line. During each recording session, single units were recorded
using a single tungsten microelectrode with an impedance of 2—4 MQs
(Frederick Haer). The microelectrodes were advanced using a self-build
microdrive system. Data were collected using the PLEXON system. Up to
four template spikes were identified using principal component analysis
and the time stamps were then collected at a sampling rate of 1000 Hz.
Data were subsequently analyzed off-line to ensure only single units were
included in consequent analyses.

Spike density function

To represent neural activity as a continuous function, we calculated spike
density functions by convolving the spike train with a growth-decay
exponential function that resembled a postsynaptic potential. Each spike
therefore exerts influence only forward in time. The equation describes
rate (R) as a function of time () as follows:

R(t) = (1 — exp(—t/7,)) - exp( — t/Ty), (4)

where 7, is the time constant for the growth phase of the potential, and 7,
is the time constant for the decay phase. Based on physiological data from
excitatory synapses, we used 1 ms for the value of 7, and 20 ms for the
value of 7,4 (Sayer et al., 1990).

Task-related neurons

Since we focused our analysis on neuronal activities during delay (after
saccade and before result), and result period (from result to reward de-
livery), we restricted our analyses on the population of neurons active
during each of those two periods. We performed ¢ tests on the spike rates
in 10 ms intervals throughout the delay and the result period, compared
with the baseline activity defined as the average firing rates during the
200-100 ms before target onset. If values of p were <0.05 for five or more
consecutive intervals, the cell was classified as task-related in the tested
period. Since we treated the results in the two periods as independent, the
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two different neuronal populations used for further analyses were over-
lapping, but not identical.

Regression analysis

To quantitatively characterize the modulation of the individual neu-
ron, we designed groups of linear regression models separately for the
delay and the result period, using linear combinations of variables
that were postulated to describe the neuronal modulation during each
time period of interest. In general, we treated the activity in each
individual trial as a separate data point for the fitting of the regression
models. We analyzed the mean neuronal activity during the first 300
ms after saccade initiation for the early delay period, and the last 300
ms before the result disclosure for the late delay period. For the result
period analysis, we used the mean neuronal activity during the first
300 ms after the result disclosure.

Regression analysis for the delay period

To quantitatively identify value ( V), uncertainty ( U), gamble-exclusive
(Vg), and sure-exclusive (Vs) value signals, we built a set of linear regres-
sion models having V, G, S, GV, and SV as variables. V represented the
subjective value of the option, while G and S were dummy variables
indicating whether the saccade target was a gamble or a sure option. GV
and SV were the multiplicative term of the variables G and V, and S and
V, respectively. Therefore, GV and SV represented gamble-exclusive
and sure-exclusive value. Since they were mutually exclusive, we did
not cross combine gamble-exclusive (G or GV') and sure-exclusive
terms (S or SV) in our regression models. As a result, the following
two types of the full model:

fo(V,G) = by + by*V + b,*G + by * GV (5)
fs(V,S) = by + b *V + b,*S + by * SV (6)

were used, along with their respective derivative models. If the best
model contained the variable V, we classified the activity as carrying a
V'signal, as it responded to the value of the chosen option, regardless
of whether it was a gamble or a sure option. If either the G or S variable
appeared in the best model, we classified the activity as carrying a U
signal. Likewise, when the best model contained either GV or SV
variable, the activity was classified as carrying a Vg or a Vs signal,
respectively. Therefore, a given neuron could be classified as carrying
multiple signals.

As noted above, we did not cross-combine gamble- and sure-exclusive
terms in Equations 5 and 6. Thus, each class of models served its own
purpose independent of the other, albeit at the price of doubling the
number of regression models we had to test. To model gamble- or sure-
exclusive encoding, we used dummy variables that served as rectifier
(1/0). If we had only included gamble/sure choice as a variable, we could
have used a single variable. However, in the case of interaction terms (GV
and SV), the direction of the rectifier is of importance. This required the
use of two complementary sets of regression models.

In our current study, we were interested in whether the SEF neurons
contain information about the “chosen” option. Thus, any of the signals
identified by the regression analyses described above, should not distin-
guish between choice and no-choice trials. We therefore tested next
whether the neurons showed a significant difference between those two
trial types. The best regression model of each cell (determined using the
activity from both choice and no-choice trials indiscriminately) was
compared against a new model, which was the original best model plus a
dummy variable that indicated either a choice or a no-choice trial. If this
new model outperformed the original best model, we excluded the neu-
ron from further analyses. This test was performed separately for the
early and the late delay period.

Regression analysis for the result period

Reward amount-dependent signals. To quantitatively classify the various
evaluative signals during the result period, we designed two groups of
linear regression models. The first set of models was used to describe
different types of reward amount-dependent modulation. We identified
different types signals represented in neuronal activity according to the
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best model. If the best model contained the absolute reward amount (R),
we identified the activity as carrying a Reward signal. We used two
dummy variables to represent a winning ( W) or losing (L) trial. If the
best model contained any W or L variable, including the interaction
terms with R (R*W or R*L), we classified the activity as carrying a Win or
a Loss signal, respectively. Similar to the analysis of the delay period
activity, we did not cross-combine the winning (W) and losing (L)
terms, since they were again mutually exclusive. We therefore tested two
different full models and their derivatives as follows:

F\N(Raw)
FERL) = by + b,*R + b,*L + by* (R*L). (8)

by + b*R + by*W + by *(R* W) (7)

These two Fy, and F; functions discriminated the two different types of
relative reward amount-dependent modulation (F,y for a Win signal, F;
for a Loss signal).

