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The Countermanding Task Revisited: Fast Stimulus
Detection Is a Key Determinant of Psychophysical
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The countermanding task is a standard method for assessing cognitive/inhibitory control over action and for investigating its neural
correlates. In it, the subject plans a movement and either executes it, if no further instruction is given, or attempts to prevent it, if a stop
signal is shown. Through various experimental manipulations, many studies have sought to characterize the inhibitory mechanisms
thought to be at work in the task, typically using an inferred, model-dependent metric called the stop-signal reaction time. This approach
has consistently overlooked the impact of perceptual evaluation on performance. Through analytical work and computer simulations,
here we show that psychophysical performance in the task can be easily understood as the result of an ongoing motor plan that is modified
(decelerated) by the outcome of a rapid sensory detection process. Notably, no specific assumptions about hypothetical inhibitory
mechanisms are needed. This modeling framework achieves four things: (1) it replicates and reconciles behavioral results in numerous
variants of the countermanding task; (2) it provides a new, objective metric for characterizing task performance that is more effective than
the stop-signal reaction time; (3) it shows that the time window over which detection of a high-visibility stimulus effectively occurs is
extremely short (�20 ms); and (4) it indicates that modulating neuronal latencies and the buildup rates of developing motor plans are two
key neural mechanisms for controlling action. The results suggest that manipulations of the countermanding task often cause changes in
perceptual detection processes, and not necessarily in inhibition.

Introduction
In the countermanding or stop-signal task, a subject is cued to
make a movement to a single target. In some trials, the movement
is simply executed, but in others a stop signal is given shortly after
the go cue and the planned movement must be cancelled (Fig. 1).
This paradigm has been widely used to study how voluntary ac-
tions are generated and controlled (Colonius et al., 2001; Kornylo
et al., 2003; Akerfelt et al., 2006; Jacobson et al., 2011) and to
investigate the neural correlates of such processes (Hanes et al.,
1998; Ito et al., 2003; Paré and Hanes, 2003; Stuphorn and Schall,
2006). It is also commonly used to characterize abnormal mental
conditions that may be related to action inhibition (Armstrong
and Munoz, 2003; DeHaan et al., 2007; Lipszyc and Schachar,
2010; Thakkar et al., 2011). For concreteness, here we generally
consider the version of the task in which the responses are eye
movements.

The conceptual framework adopted by virtually all studies
based on this task, or variants thereof, is one in which a motor and
a stopping process race against each other toward a threshold
(Logan and Cowan, 1984; Boucher et al., 2007; Verbruggen and
Logan, 2009). The buildup of motor activity starts first, after the
go signal, and the stop-related activity starts later, after the stop
signal. If the motor activity reaches threshold first and wins the
race, an eye movement is triggered, whereas if the stop-related
activity wins, no action is executed; fixation is successfully
maintained.

Here we take a different approach. We still consider the
programming of a saccade as a buildup in oculomotor activity
toward a threshold because there is substantial evidence for
this (Hanes and Schall, 1996; Dorris et al., 1997; Lo and Wang,
2006; Brown et al., 2008; Heitz and Schall, 2012), but we make
no such assumption about the stopping process. Instead, we
simply consider two events: (1) the stop signal is detected with
a particular timing and reliability that depend on perceptual
mechanisms; and (2) then the motor plan is decelerated such
that it slows down and reverses its course (Fig. 2). The idea is
that, because a successfully cancelled saccade is one for which
the preparatory activity simply does not reach threshold, only
two quantities matter: how soon the ramping activity can start
slowing down once the stop signal has been given (the detec-
tion latency), and how abrupt is the change of course toward
baseline (the magnitude of the deceleration). As such, in de-
scribing the phenomenology of the task, the perceptual pro-
cess is crucial because the detection of the stop signal must
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occur before any hypothetical inhibitory mechanism can con-
ceivably have an impact.

Two observations motivated us to pursue this approach. First,
in trying to explain the results of various task manipulations in
terms of their direct effect on an inhibitory plan, previous models
have overlooked the impact of the perceptual judgment; and
again, any inhibitory surge must obligatorily follow the detection
step. Second, the countermanding task shares key characteristics
with the compelled-saccade task, a task designed to investigate
fast perceptual choices (Stanford et al., 2010). The framework
developed here, which derives from that work, is parsimonious,
produces a psychophysical metric that has many advantages over
the stop-signal reaction time (SSRT), and demonstrates that con-
sideration of perceptual detection mechanisms is both sufficient
and necessary for correctly interpreting the results of most exper-
imental manipulations in the countermanding task.

Materials and Methods
The cancellable rise-to-threshold model. All model simulations were per-
formed using Matlab (The Mathworks). The code is available from the
authors on request.

The model consists of a variable M that represents the population
activity of movement-related neurons (Bruce and Goldberg, 1985) with
response fields at the saccadic target (Fig. 2). In each trial, M starts at a
value of 0 and then increases linearly toward a threshold of 1000 units.

When M crosses the threshold, the circuit commits to a motor action and
a saccade is inevitable. The onset of the eye movement is considered to
occur an efferent delay �E after threshold crossing. �E was set to 20 ms
(Brown et al., 2008); the actual number has essentially no impact on the
results.

Each simulated trial proceeds as follows: The go signal (target onset) is
given at t � 0; and as soon as this signal reaches the model oculomotor
circuit, which happens after an afferent delay �T, M starts increasing (i.e.,
the motor plan starts developing). The rate at which M increases, the
buildup rate rB, is constant and random; in each trial, it is drawn from a
Gaussian distribution with mean �B and SD �B. During this constant
buildup stage, M evolves according to the following:

dM

dt
� rB (1)

rB � rB
0 (2)

where rB
0 is the buildup rate drawn initially. In trials in which M

reaches threshold during this stage (all no-stop trials and some non-
cancelled trials), a saccade is produced and a reaction time (RT) is
recorded (Fig. 2a,b). Otherwise, the oculomotor plan changes as pre-
scribed by the above equations until the information about the stop
signal arrives.