Reward prediction error signals. The second set of regression models
was designed to explain the various types of RPE-dependent modulation.
We used four different full models to describe the result period neuronal
activity for each trial:

Frpe w(R, RPEy) = by, + b *R + b, *RPEy + b;* (R* RPEy)

(9)
Fype (R, RPE;) = b, + b, *R + b,* RPE,
+ by* (R*RPE) (10)
Free s(R,RPE) = b, + b, *R + b,* RPE
+ bs* (R*RPE) (11)
Free_us(R, [RPE|) = b, + b,*R + b,* |RPE|
+ by * (R*|[RPE|), (12)
where RPE was defined as follows:
RPE = Riwa — Runticipated> (13)

R, cruar Was the actual reward amount, and R, ipatea Was the anticipated
reward amount (i.e., the subjective value of each gamble).

In the first two models, RPE,, and RPE,, respectively, represented the
multiplicative interaction term of W (winning) and RPE variable, or L
(losing) and RPE. Therefore, if the best model carried either the RPE,, or
the RPE,; variable, or their interaction term with R, the neuron was
classified as carrying a valence-exclusive RPE signal. We also identified
those neurons as carrying Win or Loss signals, respectively. If the best
model carried a RPE term or its interaction term with R, we classified this
activity as carrying a signed RPE signal (RPEs). Such a neuronal signal
reflected both valence and salience of the outcome. Instead, when the
best model included an absolute RPE value term (|RPE|), the activity was
identified as carrying an unsigned RPE signal (RPEus), and it indicated
only salience of the outcome.

A given neuron could be classified as carrying multiple signals. After
determining the best model, we tested whether each neuron showed any
difference between choice and no-choice trials, using the same procedure
we did for the delay period. Those neurons that did were excluded from
further analysis.

actual

Encoding of saccade direction
In a previous study (So and Stuphorn, 2010), we analyzed SEF activity
during the preparation of the saccadic eye movement. In that paper, we
showed that the neurons carried information about the direction of a
saccade as well as the anticipated value of the reward. This indicated that
SEF neurons encode action value signals, in addition to representing
option value. Here, we tested whether the signals following the saccade
are still spatially selective and continued to be modulated by the direction
of the saccade with which they had chosen the target.

We investigated direction-dependent modulations during the delay
period by extending the linear regression model analysis of the SEF neu-

J. Neurosci., February 29,2012 - 32(9):2950-2963 « 2953

rons. In our previous study, we modeled direction dependency using a
circular Gaussian term involving four free parameters. For the current
study, we decided to use a more general approach that used fewer as-
sumptions. We therefore modeled direction dependency using four bi-
nary variables that indicated the different directions. The full model for
these direction-dependent regression models was as follows:

gD(Dth» D;y,D) = ¢ + ¢,*Dy + ¢,*D, + ¢;* D

+ ¢, * Dy, (14)

where D, was the dummy variable for the most preferred direction, D,
was the second preferred, D, was the third, and finally, D, was the least
preferred direction. The order of preferred direction was determined
from the comparison of the mean neuronal activities for four different
directions separately during each time period. Next, for each neuronal
activity, the original best model (Orig) was compared against the
direction-only model (Dir; which includes the full model g, and its de-
rivative models), linear (Orig + Dir), and nonlinear (Orig*Dir) combi-
nation of the original and the direction model. If any of the directional
terms enhanced the fit, the neuron was classified as influenced by direc-
tion. In this way, any conceivable pattern of selectivity across the four
directions was detected by the analysis.

Coefficient of partial determination

To determine the dynamics of the strength with which the different
signals modulated neuronal activity, we calculated the coefficient of par-
tial determination (CPD) for each variable from the mean activity of each
neuron during different time bins (50 ms width with 10 ms step size)
(Neteretal., 1996). As we had three variables in the full regression model,
CPD for each variable (X1) was calculated as follows:

| SSE(X2,X3) — SSE(XI, X2, X3)
CPDx = SSE(X2, X3)

(15)

Model fitting

To determine the best fitting regression model, we searched for the model
that was the most likely to be correct, given the experimental data. This
approach is a statistical method that has its origin in Bayesian data analysis
(Gelman et al., 2004). Specifically, we used a form of model comparison,
whereby for a pairwise comparison the model with the smaller Bayesian
information criterion (BIC) was chosen. For each neuron, a set of BIC values
were calculated using the different regression models as follows:

BIC = n*log(RSS/n) + K*log(n), (16)

where n was the total trial number, RSS was the residual sum of squares,
and K was the number of fitting parameters (Burnham and Anderson,
2002; Busemeyer and Diederich, 2010). A lower numerical BIC value
indicates a better fit of a model, since 7 is constant across all models, a
lower RSS indicates better predictive power, and a larger K can be used to
penalize less parsimonious models. By comparing all model-dependent
BIC values for a given neuron, the best model was determined as the one
having the lowest BIC.

This procedure is related to a likelihood-ratio test, and equivalent to
choosing a model based on the F statistic (Sawa, 1978). It provides a
Bayesian test for nested hypotheses (Kass and Wasserman, 1995). Impor-
tantly, we included a baseline model in our set of regression models.
Thus, a model with one or more signals was compared against the null
hypothesis that none of the signals explained any variance in neuronal
activity. An alternative procedure would have been a series of sequential
F tests, but this test, while exact, requires the assumption of data with a
normal distribution. We decided therefore to use the BIC test, because it
was computationally straightforward and potentially more robust. An
additional advantage was that we could compare all models simultane-
ously, using a consistent criterion (Burnham and Anderson, 2002).

Results
Behavior
We trained two monkeys in a gambling task (Fig. 1A), which
required them to choose between a sure and a gamble option by
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Figure 1.

An overview of the oculomotor gambling task. 4, Sequence of events during choice and no-choice trials in the gambling task. The lines below indicate the duration of various time

periods in the task: fixation period, delay period in which the monkey has to wait for the result of the trial after he has made a saccade to a gamble option, and the result period between the visual
feedback of the gamble result and the reward delivery. B, Visual cues used in the gambling task: left, sure options; right, gamble options. The values to the right indicate the amount of water
associated with a given color in case of the sure options (1 unit = 30 wl) and the probability of an outcome with the higher reward amount (Pwin) in case of the gamble options. €, Choice function
from the first half (top row) and the last half (bottom row) of the session of each day. Probability of a gamble choice was plotted against the value of the alternative sure option. Each choice function

was estimated using a logistic regression fit.

making an eye movement to one of two targets. Behavioral results
showed that the monkeys’ choices were based upon the relative value
of the two options (So and Stuphorn, 2010). For each gamble, we
plotted the probability of choosing the gamble as a function of the
alternative sure reward amount (Fig. 1C). The probability of a gam-
ble choice decreased as the alternative sure reward amount in-
creased. In addition, as the probability of receiving the maximum
reward (i.e., “winning” the gamble) increased, the monkey showed
more preference for the gamble over the sure option. The choice
functions allowed us to estimate the subjective value of the gamble to
the monkeys in terms of sure reward amounts, independent of the
underlying utility functions that relate value to physical outcome.
To be able to correlate neuronal activity with behavior, it is
critical that the monkeys showed the same pattern of preferences

throughout a recording session. We computed therefore the
monkeys’ choice function separately for the first half and the last
half of the session of each day (Fig. 1C). Both monkeys showed
variability in their choice throughout the session of each day, that
is, they preferred sometimes the gamble option and sometimes
the sure option, depending on their relative subjective value. Fur-
thermore, there were only small changes in the choice function
for the first and second half of each session. This indicates that the
monkey’s preferences stayed constant across time.

Neuronal data set

We recorded 264 SEF neurons in two monkeys. Of these, 227 cells
showed significant activities during the delay period, and 217
cells showed significant activities during the result period. These



So and Stuphorn e SEF Encodes Reward Prediction Error

A gamble trials
10 6
8
6 4
4 2
2
0 0
0 200 400 2 4 6
gamble value
sure trials
~ 10 6
<8
56 4
- 4
o 4 ol ¢ 4
£ 02
0 200 400 2 4 6
time from sacc onset (ms) sure value

Figure 2.

J. Neurosci., February 29,2012 - 32(9):2950-2963 « 2955

B gamble trials
10
8 8
6 6 .
4 4 f
2 2 +
0 — 0
-400 -200 O 2 4 6
gamble value
sure trials
1;) 8
6 6
4 41y
2 2
— 0
000 200 0 2 4 6
time from result onset (ms) sure value

An example neuron carrying a value signal during both the early (A) and late (B) delay period. In the spike density histograms, trials are sorted into three groups based on their chosen

option value. The black line represents trials with high value (6 units of reward or higher), the dark gray line represents trials with medium value (between 3 and 6 units of reward), and the light gray
line represents trials with low value (<3 units of reward). The top row represents the neuronal activities in gamble option trials, and the bottom row represents the neuronal activities in sure option
trials. The regression plots to the right of each histogram display the best models (lines) and the mean neuronal activities (dots) during the time periods indicated by the shaded areas in the
histograms. The red lines and dots represent gamble option trials, while the blue lines and dots describe sure option trials. Error bars represent SEM.

two groups of task-related neurons were classified indepen-
dently, and we restricted our analyses of the delay and the result
period to those two groups of neurons, respectively. On average,
we recorded the cells classified as task-related during the delay
period on 941.6 = 47.5 (SEM) trials. Similarly, 950.6 * 47.3 trials
were recorded on average for each cell we analyzed for the result
period. We will first present the neuronal activity during the delay
period, and then the activity in the result period.

SEF neurons monitor the choice during the delay period

In our task, the choice was followed by a delay period during
which the eventual outcome was not yet known. During this
delay period, information about the chosen action needed to be
maintained, to correctly evaluate the later outcome. To charac-
terize the neuronal activity, we determined the general linear
regression model that best described the activity separately dur-
ing an early (300 ms after saccade initiation) and a late (300 ms
before result onset) section of the delay period. For analysis, we
only used the neuronal population showing no difference be-
tween choice and no-choice trials [161 neurons (early); 199 neu-
rons (late)].