The stop signal is presented SSD (stop-signal delay) milliseconds after
the go signal, at t � SSD, and it reaches the model circuit at t � SSD � �S,
where �S is the afferent delay of the stop signal. At this time, the activity
variable M starts decelerating: the buildup rate itself decreases at a con-
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Figure 1. The countermanding task. a, A no-stop trial. The instruction to make a saccade
(Go) is the simultaneous disappearance of the fixation spot and appearance of the target. b, A
correct stop trial (cancelled). When the fixation point reappears (Stop), the subject must with-
hold the planned eye movement. c, An incorrect stop trial (noncancelled). The saccade could not
be stopped. The RT is measured from the onset of the go signal to the onset of the saccade. Task
difficulty is controlled according to the delay between the go and stop signals (SSD). The rPT is
the amount of time available for viewing the stop signal.
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Figure 2. Trial outcomes in the countermanding task, as reproduced by the cancellable
rise-to-threshold model. Each panel shows the variable M, which represents oculomotor
activity, as a function of time (red traces). In these examples, each motor plan starts 50 ms
(afferent delay) after the go and a saccade is produced 20 ms (efferent delay) after the
threshold (dotted line) is crossed. The interval between the go and the saccade is the RT.
Gray shadows represent the period (after the SSD and the afferent delay) during which the
stop signal is known to the model circuit and the motor plan may decelerate. a, A no-stop
trial. A correct saccade is produced. b, A noncancelled trial. The stop signal is given, but a
saccade is produced before the signal has any effect on the model circuit. c, Another
noncancelled trial. The motor plan decelerates slightly, but the incorrect saccade cannot
be prevented. d, A cancelled trial. The motor plan decelerates and turns back toward
baseline. The arrow indicates the point of maximum buildup, Tmax. b– d, The SSD is 150
ms; horizontal bars and numbers indicate the ePT (Eq. 7).

Salinas and Stanford •Fast Detection in the Countermanding Task J. Neurosci., March 27, 2013 • 33(13):5668 –5685 • 5669



stant rate, approaching a negative value rDN, which is the maximum
build-down rate. The corresponding equations are as follows:

dM

dt
� rB (3)

drB

dt
�

rDN � rB
0

�
(4)

with the added rule that, once the buildup rate reaches its new target
value (i.e., once rB is equal to rDN), it stops changing, so the last derivative
becomes zero. In this way, the deceleration is constant but lasts a finite
maximum amount of time, which is precisely equal to �. Two things can
happen during this deceleration stage: either M turns around and never
reaches threshold (the trial is cancelled; Fig. 2d), or even though it slows
down, M still reaches threshold (the trial is noncancelled; Fig. 2c). So, two
parameters determine the dynamics of the turnaround in activity: rDN,
which is the most negative slope of the firing rate when it ramps down-
ward, and the time constant �, which determines how fast that negative
rate is reached.

For simplicity, the maximum build-down rate rDN was set to �8.0
U/ms throughout; in this way, it was equal in magnitude to the average
buildup rate within the standard set of parameters (�B � 8.0 U/ms) but
had the opposite sign. The actual value had only a minimal impact on
the results. Indeed, we tested various additional functional forms for
Equation 4 that did not place a limit on the maximum build-down
rate (drB/dt proportional to the square of rB

0 , proportional to rB
0 , or

equal to a constant, with variable durations) and with appropriate
proportionality coefficients, the results were nearly identical to those
obtained with Equation 4. Thus, the model is quite insensitive to the
specific dynamics of the deceleration.

There are two afferent delays in the model: one for the target/go signal
(�T) and another for the stop signal (�S). Allowing them to be different
not only produced better fits to the data but also was crucial for experi-
ments in which the target and the stop correspond to stimuli of different
modalities. We assume that the afferent delays vary across trials and
independently for the go and stop signals. The variability is Gaussian, but
such that delays below a minimum amount (20 ms) are not allowed. The
mean delays are �T and �S, and the SDs of the Gaussians are �T and �S.

Finally, although subjects generally do not make errors when they have
ample time to detect the stop signal, under some circumstances such
errors do happen. This was most evident in one particular experiment
discussed below. To account for such lapses, in each simulated stop trial
we consider a probability pe of making an unconditional error (i.e., of
missing the stop signal altogether, regardless of its timing). In those cases,
M keeps increasing toward threshold following Equations 1 and 2 as if no
stop was presented. In practice, the parameter pe uniquely sets the max-
imum value of the tachometric function discussed below.

In all, the cancellable rise-to-threshold model has eight free parame-
ters: �B, �B, �T, �T, �S, �S, �, and pe. The model produces different RTs
and outcomes (cancelled/noncancelled) from one trial to another pri-
marily because a different initial buildup rate (rB

0 ) is drawn each time; the
only other quantities that also change stochastically across trials are the
afferent delays, but their variabilities (�T, �S) have a more modest influ-
ence on the results.

Model fitting The free parameters of the rise-to-threshold model were
first optimized to minimize the mean absolute error between the simu-
lated data and the monkey data published by Boucher et al. (2007). Five
psychophysical curves were use to constrain the model parameters: the
psychometric curve (percentage correct vs SSD) and four cumulative RT
distributions, three for noncancelled trials and one for no-stop trials (Fig.
2 of Boucher et al., 2007). Thus, the error function had the form

E � �
i, j

wi

�eij � mij�
ni

(5)

where e and m are experimental and model values, respectively; the index
i � 1, 2, …5 identifies each of the five psychophysical curves; the index j
runs through each point in a curve; the factor ni is the number of non-

zero points in curve i; and wi weights the contribution of each curve (so �i

wi � 1). Best-fitting parameter values were found by exhaustive search;
that is, by establishing a multidimensional grid where each point is a
different combination of parameters, running the model with each com-
bination, and selecting the one that minimized the above error.

The data included in other experimental studies were typically less
complete. In those cases, it was relatively easy to find ranges of values
that replicated the results accurately, and the final values were chosen
so that they deviated relatively little from those that fitted the Boucher
et al. (2007) data. The parameter values used in each figure are shown
in Table 1.

Predicted neuronal activity. Using the cancellable-rise-to threshold
model, we generated average activity traces to (1) verify that these were
consistent with previous neurophysiological recordings, and (2) make
predictions about the neuronal responses expected under various exper-
imental conditions. For this, several thousand trials were run with a fixed
set of parameter values and the trajectory of the variable M, which rep-
resents the oculomotor plan, was saved in all of them. Predicted neuronal
responses were generated by separating the simulated trials into appro-
priate groups (no-stop, cancelled, etc.), synchronizing each trace either
on the go signal, on the stop, or on the saccade, and averaging the M
trajectories for each group. This is the standard approach for character-
izing real responses recorded from oculomotor cells (e.g., Thompson et
al., 1996; Port and Wurtz, 2009; Stanford et al., 2010).

Whenever an eye movement is performed, recordings from saccade-
related neurons typically show a quick, stereotypical drop in activity
shortly after saccade onset. This fall-off partially determines the resulting
mean traces when the data are aligned on the go or the stop signals
because trials with a wide range of RTs are included in the averages. So, a
fixed tail was appended to each simulated trace after threshold crossing to
take this into account (Ratcliff et al., 2007). The tail had no impact
whatsoever on the outcomes or RTs; it simply produced more realistic
average traces. It was modeled as a falling exponential function with a
fixed time constant of 90 ms.