The most important information regarding the choice is its
subjective value (i.e., the reward that is expected to follow from
it). We estimated the subjective value of each gamble from the
monkey’s probability of choosing a gamble as a function of the
value of the alternative sure reward option (So and Stuphorn,
2010). During the delay period, many SEF neurons represented
the value of the chosen option. Figure 2 shows an example of such
a neuron reflecting the subjective value, throughout the early
(Fig. 2A) and the late (Fig. 2 B) delay period. The regression plots
to the right of the histograms show the mean neuronal activity
(dots) and the best regression model (lines), against the value of
the choice. As we can see, both the early and the late delay neu-
ronal activity represented the value of the choice, regardless of
whether it was a sure or a gamble option (V signal). We found 71

such neurons (71 of 161; 44.1%) in the early delay and 42 (42 of
199; 21.1%) in the late delay period.

There was a fundamental difference between sure and gam-
ble options in the degree to which the outcome of a particular
choice could be anticipated. Specifically, the outcome of the
gamble option was inherently uncertain, and this uncertainty
could not be reduced through learning. We found some SEF
neurons that encoded this categorical difference between sure
and gamble options. An example neuron representing this
uncertainty ( U) signal is presented in Figure 3A. This neuron
showed higher activation for the gamble than for the sure
options throughout the whole delay period. The regression
plots below the histograms show that the neuronal activity did
not reflect the value of different gamble or sure options. Un-
certainty signals were more frequent toward the late delay
period. We found them in 33 neurons (20.5%) during the
early delay period and in 78 neurons (39.2%) during the late
delay period.

The difference in uncertainty about the result of gamble and
sure options affected the reliability of the value estimates that
were associated with those two choices. Accordingly, we also ob-
served SEF neuronal activities, which represented the interaction
of the value signal and the categorical uncertainty signal. These
reflected value exclusively for the gamble (Vg signal; Fig. 3B) or
the sure option (Vs signal; Fig. 3C). Vg and Vs signals were more
frequently observed during the late delay period. Vg signals and
Vs signals were represented in 27 (16.8%) and 10 neurons (6.2%)
during the early delay period, which increased to 42 (21.1%) and
34 neurons (17.1%) in the late delay period, respectively.

Across all neurons, the neuronal activity was more often pos-
itively correlated with the value- and uncertainty-related signals
(Table 1). Nevertheless, negative correlations were not an un-
common occurrence.

Another important piece of information to keep track of dur-
ing the delay period is the chosen action, here, the saccade direc-
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Example neurons carrying uncertainty-related signals during the delay period. A, A neuron representing the categorical uncertainty of the chosen option (U signal) is shown with spike

density histogram (top row) and the best regression model (bottom row). This neuron discriminated gamble (red line) and sure option (blue line) throughout early and late delay period. It did not

represent the chosen value, as we can see from the best regression model plot in which the average

value (Vg signal) is shown with spike density histogram (left) and the best regression model (right).

neuronal activity was plotted against different value. B, A neuron representing gamble-exclusive
C, Aneuron representing /s signal. For the example neurons for Vg (B) and the Vs (C) signal, only

the late delay period activity is shown, as both neurons shown here represented the uncertainty-contingent value signal only in the late delay period. The line and dot colors here follow the

convention in Figure 2. Error bars represent SEM.

Table 1. The direction of correlation found in the chosen option-representing
neurons during the delay period

Table 2. The number of each signal, recounted based upon the saccade direction-
included regression analysis

Early Late Early Late
Pos Neg Total Pos Neg Total v U Vg Vs Vv U Vg Vs
v 51 20 Al 32 10 4 Without Dir 7 33 27 10 40 78 4 34
U 12(g>5) 21(s>g) 33 53(g>s) 25(s>9g) 78 Orig 44 15 15 7 18 40 18 20
Vg 19 8 27 20 22 Ly} Dir only 0 1 1 0 5 5 2 3
Vs 7 3 10 31 3 34 Orig + Dir 18 15 9 1 16 28 19 10
Orig*Dir 9 2 2 2 1 5 3 1

tion (So and Stuphorn, 2010). Among the neurons reflecting
attributes of the chosen option, a large number of neurons [41%
during the early (41 of 101); 45% during the late delay period (62
of 137)] carried also directional information. However, only a
minority (1 of 101 during the early; 8 of 137 during the late delay
period) represents the directional information alone (Table 2). A
X’ test showed no significant dependency between direction-

Please note that neurons can appear more than once in each column if multiple signals influence the activity of the
neuron.

encoding and the original signal(s) carried by a given SEF neuron
(p > 0.05 for both early and late delay period). Thus, value and
uncertainty information of the chosen option was represented
independently of the chosen action (i.e., saccadic direction).
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A result period (Fig. 1 A). The gamble out-
come could be described in absolute terms
) 60 as the physical reward amount, or in rela-
§ 50 tive terms as a win or loss. Our gambling
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linear regression analysis. During this
time period, the monkeys still needed to
hold the eye position until the reward was
actually delivered. The neuronal signals
that we describe in the following section
are therefore not confounded with the
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Figure 4.

each variable at each time bin. The shaded areas represent SEM.