The resulting mean traces were consistent with previous single-unit
studies. When aligned on the go, the buildup rate was largest for noncan-
celled trials, intermediate for no-stop trials, and smallest for cancelled
trials (Fig. 3a), in accordance with differences in RT obtained across
conditions (see below). Differences between cancelled and noncancelled
responses were also evident when aligned on the stop signal: in the for-
mer the average activity peaked near the stop, whereas in the latter the
peak occurred significantly later (Fig. 3b). These results agree with single-
neuron recordings in the frontal eye field (FEF) and superior colliculus
showing that saccade-related activity indeed turns around toward base-
line during successfully cancelled trials (Hanes et al., 1998; Paré and
Hanes, 2003; Boucher et al., 2007; Ray et al., 2009). A difference in
buildup rate between no-stop and noncancelled trials was also seen with
the data aligned on the saccade (Fig. 3c) and is consistent with the obser-
vation that presaccadic activity in the FEF builds up faster before short-
latency saccades than before long-latency saccades (Hanes and Schall,
1996).

The ideal tachometric curve. Based on the model responses, it is possible
to compute an “ideal” tachometric curve, which plots the subject’s frac-
tion of correct responses (stopped saccades) as a function of the amount
of time available to process the relevant sensory stimulus (the stop sig-

Table 1. Model parameter values used

Figure/condition �B �B �T �T �S �S � pe

Figs. 3, 5, 12 8.0 2.4 95 40 57 12 52 0.011
Fig. 4 8.0 2.4 95 40 57 12 52 0
Fig. 7, no gap; Fig. 11 7.8 1.9 110 30 84 12 52 0.08
Fig. 7, yes gap 8.7 2.2 67 30 41 12 52 0.08
Fig. 8, 0.10 stop 5.5 0.92 117 53 56 13 34 0.016
Fig. 8, 0.69 stop 3.4 0.20 117 53 56 13 34 0.016
Fig. 9, visual stop 5.1 2.6 96 50 83 16 38 0.05
Fig. 9, auditory stop 5.1 2.6 96 50 32 16 38 0.49

All afferent delays and � are in ms. Build-up rates are in U/ms, where the distance from baseline to threshold
is 1000 U.
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nal). It is an ideal curve in this case because it cannot be calculated in the
same way based on empirical data; for that, we have specifically devel-
oped an empirical tachometric curve (see below). However, it is instruc-
tive to consider the ideal curve as well.

The raw processing time (rPT) is the crucial quantity in the task. It is
calculated as follows:

rPT � RT � SSD (6)

where both the RT and the SSD are specific for each individual trial. The
rPT is the theoretical limit on the amount of time available for viewing
the stop signal in each trial (Fig. 1c). Negative values correspond to trials
in which the saccade was initiated before the stop signal was presented,
whereas positive values correspond to trials in which, in principle, the
stop signal could have been seen. Not all the rPT is usable, though. Any
transmission delays consume part of it and count as dead time or non-
decision time. Therefore, the effective processing time (ePT) is as follows:

ePT � rPT � �S � �E (7)

where �S and �E are the afferent and efferent delays of the stop signal,
respectively. In the model, positive ePTs correspond to trials in which the
motor plan was actually decelerated, whereas negative values correspond
to trials in which there was no deceleration (Fig. 2). Because all results
presented below are equivalent for rPT and ePT, all subsequent analyses
are presented in terms of rPT only.

The above expression for rPT (Eq. 6) is well defined for noncancelled
trials in which an RT is measured. In contrast, in cancelled trials, the
amount of stimulus viewing time is still the quantity of interest, but no
saccade and therefore no RT is produced. To overcome this problem (i.e.,
to calculate rPT in this case), we define a cancellation time (CT), which
may be used in place of the RT in cancelled trials.

Normally, the RT is measured between the onset of the go signal and
the onset of the saccade, which occurs �E ms after threshold crossing. The
idea is to take as the reference event, equivalent to threshold crossing, the
point in time at which the neural activity reaches its maximum level,
which we call Tmax (Fig. 4a, arrow). The CT is then as follows:

CT � Tmax � �E (8)

Importantly, Tmax always marks the point in time at which the motor
plan has advanced the most, whether threshold is crossed (in noncan-
celled trials) or not (in cancelled trials). This guarantees a continuous
transition between RT and CT values for trajectories that are similar but
produce different outcomes, which ultimately guarantees that the tacho-
metric curve will be smooth. Another consequence of this is that in
noncancelled trials the CT is precisely the RT. In sum, then, the rPT can
be computed as follows:

rPT � CT � SSD (9)

in cancelled trials (Fig. 4b,c). In this way, the rPT is always the maximum
amount of time available for viewing and processing the stop signal rel-
ative to the point of maximum neural activity.

a b

c

Figure 3. Neural correlates of the cancellable rise-to-threshold model. The simulated motor
plans ( M) were sorted according to trial type and outcome, aligned on a given event (go, stop
signal, or threshold crossing), and averaged. a, Mean responses in no-stop (green), cancelled
(red) and noncancelled trials (black) aligned on the go signal. b, Mean responses in cancelled
(red) and noncancelled (black) trials aligned on the stop signal. c, Mean responses in no-stop
(green) and noncancelled trials (black) aligned on threshold crossing. For stop trials, all SSDs are
included in the averages.

a

b d
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Figure 4. Calculating the ideal and empirical tachometric curves. a, Schematic of a
successfully cancelled trial. The actual motor plan (purple trace) was decelerated and
stopped; the time of maximum activity Tmax (arrow) defines the CT of the trial (Eq. 8). The
red trace represents the point at which that same plan would have crossed threshold had
it not been decelerated. The RT for the red trace is the uRT for the shown cancelled trial. b,
Simulated distributions of RTs for noncancelled trials (black) and of CTs for cancelled trials
(purple). Results are shown for SSDs of 117 and 169 ms, as indicated. c, Distributions of rPT
values for noncancelled trials (black; based on RTs) and cancelled trials (purple; based on
CTs). Results are pooled across all SSDs. d, Simulated RT distributions for no-stop (gray)
and noncancelled (black) trials, both experimentally measurable; the difference is the
inferred distribution of uRTs for cancelled trials (red). e, Distributions of rPT values for
noncancelled trials (black; based on RTs) and cancelled trials (red; based on uRTs). Results
are pooled across all SSDs. f, Ideal (purple) and empirical (red) tachometric curves ob-
tained from the distributions in c and e, respectively.
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With this provision, the performance of the model can be easily plot-
ted as a function of rPT (Fig. 4f, purple trace). For this, simulated trials
are grouped according to rPT bins (Fig. 4c) and the fraction of cancelled
trials is calculated for each bin. Tachometric curves were computed with
bins separated by 1 ms and bin width of 20 ms.

The empirical tachometric curve. In contrast to the ideal curve, the
empirical tachometric curve is derived from behavioral data alone; no
simulated responses are involved. The goal is the same, though, to deter-
mine the probability of a successful cancellation as a function of process-
ing time. In this case, the main idea is to assume that the RT associated
with a cancelled saccade is simply the RT that would have been observed
had the stop signal not been given (Fig. 4a). In this way, the definition of
rPT stays consistent; it is always equal to the difference between the RT
and the SSD for any given trial (Eq. 6). The problem here is determining
the RTs that would have been observed in the trials that were, indeed,
successfully cancelled. The key is that those unobserved reaction times
(uRTs) can be extracted from the full distribution of RTs measured dur-
ing no-stop trials. This is how.

The saccadic plans that develop quickly are precisely those that cannot
be cancelled when the stop signal is presented (Fig. 3a), and hence the
RTs in noncancelled trials (Fig. 4d, black curves) are simply a subset of
the wider range of RTs collected in no-stop trials (Fig. 4d, gray areas).
Technically, this is not quite exact because some of the RTs in noncan-
celled trials are slightly lengthened by the deceleration compared with
those measured in no-stop trials, but in practice the difference is negli-
gible and essentially undetectable. The RTs that remain in the full (no-
stop) distribution when those fast (noncancelled) RTs are discounted or
“subtracted” are precisely the uRTs (Fig. 4d, red curves).

In practice, the empirical tachometric curve is generated as follows.
Suppose that a single SSD was used. The first step is to convert each
measured RT into an rPT by subtracting the SSD (Eq. 6). This produces
two sets of rPT values: one for no-stop trials and another for noncan-
celled trials. Next, create two corresponding rPT distributions (i.e., two
histograms) using identical time bins for both. Say that, as a result, HNS

j

and HNC
j give the numbers of no-stop and noncancelled rPTs in bin j,

respectively. The next step is to subtract bin by bin to produce the distri-
bution of rPTs in cancelled trials:

HC
j � �HNS

j � HNC
j (10)

where the constant � is equal to the total number of stop trials at the given
SSD divided by the total number of no-stop trials. Having done this, one
now has an rPT distribution for noncancelled trials (HNC; Fig. 4e, black
curve) and an rPT distribution for cancelled trials (HC; Fig. 4e, red curve)
in the correct proportions. Using these, the empirical tachometric curve
(Fig. 4f, red curve) is simply as follows:

fC
j �

HC
j

HC
j � HNC

j (11)

where fC
j is the fraction of correct (cancelled) trials at bin j. The only

additional complication is that, when there are multiple SSDs, the results
need to be appropriately pooled before this last step. Because the CT is
always shorter than the uRT, the empirical tachometric curve is shifted to
the right of the ideal one (Fig. 4); their behaviors, however, are very
similar.

A Matlab function that implements the above procedure is available
from the authors on request.

Methods for computing the SSRT. Although the present model is con-
ceptually unrelated to the SSRT, this quantity is nearly universally used to
characterize performance in the countermanding task, so we compute it
to relate our results to previous models and experiments.

Detailed procedures for computing the SSRT, and the rationale behind
them, have been described before (Hanes et al., 1998; Kornylo et al., 2003;
Stevenson et al., 2009; Verbruggen and Logan, 2009). Briefly, the main
idea is to start with the cumulative distribution of RTs from no-stop
trials, and note that in stop trials the faster RTs are precisely those that
become incorrect, noncancelled saccades. The difference in time between
the SSD and the longest of those fast RTs is then considered the mini-
mum time required by the stop process (i.e., the SSRT).

In the integration method, the SSRT is calculated at each SSD by first
obtaining the probability p of a noncancelled saccade for that SSD and
looking up the RT at which the cumulative RT distribution reaches that
same value p. The SSRT is then estimated by subtracting the SSD from the
found RT value. The final result is the SSRT averaged over all SSDs for
which p is between 0.1 and 0.9, to avoid the tails of the two functions.

In the mean and median methods, there is only one subtraction. In the
median method, the SSRT is simply the difference between the mean RT
from no-stop trials and the SSD at which p � 0.5, where p again is the
probability of making a noncancelled saccade. The mean method is sim-
ilar. It takes the mean RT from no-stop trials and subtracts a single SSD
value, in this case the “mean” SSD. The mean SSD is calculated by treat-
ing the inhibition function (the probability of a noncancelled saccade as
a function of SSD) as if it were a cumulative distribution of SSDs.

All three methods were implemented as described by Kornylo et al.
(2003).

Comparisons with the go/stop race model. In our implementation of the
race model, both a motor and a stopping plan rise linearly to threshold
during stop trials. The two processes develop just like the M variable in
the cancellable rise-to-threshold model; that is, once the go signal is
given, the motor plan starts rising after an afferent delay (mean � 100,
SD � 40 ms) and with a given buildup rate (mean � 8.3, SD � 2.6 U/ms),
which vary across trials. Similarly, once the stop signal is given, the stop-
ping plan starts rising after an afferent delay (mean � 29, SD � 0 ms) and
with a given buildup rate (mean � 25.3, SD � 6.2 U/ms). Finally, again,
there is a small probability that the stop signal is simply ignored ( pe �
0.011). In this model, the plan that reaches threshold first determines the
outcome: the trial is cancelled if the stopping plan wins, and it is noncan-
celled if the motor plan wins. With the chosen parameter values, the
resulting fits to the psychophysical data reported by Boucher et al. (2007)
were just as good as those obtained with the cancellable rise-to-threshold
model.

To distinguish the rise-to-threshold and race models, we simulated
their responses in a different type of task trial in which the stop signal is
presented only briefly, after which the go instruction again takes effect
(see Results). For such transient-stop trials, in both models, we used the
parameter values that fitted the Boucher et al. (2007) data, except with
pe � 0, we specified a stop-signal duration of 35 ms, and assumed that the
motor plans resumed immediately after the end of the stop command.
Including an additional delay after the stop command did not alter the
expected differences between models.

Results
A simple phenomenological description of the
countermanding task
There are two types of trials in the countermanding task: those in
which the stop signal is presented (stop trials) and those in which
it is not (no-stop trials). In no-stop trials (Fig. 1a), the subject
simply has to make a saccade to a single target, and because errors
are very rare in practice, we consider all such trials to be correct.
In contrast, stop trials can be either correct (cancelled, Fig. 1b)
or incorrect (noncancelled, Fig. 1c). The probability of success
is controlled by the experimenter through the SSD, which is
the time interval between the go and the stop signals; the
longer the SSD in a given trial, the higher the likelihood that an
incorrect saccade is produced. In no-stop and noncancelled
trials, the behavioral output is the RT, which is measured
between the go signal (target onset/fixation offset) and the
onset of the eye movement.

We model the motor plan that develops during a no-stop trial
as a gradual increase in the firing rate of a population of oculo-
motor neurons with motor fields at the location of the visual
target (Fig. 2a). The rise in activity starts a short time after target
presentation (afferent delay is �T), which is the go signal, and
continues until a fixed threshold level is reached. Once the
threshold is crossed, the system commits to generating the sac-
cade, which starts after a short efferent delay �E. The model neu-
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ronal activity builds up at a constant rate rB
0 ; however, this initial

buildup rate varies randomly from trial to trial, so the RTs pro-
duced by the model vary randomly across simulated trials.