Population dynamics of encoding during delay period

We investigated how SEF neurons dynamically encode these dif-
ferent signals during the delay period using a dynamic regression
analysis (50 ms width time bin; 10 ms step size). We first plotted
the number of cells that were best described by a model that
contained the respective variable at each time point (Fig. 4A).
Initially, the subjective value signal (V) dominated the SEF pop-
ulation. However, after ~100 ms, the number of neurons that
represented value sharply dropped, and more neurons started to
reflect the uncertainty of the value estimation. Consequently,
throughout the late delay period, the uncertainty-related signals
(U and Vg, Vs) became more common in the SEF population
than the V signal. We also calculated the mean CPD for each
variable in the SEF population using the full regression model
(Fig. 4B). Similar trends were observed as for the best model
analysis. The influence of the V signal on the neuronal activity was
predominant immediately after saccade, while the uncertainty-
related signals, especially Vg and U, dominated during the later part
of the delay period.

In sum, the neuronal representation of a chosen option in SEF
shows a characteristic development from early to late stages of the
delay period. This likely reflects the two distinct decision-making
stages that frame the beginning and the end of the delay period,
namely, decision execution and its outcome evaluation. The be-
ginning of the delay period, immediately following the decision,
is marked by the representation of the value that is expected on
the trial. Signals related to the uncertainty of this value estimation
start to develop with some delay, and eventually become predom-
inant. These signals are likely more important for the evaluation
of the outcome of the choice in the result period.

SEF neurons represent absolute or relative reward amount
during result period

On those trials in which the monkey chose the gamble option, the
result of the gamble was visually indicated at the beginning of the

-100 0
time from result onset (ms)

Temporal dynamics of signals representing information about the chosen option. 4, The number of cells that include
each variable in their best models was counted for each time bin (50 ms width temporal window with 10 ms step). B, Mean CPD for

preparation of eye movements following
reward delivery. Almost all (213 of 217;
98.2%) of the neurons identified as task-
related during the result period did not
discriminate between choice and no-
choice trials. If the activity of a neuron
reflected only the absolute reward
amount, the neuron should indicate the amount independent of
its context. However, if a neuron reflected the relative reward
amount (win/loss), it should show different activity for the same
reward amount depending on its context.

In fact, we observed different types of SEF neuronal activity
that reflected either absolute or relative reward amount during
the result period. Figure 5 shows single neuron examples of each
type. The neuron in Figure 5A was modulated only by the abso-
lute reward amount (Reward signal). Figure 5, B and C, shows
neurons that were modulated by the relative reward amount. The
neuron in Figure 5B increased its activity only when the realized
reward amount was the larger one of the two possible outcomes
(Win signal). Figure 5C shows the opposite pattern, responding
only when the realized reward amount was the smaller one of the
two outcomes (Loss signal). Among the 213 task-related neurons,
49 neurons (23%) carried the Reward signals, 41 neurons
(19.2%) encoded Win signals, and 45 neurons (21.1%) encoded
Loss signals.

SEF neurons represent reward prediction error during
result period
During the delay period, the value of the expected outcome of the
trial was represented in many SEF neurons. In addition, during
the result period, some SEF neurons encoded the actual reward
amount that the monkey was going to receive at the end of the trial.
The combination of these two types of signals allows the computa-
tion of another type of evaluative signal, namely, the mismatch
between the expected and the actual reward amount. This mis-
match signal, so-called RPE, is an important signal in reinforce-
ment learning theory, and the monkeys’ behavior indicated that
they were sensitive to RPE during the result period (Fig. 6).

We observed four different types of RPE representations (Fig.
7). First, among some cells encoding Win or Loss signals, we
observed that the win- or the loss-exclusive activation was also
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modulated by RPE. For example, the

winning-induced activation of the cell MonkeyA Monkey B

shown in Figure 7A was highest when the 0.25 0.4

winning was least expected (gambles with 2

10% probability to win) (i.e., when the E 0.2 0.3

mismatch between actual and expected S 015

reward was largest). We will refer to this 5 0.2

type of activity as “win-exclusive reward g 0.1

prediction error” (RPE,y) representation. =] 0.1

Conversely, the loss-induced activation of _>_“2 0.05

the cell in Figure 7B was highest when the . 0 0

losing was least expected (gambles with 4 3 -2 1 0 1 2 3 4 % 2 4 0 1 2 3
75% probability to win). We will refer to Ractual - Ranticipated

this type of activity as “loss-exclusive

reward prediction error” (RPE;) repre- Figure 6.  Fixation break rates during result period are plotted against the difference between the actual and the anticipated

sentation. Among 41 neurons encoding
Win signals, 20 neurons (48.8%) were ad-
ditionally modulated by reward predic-

reward (i.e., reward prediction error). The left column represents the results from monkey A, and the right column shows monkey
B results. Error bars represent SEM.

tion error (RPE,y). Likewise, among 45 neurons encoding Loss
signals, 15 neurons (33.3%) were additionally modulated by the
reward prediction error (RPE,).