This description based on a linear rise-to-threshold is simple,
but it generates RT distributions that are close to those measured
experimentally and is a reasonable approximation of the neuro-
nal activity recorded in oculomotor areas before saccades are
triggered (Carpenter and Williams, 1995; Hanes and Schall, 1996;
Reddi and Carpenter, 2000; Roitman and Shadlen, 2002; Brown
and Heathcote, 2007; Brown et al., 2008; Stanford et al., 2010).

In the model, stop trials start in the same way, with a gradual
increase in activity toward threshold, but depending on the initial
buildup rate and the time at which the stop signal is given, the
developing motor plan may or may not change course and be
cancelled (Fig. 2b– d). Intuitively, the outcome can be understood
at two extremes. First, when the initial buildup rate is relatively
high and/or the SSD is long, the activity level may reach threshold
before the stop signal is even detected, in which case a noncan-
celled saccade with a short RT is produced (Fig. 2b). At the other
end, when the initial buildup rate is relatively low and/or the SSD
is short, the stop signal is detected early. This triggers a decelera-
tion of the motor plan, which turns around and goes back to its
baseline (Fig. 2d). In this case, fixation is successfully maintained
and there is no RT; the saccade is cancelled. In between these two
extremes, it is possible to have an intermediate situation in which
the stop signal is detected and the motor plan slows down, but
threshold is reached anyway (Fig. 2c). This happens because the
turn-around in activity is not instantaneous, so the firing rate
keeps increasing for some time as it decelerates. This results in a
noncancelled trial with an intermediate RT.

In summary, there are three relevant trial/outcome combina-
tions: no-stop trials (correct), cancelled trials (correct) and non-
cancelled trials (incorrect). Saccadic plans are modeled as a rise in
activity toward a fixed threshold whose crossing triggers the eye
movement; and after the detection of the stop signal, the rise in
activity slows down and eventually reverses. We refer to this as the
cancellable rise-to-threshold model.

Standard psychophysical measures of performance
Performance in the countermanding task is generally quantified
in three complementary ways. First, through the psychometric
curve, which gives the fraction of stop trials that are cancelled
(i.e., the fraction correct) as a function of SSD (Fig. 5a). In gen-
eral, the fraction cancelled decreases monotonically with longer
SSDs. The complement of this curve (the fraction of noncan-
celled trials vs SSD) is often referred to as the “inhibition func-
tion,” but we avoid that terminology because, as will be shown
below, such curve is unlikely to provide direct information about
inhibitory dynamics.

The second way to quantify performance in the task is by
plotting either the standard or the cumulative RT distributions
for no-stop and noncancelled trials (Fig. 5b). No-stop RTs gen-
erally span a large range of values, whereas noncancelled RTs
occupy a smaller range toward the faster end. In general, the
shorter the SSD, the shorter the noncancelled RTs (Fig. 5b), but
this is not always the case (see below).

Finally, the third quantity used to characterize performance in
the task is the SSRT, which attempts to infer the point in time at
which the motor plan is cancelled. However, no specific event in
the countermanding task or in our model corresponds exactly to
the SSRT; its definition depends crucially on the go/stop race
model mentioned earlier in the Introduction. We defer its discus-
sion to the sections that follow.

The cancellable rise-to-threshold model replicates quite well
both the psychometric curve (Fig. 5a) and the RT distributions
(Fig. 5b) measured experimentally. This is true for the data shown
in Figure 5, which were redrawn from the study by Boucher et al.
(2007), and for numerous experiments discussed below. As will
be seen, its strength is that it provides an intuitive understanding
of the interplay between motor and perceptual mechanisms that
determines a subject’s psychophysical performance under a wide
variety of task conditions.

Fast perceptual performance revealed by the ideal
tachometric curve
The present framework also allows the construction of a new,
powerful metric for quantifying perceptual performance in the
countermanding task. This new curve, the tachometric curve,
tracks the fraction of correct choices as a function of processing
time (see Materials and Methods), which is the variable that is
fundamental for success in the task. We call it the tachometric
curve because it reveals the effective perceptual processing speed
of the subject (Stanford et al., 2010). There are two variants of this
curve: ideal and empirical. We consider the ideal curve first.

As mentioned earlier, the difficulty of the task varies according
to the SSD, which is a task parameter under the experimenter’s
control. However, the SSD is the period of time during which the
relevant sensory cue, the stop signal, is absent. What really mat-
ters is how long the cue is present and available to inform the
subject’s actions, and that interval is the rPT (Fig. 1c). In each
noncancelled trial, it is simply the difference between the RT and
the SSD (Eq. 6).

The longer the rPT, the longer the subject has to view the stop
signal and detect it. Consequently, one would expect a longer rPT
to produce a higher probability of cancelling the eye movement.

a c

b d

Figure 5. Quantifying performance in the countermanding task. a, Psychometric curve.
Fraction of cancelled saccades, or successfully stopped trials, as a function of SSD. b, Cumulative
distributions of RTs for no-stop trials (magenta trace) and noncancelled trials at three SSDs: 117,
169, and 217 ms (cyan traces, from left to right). c, Distributions of rPT values for cancelled
(gray) and noncancelled (black) trials. Results are pooled across all SSDs. d, Ideal tachometric
curve. Fraction of successfully cancelled stop-trials as a function of rPT. Arrow indicates curve
tail, where errors occur because of lapses (parameter pe). a, b, Blue dots indicate experimental
data redrawn from Boucher et al. (2007). All other results are from model simulations with
parameters optimized to fit those experimental data (see Materials and Methods).
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So, the goal is to calculate the fraction of successful cancellations
as a function of rPT, but there is a complication: cancelled trials
do not have an overt behavioral manifestation; there is no RT to
measure when a saccade is successfully stopped.

With simulated data, it is possible to work around this prob-
lem; that is, to calculate the maximum amount of cue viewing
time (rPT) in a consistent way in all trials. For this, we use a
quantity that is equivalent to the RT but is valid in cancelled trials,
the CT (Eq. 8). Just as the RT is defined relative to the time at
which threshold is crossed, the CT is defined relative to the time
at which the neural activity reaches its maximum level in a trial
(arrow in Fig. 4a). This point, Tmax, is a natural choice be-
cause, by definition, after Tmax the motor activity does not
increase anymore, so it is at that point that the cancellation
becomes absolutely certain. For consistency, we still define Tmax

in noncancelled trials as the time at which threshold is crossed.
This guarantees a smooth, continuous transition between RT and
CT as a function of buildup rate or SSD or any other parameter
that influences the trial outcome, and thus guarantees a smooth
tachometric curve.

With this procedure in place, distributions of RTs for noncan-
celled trials (Fig. 4b, black curves) and distributions of CTs for
cancelled trials (Fig. 4b, purple shades) can be obtained at each
SSD. These are turned into rPT distributions simply by subtract-
ing the corresponding SSDs (Eqs. 6 and 9). Then, by pooling the
results across all SSDs, separate rPT histograms for all cancelled
and all noncancelled trials are produced (Figs. 4c and 5c). Finally,
based on those two distributions, it is straightforward to obtain
the fraction of cancelled (i.e., correct) trials as a function of rPT
(i.e., the tachometric curve; Figs. 4f and 5d).