In these first two groups, the RPE representations were con-
tingent on the valence of the outcome. However, we also found
some RPE representations in SEF that were not valence exclusive.
The neuron shown in Figure 7C is an example. This neuron
showed higher activation as the reward prediction error increased

and lower activation as the reward prediction error decreased.
The modulation faithfully represented the RPE reflecting both
valence and salience of an outcome. We will refer to this type of
neuronal signal as “signed reward prediction error” (RPEg). We
found 13 cells (13 of 213; 6.1%) representing RPEg signals. An-
other type of RPE-sensitive activity in SEF showed modulation
depending on the absolute magnitude of RPE, independent of the
valence of an outcome. An example of a neuron carrying such a
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signal is shown in Figure 7D. This neuron
showed highest activation when the least
expected outcome happened (i.e., win-
ning at 10% gambles or losing at 75%
gambles). We will refer to this type of sig-
nal as “unsigned reward prediction error”
(RPEy;), and it seems to encode only the
salience of an outcome. We found 20 cells
(20 of 213; 9.4%) representing RPE
signals.

We also tested whether the SEF activity
during the result period encoded saccade
direction, using the same analysis as the
one used for delay period. In general, we
observed a similar result (Table 3). A x*
test showed no significant dependency be-
tween direction-encoding and the origi-
nal signal(s) carried by a given SEF neuron
(p = 0.99). Therefore, across the entire
SEF population, the direction encoding
observed during the result period was in-
dependent from the encoding of gamble
outcome monitoring and evaluation.

Our results therefore suggest that di-
rectional information is maintained in
SEF neuronal activity in the delay and the
result period, although its representation
was independent of other monitoring and
evaluative signals. This is interesting be-
cause it indicates that at the moment
when the result of an action is revealed
there is a remaining memory signal of the
action that was selected. This might sim-
plify certain aspects of reinforcement
learning, such as the credit assignment
problem (Sutton and Barto, 1998). The
fact that value and directional informa-
tion are represented separately in the
population would allow these signals to
be used to update the two different value
signals found in the SEF (So and Stu-

<«

10% chance of winning, this case holds a high magnitude of
RPE. The medium light red line represents 50% gamble win-
ning trials, and the light red line represents 75% gamble win-
ning trials. Likewise, for losing trials, the black line represents
the neuronal activity for gambles with 75% chance of winning.
The dark gray line represents the winning trials of the 50%
gamble, and the light gray line represents the winning trials of
the 10% gamble. Best regression models for each neuron
(lines), along with the mean neuronal activities (circles for low
value gambles; triangles for high value gambles), are plotted
against the reward prediction error. In each plot, all lines are
derived from the single best-fitting model for each neuron.
This model might include other variables, such as the reward
amount, in addition to the RPE indicated on the x-axis. In case
the best regression model identified an additional modulation
by reward amount, a dotted line represents either winning
(red dotted line) or losing (black dotted line) for low value
gambles, while a solid line represents high value gamble re-
sults. When there is no additional modulation by reward
amount, asingle solid line describes both cases. Error bars rep-
resent SEM.
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Table 3. The number of each signal during the result period, recounted based upon
the direction-included regression analysis

R w L RPE, RPEys RPE,, RPE,
Without Dir 49 43 42 13 21 20 15
Orig 37 33 33 10 16 16 12
Dir 0 0 0 0 0 0 0
Orig + Dir 12 8 8 3 4 3 2
Orig*Dir 0 2 1 0 1 1 1

phorn, 2010). Specifically, in the case of option-value signals
the value evaluation signals could be used separately, while in
the case of action-value signals they could be combined with
directional information.

Behavioral adjustments by the outcome of the preceding
gamble

Reward prediction error alone is not sufficient to lead to the
actual learning process, which is indicated by behavioral adjust-
ments (Dayan et al., 2000; Behrens et al., 2007). We therefore
tested whether the RPE-related signals in SEF are accompanied
by behavioral adjustments. We investigated such possible effects
of the outcome of the previous trial on the monkeys’ choice in our
gambling task using two different ways.

First, we tested whether the choice outcome (win/loss) influ-
enced the likelihood of choosing a gamble. To do so, we analyzed
the subset of choice trials, in which the monkey had chosen a
gamble option in the previous trial. We fitted the choice curves
separately for trials, in which the previous trial was a winning or a
losing one (Fig. 8 A). Across all six gambles, these two curves
showed no significant difference for both monkeys. The distribu-
tions of the gamble choices (specifically the frequency with which
the gamble was chosen during a particular session) across the
individual comparisons of sure and gamble options was also not
significantly influenced by outcome history (t tests, p > 0.05,
Bonferroni adjusted). Additionally, a linear regression analysis
was used to investigate the effect of the outcome of the previous
trial on monkeys’ choice. For both monkeys, the value of the
gamble and the sure option had a highly significant effect on
choice (p < 0.00001), while the outcome of the previous trial was
not significant (p > 0.05).

Second, we tested whether the choice outcome (win/loss) in-
fluenced the spatial direction of the saccade in the next trial. We
found that there was no influence of the outcome on the spatial
choice of the next trial (Fig. 8 B). The frequency of spatial choices
was not significantly different after winning or losing a gamble in
the previous trial (p > 0.05 for all directions; Bonferroni ad-
justed). This result is not surprising considering the way our task
was designed. In our task, every trial has a different spatial con-
figuration of choice targets, randomly drawn from a set of 12 such
configurations. In this way, across all choice trials in the experi-
ment the amount of expected reward should have been allocated
equally for each target. This expectation was confirmed by post
hoc analysis. Both monkeys experienced on average a similar
amount of reward from each of the quadrants (monkey A: T1,
4.20 * 0.16; T2, 4.32 = 0.20; T3, 4.57 %= 0.16; T4, 4.52 * 0.17
reward units; monkey B: T1, 4.27 = 0.14; T2, 4.83 * 0.21; T3,
4.52 = 0.13; T4, 4.29 = 0.12 reward units; errors are in SD). This
implied that there were no environmental contingencies that
could drive the development of spatial biases. Consequently, the
monkeys made eye movements to each quadrant approximately
equally often (Fig. 8 B).