The tachometric curve is key. First, it is much steeper (Fig. 5d)
than the psychometric curve (Fig. 5a), indicating that perfor-
mance in the countermanding task correlates much more tightly
with rPT than with SSD. Second, the onset of the curve shows
exactly when the perceptual process starts relative to the onset of
the stop signal. For the parameters used in Figure 5, this occurs
�55 ms after the stop is presented (i.e., rPT �55 ms). Third, the
tachometric curve reveals the effective speed of the perceptual
detection process: the fraction cancelled goes from nearly zero to
0.5 in �20 ms. That is, 20 ms of viewing time is the difference
between having virtually no chance of detecting the stop and
cancelling the saccade, versus having a 50% probability of doing
so. And fourth, the maximum value of the curve and the subse-
quent tail (Fig. 5d, arrow) are indicative of errors that occur at
long viewing times, when the subject should have detected the
stop signal but did not. These errors might, perhaps, reflect limits
on cognitive, attentional, or sensory-integration processes.

The tachometric curve isolates the perceptual performance of the
subject; its onset and slope reveal when the detection of the stop
signal effectively begins and how fast it proceeds. It is important to
stress that these properties are independent of motor execution. In
particular, the curve is essentially the same regardless of the rate at
which the oculomotor activity builds up (Stanford et al., 2010). The
distribution of buildup rates and the afferent delay of the go signal
determine the probability that each particular rPT is observed, but
these quantities do not affect the relationship between rPT (stimulus
viewing time) and likelihood of successful detection. Overall perfor-
mance does change when the buildup rates vary, but this is because
they determine which parts of the tachometric curve are sampled
more heavily during an experiment; the tachometric curve itself re-
mains almost the same (further illustration below).

We refer to this curve as “ideal” because it can only be gener-
ated with simulated data, for which the turnaround point, Tmax, is

known. A close approximation can be constructed based on em-
pirical data (Fig. 4), as elaborated further below, but for now it is
useful to consider its robustness and implications for interpreting
neural activity, as discussed next.

Robustness of the critical time window for stimulus detection
Our analysis shows that there is a critical time window during
which a relatively small amount of viewing time (�20 ms) makes
an enormous difference in the observed detection accuracy. But
how reliable is this result? This question is important because,
even though there is close agreement between the model and
experimental data (Fig. 5a,b), the tachometric curve (Fig. 5d) was
constructed from the model responses.

To investigate this, we set the model parameters used in Figure
5 as a reference and then performed 2000 additional runs of the
model, each time with different parameter values drawn ran-
domly from a distribution. Every extra run consisted of 100,000
simulated trials from which all the relevant psychophysical mea-
sures were computed. Each parameter was sampled over a large
range, and each run had a different combination of parameter
values. To get an idea of the magnitude of these variations, for the
2000 additional runs the SD of each parameter distribution was
equal to 20% of the reference, whereas in the optimization pro-
cedure used for fitting the model to the experimental data, an
�10% change in a single parameter typically made a noticeable
difference in the cost function (Eq. 5; see Materials and Meth-
ods). We then compared the reference tachometric curve (Fig. 6a,
thick blue line) with the 2000 curves obtained from the additional
runs (Fig. 6a, thin lines).

In general, the tachometric curves generated in this way varied
quite widely in onset but much more moderately in rise time. The
onset ranged approximately between 30 and 120 ms, whereas the
rise time depended slightly on the method use to measure it but
ranged approximately between 5 and 30 ms (Fig. 6b). These re-
sults suggest that, although the onset of the detection process

ρ

b

a c

Figure 6. Sensitivity of the ideal tachometric curve to changes in model parameters. The
model was run 2000 times, each one with parameters sampled from normal distributions cen-
tered on the values used for Figure 5. a, Resulting tachometric curves (thin lines; 125 of 2000
shown) and original curve (thick blue line). b, Frequency distributions for three quantities: curve
onset (rPT at which the fraction cancelled exceeds 0.02), rise to midpoint (change in rPT for
which the fraction cancelled goes from 0.02 to 0.5), and curve width (change in rPT for which the
fraction cancelled goes from 0.25 to 0.75). Blue lines indicate values from the original curve
(blue trace in a). c, SSRT computed with the integration method versus the midpoint of each
tachometric curve (rPT at which the fraction cancelled equals 0.5). The blue dot corresponds to
the original curve.
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could be somewhat variable, our original estimate of �20 ms
required for accurate detection of the stop signal (i.e., to reach a
fraction cancelled of 0.5) is no more than �10 ms below the
actual value. The critical time window during which the percep-
tual detection process effectively develops seems to be quite nar-
row indeed.

Relationship between the SSRT and the ideal
tachometric curve
In each cancelled trial of the countermanding task, the SSRT, as
conceived originally, is interpreted as the amount of time re-
quired by the inhibitory process to act; it is meant to be related to
a precise point in time at which the saccadic plan is stopped.
Because of this, many experiments are designed with the inten-
tion of altering the presumed inhibitory mechanisms needed to
cancel the planned saccade, and attempt to resolve the resulting
changes by measuring the average SSRT (see below for examples).

Further below we argue that the SSRT has inherent problems
that limit its interpretability, and we propose what we consider a
better alternative, the empirical tachometric curve. First, how-
ever, we want to know if there is some feature of the responses
generated by the cancellable rise-to-threshold model that corre-
lates most tightly with SSRT. In particular, what is the relation-
ship between the SSRT, as it is calculated in practice, and the ideal
tachometric curve, which we think is the key indicator of percep-
tual performance?

To address this, we used the same 2000 simulations discussed
in the previous section, which sample a wide range of potential
psychophysical behaviors in the task. For each run, we computed
the mean SSRT and compared it with several other quantities,
including the onset, midpoint, and width of the ideal tachometric
curve, and the mean rPT in cancelled trials.

An important issue here is that there are several ways to com-
pute the SSRT for any given empirical dataset (e.g., Hanes et al.,
1998; Kornylo et al., 2003; Stevenson et al., 2009; Verbruggen and
Logan, 2009). These methods do not fully agree with each other;
they give different numbers regardless of the quality and quantity
of the data. So, we tested the three most common alternatives: the
integration method, the mean method, and the median method
(see Materials and Methods). All the correlation coefficients
mentioned next were significantly different from zero (permuta-
tion test, p � 0.0001).