So and Stuphorn e SEF Encodes Reward Prediction Error

Discussion

SEF monitors choices and evaluates their outcome

Following any choice, the most important variable to monitor is
the estimated value of the chosen option, since it drove the selec-
tion process. Accordingly, SEF neurons represent the expected
value of the chosen option throughout the entire delay period.
Following decisions under risk, the outcome is uncertain and it
becomes important to monitor the presence and amount of this
uncertainty as well.

However, the uncertainty signals in SEF emerge only later in
the delay period; hence, they are clearly not involved in decision
making. Instead, they likely serve to modulate the outcome eval-
uation. Theoretical models have suggested that it would be useful
to track prediction risk (i.e., the expected size of a prediction
error) (Yuand Dayan, 2005; Preuschoff and Bossaerts, 2007), as it
could be used to optimize the reaction to the prediction error.
The SEF uncertainty signal could track prediction risk as required
by these models. Uncertainty signals observed in midbrain dopa-
mine neurons, anterior insular cortex, and striatum (Fiorillo et
al., 2003; Preuschoff et al., 2006) show a similar dynamics as the
one in SEF, appearing later than value-encoding signals. These
brain regions are closely connected and might form a functional
network.

During the result period, SEF neurons represented the actual
reward. This is critical because outcome evaluation depends on
the comparison of both expected and actual reward. This reward
signal often indicated the relative (Win or Loss) rather than the
absolute reward amount. Similar relative reward encoding was
also found in other reward-related brain areas, such as midbrain
dopamine nuclei (Tobler et al., 2005), habenula (Matsumoto and
Hikosaka, 2009a), orbitofrontal (Tremblay and Schultz, 1999),
and medial frontal cortex (Seo and Lee, 2009). However, this
neuronal activity is contingent on the valence of the outcome and
is therefore not suitable to generate the whole range of a reward
prediction error signal, in contrast to the neuronal activity rep-
resenting absolute reward amount.

We observed four different RPE representations in SEF during
the result period. The RPEg signal reflected both valence and
salience of the outcome. Such a RPEg signal is equivalent to the
teaching signal that is predicted in the Rescorla—Wagner model of
reinforcement learning (Rescorla and Wagner, 1972), and is sim-
ilar to the well known signal carried by midbrain dopamine and
habenular neurons (Schultz et al., 1997; Matsumoto and Hiko-
saka, 2007). However, the RPEj signal is equivalent to the sa-
lience signal that is predicted in the Pearce—Hall model of
reinforcement learning. In this model, the salience signal controls
the amount of attention that is paid to a task event and thus
indirectly the amount of learning (Pearce and Hall, 1980). Re-
cently, it has been reported that some dopaminergic neurons in
the midbrain encode a valence-independent salience signal (Ma-
tsumoto and Hikosaka, 2009b). If confirmed, such a salience
signal would be similar to the RPE g signal we report here in SEF.
A similar salience-related RPE signal was also reported in the
amygdala of macaques (Belova etal., 2007) and rats (Roesch et al.,
2010), as well as in the basal forebrain of rats (Lin and Nicolelis,
2008).

In addition, many SEF neurons encoded reward prediction
error selectively for outcomes of a specific valence (RPE,, and
RPE; signals). A very similar valence-specific RPE signal was also
found in the amygdala (Belova et al., 2007) and in the ACC (Ma-
tsumoto et al., 2007) of primates. An important difference be-
tween our study and others is that we did not use aversive stimuli,
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Figure8. Influence of outcome of previous trial on current choice. 4, Choice functions of monkey A (top) and B (bottom),
separately drawn depending on the outcome of the previous trial. The solid lines represent the choice curves for the trials
after winning trials, and the dotted lines represent the choice curves for the trials after losing trials. The probability that the
monkey chooses a particular gamble option [P(G)] is plotted as a function of the value of the alternative sure option. The
reward size is indicated as multiples of a minimal reward amount (30 wl). The left column shows gamble options that yield
either 30 wl (1 unit) or 160 wl (4 units) with a 10% (red lines), 50% (blue lines), and 75% (black lines) chance of receiving
the larger outcome. The right column shows gamble options that yield either 160 gl (4 units) or 210 wl (7 units) with a 10%
(redlines), 50% (blue lines), and 75% (black lines) chance of receiving the larger outcome. The figure represents the grand
average over all choice trials recorded from monkey A (top row) and B (bottom row). Error bars represent SEM. B, Frequency
with which a saccadic direction was chosen after winning (red) or losing (black) a gamble in the previous trial. Both
monkeys made a saccade to each of the directions equally often, regardless of the gamble outcome of the previous trial
(p > 0.05 for all directions; Bonferroni adjusted).
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such as air puffs. It is therefore an open
question whether the Loss-specific activi-
ties in the SEF that responded to the
smaller reward would also respond to a
true aversive stimulus. While this is a
question that needs to be resolved empir-
ically, the monkeys may have indeed re-
garded lost gambles as aversive outcomes.
This interpretation was supported by the
observation that both monkeys’ fixation
break rate was significantly higher for lost
gamble trials, even though fixation breaks
at the end of the trial were very costly to
the monkeys.