The strongest association found was between the SSRT calcu-
lated via the integration method and the midpoint of the ideal
tachometric curve (i.e., the rPT for which the fraction cancelled is
0.5; Fig. 6c); the correlation coefficient between them was 0.98.
The second and third highest coefficients were between the same
SSRT and mean rPT (0.97), and between the same SSRT and
curve onset (0.93). Comparisons involving the SSRTs obtained
with the mean and the median methods produced somewhat
lower numbers when paired with curve midpoint (0.81 and 0.91,
respectively) or curve onset (0.74 and 0.84, respectively). All these
numbers depend to some extent on the parameter values chosen
as a reference in the simulations, so the correlations may vary
slightly. The main conclusion, however, is that changes in the
SSRT, particularly when calculated with the integration method,
correspond closely to shifts of the tachometric curve.

This result has a major consequence: if the tachometric curve
indeed reflects the perceptual performance of the subject in the
task, then it follows that the SSRT must also correlate with per-
ceptual performance, a possibility that, to our knowledge, has not
been considered in previous studies. This means that when the
detection of the stop signal changes in some way that shifts the

tachometric curve, the SSRT will change too. Given that the state-
ment “Shorter SSRT represents better inhibition abilities” (Ja-
cobson et al., 2011) is quite representative of the dominant view,
this observation has important implications for interpreting nu-
merous experimental results: changes in the SSRT are not neces-
sarily indicative of changes in inhibition.

The following sections discuss various experimental manipu-
lations in the countermanding task that can be easily understood
with the cancellable rise-to-threshold model. There it is further
shown that variations in SSRT can indeed be attributed to varia-
tions in the perceptual detection process, a process that must take
place before any inhibition comes into play.

Accounting for the “gap effect” in the countermanding task
One way to alter saccadic RTs reliably is through the “gap effect,”
a manipulation whereby the fixation point is extinguished before
a saccadic target is shown (Saslow, 1967; Munoz et al., 2000). In
the countermanding task in particular, extinguishing the fixation
point 200 ms before the onset of the saccadic target produces a
decrease in the mean RT of no-stop trials of �50 ms compared
with the standard version of the task (Stevenson et al., 2009), in
which the fixation point disappears at the same time as the target
appears (i.e., no gap; Fig. 1). Furthermore, the 200 ms gap also
produces a decrease of �40 ms in the SSRT (Stevenson et al.,
2009). These results would seem to imply that the gap effect in the
countermanding task speeds up two dynamic processes, the oc-
ulomotor preparation and its active cancellation.

However, these two changes in behavior can be easily repro-
duced by the model (Fig. 7) simply by assuming that the early
extinction of the fixation point produces both a moderate in-
crease in the mean buildup rates and, more importantly, a de-
crease in the afferent delays. That is, when the fixation spot
disappears early, the screen remains blank for 200 ms and the
appearance of the saccadic target becomes the go signal; then,
once the target is displayed, the oculomotor plan starts to develop
slightly sooner (shorter latency) and slightly faster (higher
buildup rate) than in the standard condition without a gap; fi-
nally, when the stop signal is shown, it is also detected slightly
sooner (shorter latency). This combination of effects leads to
shorter RTs in no-stop trials (Fig. 7b,c) and fewer cancellations
(Fig. 7a) and shorter SSRTs (Fig. 7d) in stop trials, as reported
experimentally. In this way, Figure 7a– d closely replicates the
results of Stevenson et al. (2009; their Fig. 3) without assuming
any changes in inhibitory action.

In this case, the mean afferent delay must change both for the
detection of the target (through parameter �T) and of the stop
signal (through parameter �S). The former is necessary to ac-
count for the drop in no-stop RTs, and the latter is necessary to
account for the drop in SSRT. The reason is this: the target latency
cannot affect the SSRT because the SSRT depends on when the
motor plan turns around relative to its onset—it does not matter
when the onset occurs—and the stop-signal latency cannot affect
the RT in no-stop trials because in those the stop signal is just not
given. When both latencies decrease equally, the preparatory ac-
tivity starts sooner and turns around sooner, so all the RT distri-
butions, for stop and no-stop trials (Fig. 7b), shift. The shift of the
stop trials, in particular, causes a corresponding shift in the rPT
distributions (Fig. 7e). This, in turn, shifts the midpoint of the
tachometric curve, which correlates tightly with SSRT, as dis-
cussed earlier (Fig. 6c).

So, the model predicts that in the gap condition the latencies
to both visual stimuli, the target and the stop, must be shortened
approximately equally relative to the standard no-gap condition.
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This refers to the latencies of the motor-related responses, which
is what the model represents (not to the latencies of purely visual
neurons). The neurophysiological prediction is that all motor
plans aligned on the go and on the stop signal should shift to the
left in the gap condition relative to the no-gap (Fig. 7f,g). In
general, the gap indeed decreases the latencies of saccade-related
responses (Dorris et al., 1997; Everling and Munoz, 2000; Sparks
et al., 2000), but the untested prediction for the countermanding
task is specifically that the average traces should shift for all out-
comes, no-stop, cancelled, and noncancelled trials.

The inverse of the gap effect
Nouraei et al. (2003) conceived an experiment that produced
exactly the opposite effects obtained in the gap paradigm. Human
subjects performed the countermanding task after receiving vary-
ing doses of an anesthetic (sevoflurane) in the sedative range, and
both the RTs in no-stop trials and SSRTs in stop trials increased
monotonically with increasing levels of anesthetic. In five of six
subjects, the magnitude of the changes in RT and SSRT was in-
distinguishable at all doses. Therefore, as with the gap effect,
parallel changes in RT and SSRT were produced, except in the
reverse direction: all responses slowed down. This result can be
easily reproduced by the model very much as in Figure 7 simply
by assuming that the anesthetic leads to a systematic increase in
the afferent delays and perhaps a moderate decrease in the mean
buildup rate of the premotor activity, predictions that, like those

mentioned above, are verifiable through recordings in trained
monkeys.

The changes in SSRT in the gap version of the countermand-
ing task and in the experiment with sedated subjects were origi-
nally interpreted as affecting a complex series of neuronal
processes associated with stopping a planned action. Although its
biophysical basis may indeed be complex, our results demon-
strate that the stopping process itself, understood as inhibitory
activation, does not need to change at all; excellent quantitative
agreement with the experiments can be obtained without invok-
ing any changes in the way the presaccadic activity is decelerated
by the stop signal. The data can be explained simply as a conse-
quence of changes in the perceptual and motor-planning pro-
cesses that are certain to be engaged during task performance.

Effects of redundant signals
A smaller but qualitatively similar combination of effects was
reported using redundant go or stop signals (Cavina-Pratesi et al.,
2001). In a way, this study performed a double dissociation of the
two latency effects just discussed.