Functional architecture of

outcome evaluation

Our findings in SEF fit well into a new
emerging picture of how outcomes are
evaluated by the brain. First, in our SEF
population, as well as in dopaminergic mid-
brain neurons and in the amygdala, various
valence- and salience-based evaluative sig-
nals coexist in neighboring groups of neu-
rons. The wide distribution of brain regions
in which valence-independent salience sig-
nals are found suggests a ubiquitous pres-
ence of this type of evaluative signal. This
heterogeneous mixture of signals suggests
that the current understanding of reinforce-
ment learning, which has been largely based
upon the Rescorla-Wagner model (Re-
scorla and Wagner, 1972), needs to be ex-
panded by including motivational saliency
(Pearce and Hall, 1980). In fact, a hybrid
learning model has been developed (LePel-
ley, 2004).

Second, our findings also support
long-standing theoretical ideas regarding
the evaluation of affective states by two
separate processes (Konorski, 1967; Solo-
mon and Corbit, 1974). The neuronal sys-
tems processing appetitive and aversive
stimuli closely interact, which might ex-
plain the heterogeneous representation
present in SEF. These heterogeneous sig-
nals can control behavior in different
ways. On the one hand, appetitive and
aversive signals might act in an opponent
manner, as in valence-dependent RPE
representations. These signals could be
used to directly adjust action value repre-
sentations in SEF (Seo and Lee, 2009; So
and Stuphorn, 2010) and in this way could
influence the future allocation of behav-
ior. Alternatively, appetitive and aversive
signals might act in a congruent manner,
as in salience-dependent RPE representa-
tions. The motivational salience of events
is related to their ability to capture atten-
tion (Holland and Gallagher, 1999). The
role of the SEF in attention is not very well
understood, but SEF is known to be active
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in attentional tasks (Kastner et al., 1999). It is therefore possible
that the valence-independent salience signals in the SEF serve to
guide attention toward motivationally important events.

Our current gambling task design does not promote behav-
ioral adjustments. It is therefore interesting to note that we found
the neuronal correlates of RPE signals even without the need for
behavioral adjustments. RPE alone does not necessarily lead to
learning. The learning process also requires a nonzero learning
rate, which is determined by the statistics of the environment
(i.e., volatility) (Dayan et al., 2000; Behrens et al., 2007). This
disassociation suggests that the process of learning and the (po-
tentially automatic) process of RPE computation might be
separated.

Origin of reward prediction error signals

Outcome-related neuronal activities are found in a very large
network of areas. This poses the question of the relationship of
these signals to similar RPE signals in other brain structures. Our
findings suggest that, in the case of eye movements, the SEF could
compute the RPE signals locally without input from other struc-
tures. In that case, the SEF might send those RPE signals to the
amygdala (Ghashghaei et al., 2007), as well as to the dopaminer-
gic midbrain nuclei and the habenula via connections through
the basal ganglia. The SEF projects to the striatum, which projects
to the dopaminergic midbrain nuclei (Calzavara et al., 2007) and
to the habenula (Hong and Hikosaka, 2008). Local computation
of RPE may happen in parallel in other brain structures, as sug-
gested by recent studies in orbitofrontal cortex (Sul et al., 2010),
striatum (Kim et al., 2009), and ACC (Seo and Lee, 2007). More
general signals might be generated through converging inputs
from multiple specialized evaluation systems onto a central,
general node, such as the midbrain dopamine and the habe-
nula neurons.

However, we cannot rule out the possibility that SEF might
passively reflect the outcome-related signals coming from other
areas. In addition to the projections from frontal cortex, the
amygdala also projects back to frontal cortex, including SEF
(Ghashghaei et al., 2007). Likewise, the SEF, together with other
parts of the medial frontal cortex, receives a dense dopaminergic
projection (Schultz, 1998; Holroyd and Coles, 2002). It will re-
quire additional experiments to test which of these possibilities is
correct. For example, it would be useful to study other brain
regions using our gambling task, to describe the relative timing of
different outcome-related signals.

Conclusion

Our results show that SEF neurons carry various monitoring and
evaluative signals in a task that requires decision making under
uncertainty. These findings provide a new understanding of the
role of SEF in the evaluation of value-based decision making.
First, the SEF contains all signals necessary to compute RPE sig-
nals and is therefore in a position to independently evaluate the
outcome of saccadic behavior. Second, the evaluative signals in
SEF support both reinforcement learning models that rely on
valence-sensitive and those that rely on valence-insensitive RPE
signals. This finding matches recent results in other brain regions
and suggests the need for hybrid models of reinforcement learn-
ing. Third, the sheer number of different evaluative signals found
in SEF is remarkable. It will be important to test other parts of the
medial frontal cortex with similar tasks to determine whether this
finding is specific to SEF or a more general characteristic of me-
dial frontal cortex and potentially also of other brain regions.
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