In this case, the motor response was to press a spacebar on a
keyboard, and there were two complementary experiments
(Cavina-Pratesi et al., 2001). First, the behavior of subjects was
compared using one versus two visual go signals, with the stop
always given by an auditory cue. In this condition, both visual
stimuli indicated a movement to the same target. Slightly faster
RTs (�10 ms decrease) in no-stop trials and slightly fewer can-
celled trials were seen when two visual stimuli gave the go instruc-
tion instead of one. As in the previous section, this can be
explained in our framework by a small decrease in the afferent
delay of the target stimulus, perhaps with an additional small
increase in the mean buildup rate of the saccadic plans. In con-
trast, in the second experiment, the go signal was always a single
auditory stimulus but the stop signal could be cued either by one
or by two visual stimuli. Now the result was a slightly shorter
SSRT (�10 ms decrease) and a few more cancellations with two
simultaneous stop signals than with just one; no change in no-
stop RTs was seen, as expected. We propose that this decrease in
SSRT is likely the result of a corresponding decrease in the affer-
ent delay of the stop signal.

Classic experiments in visual detection show that RTs typi-
cally decrease with the intensity of the stimulus and that they are
slightly shorter when two visual stimuli are displayed instead of
one (Welford, 1980; Luce, 1986; Mordkoff et al., 1990; Marino
and Munoz, 2009). The two experimental results of Cavina-
Pratesi et al. (2001) are consistent with these observations and
can be understood as a consequence of the exact same change in
stimulation conditions; the only difference is that in one case the
change applies to the detection of the go signal, whereas in the
other it applies to the detection of the stop.

More generally, the results in this and the two preceding sec-
tions depend critically on large, systematic variations in afferent
delays, which in the most literal interpretation would correspond
to axonal delays, or synaptic/dendritic integration delays. Thus, it
is worth pondering for a moment how modulations on the order
of several tens of milliseconds could be accounted for in biolog-
ical terms.

There are two important aspects to this question. First, the
experimental evidence. It is well established that the response
latencies of visual neurons vary widely and depend on stimulus
intensity (Maunsell and Gibbon, 1992), but the dependence is
much stronger centrally than in the periphery; robust variations
of hundreds of milliseconds have been documented in inferior
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Figure 7. The cancellable rise-to-threshold model reproduces the gap effect in the counter-
manding task. Results are shown for two runs with two sets of parameters corresponding to
no-gap (black) and yes-gap (red) conditions (Table 1). a, Psychometric curves. b, Cumulative
distributions of RTs in no-stop trials. c, Mean RTs in no-stop trials. d, SSRTs obtained with the
integration method. e, Distributions of rPT values in cancelled (solid lines; based on CTs) and
noncancelled (dashed lines; based on RTs) trials. f, Expected oculomotor responses for noncan-
celled trials aligned on the stop signal. g, Same as in f, but for cancelled trials. c, d, Blue dots
indicate mean experimental values reported by Stevenson et al. (2009).
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temporal cortex (van Rossum et al., 2008; Oram, 2010). Latencies
also decrease with multimodal compared with unimodal stimuli
(Rowland et al., 2007; Fuhrmann et al., 2008). Psychophysically,
differences in stimulus intensity alone may give rise to changes of
many tens of milliseconds in the perceived temporal order of two
sensory events, consistent with corresponding changes in sensory
transmission delays (e.g., Gibbon and Rutschmann, 1969). Fur-
ther, the response latencies of oculomotor neurons may depend
on the outcomes of preceding trials (Fecteau and Munoz, 2003;
Pouget et al., 2011; see below), so such effects are not exclusively
stimulus-driven.

Second, it is important to recognize that neuronal latencies
reflect the speed at which a signal propagates through multiple
network layers, and theoretical work has shown that propagation
speed is determined not only by axonal conduction times but also
by the level of background activity, synaptic strength, balance
between excitation and inhibition, and other biophysical factors
(Idiart and Abbott, 1993; Van Vreeswijk and Sompolinsky, 1996;
van
Rossum et al., 2008; Leblois et al., 2009; York and van Rossum,
2009). Any one of such factors could conceivably be altered in-
ternally or in a stimulus-dependent way to produce strong vari-
ations in latency. So, overall, latency modulations are not
implausible, and may represent a prevalent mechanism control-
ling the timing of neural events.

Accounting for large, simultaneous shifts in psychometric
and chronometric curves
In the countermanding task, performance depends strongly on
the proportion of trials with a stop signal within a session of the
task. This proportion has an enormous impact both on the prob-
ability of cancelling a trial and on the RTs of nonstop trials
(Ramautar et al., 2004; Emeric et al., 2007). In one experiment,
when the percentage of stop trials increased from 10% to 69% of
all trials (stop plus no-stop), both the psychometric and chrono-
metric curves of a subject shifted by �100 ms (Emeric et al., 2007)
(Fig. 8). So, when stop trials are more common, the subject sys-
tematically slows down all responses and increases substantially
the probability of a successful cancellation. Notably, the SSRT
does not seem to change at all under such conditions (Ramautar
et al., 2004). Why not?

Seen as a perceptual decision-making problem, the answer is
simple: because the perceptual demands of the task remain con-
stant, and that is what the SSRT tracks. Indeed, the experimental
data of Emeric et al. (2007, their Fig. 6) can be replicated accu-
rately with the cancellable rise-to-threshold model by varying just

the distribution of initial buildup rates and keeping all other
parameters constant (Fig. 8). If a higher proportion of stop trials
leads, on average, to lower buildup rates, the result follows in a
straightforward way: when stop trials are more frequent, RTs
increase and a concomitant increase in the probability of a suc-
cessful cancellation is produced. In this case, the afferent delay of
the go/target stimulus may or may not vary too as a function of
the probability of a stop; this cannot be determined with certainty
based on the bahavioral data alone. Either way, the tachometric
curve is highly insensitive to both the latency of the go signal and
the distribution of buildup rates, so in this example its shape does
not change and its onset does so by a very small amount in com-
parison (�8 ms for the results in Fig. 8; see below). The model
predicts that the buildup rates of the oculomotor plans, and per-
haps their onset too, should vary as functions of the stop-signal
probability, and the dependence should be the same for all trial
outcomes.

These results are strongly reminiscent of motor-bias experi-
ments, in which the subject prefers one response more than an-
other even though the perceptual demands of the task remain
fixed (Takikawa et al., 2002; Rorie et al., 2010 Stanford et al.,
2010). Here, as in those studies, the behavioral effects on RT and
success rate can be understood simply as a consequence of adjust-
ments in the preparatory motor activity, which determines the
distribution of RTs that is effectively available; the subsequent
processes (stimulus detection or discrimination) do not need to
change at all.

History-dependent effects
Another aspect of the countermanding task that has been noted
in the literature is that subjects, both humans and monkeys, often
show a statistically significant sequential adaptation: if the RTs of
no-stop trials are sorted according to the preceding trial type,
small but consistent differences are seen between the resulting
groups. The major effect is that in no-stop trials preceded by
another no-stop trial, RTs are typically lower than the overall
average, whereas in no-stop trials preceded by a stop trial, RTs are
typically higher than average (Cabel et al., 2000; Kornylo et al.,
2003; Emeric et al., 2007). In addition, there may be other, more
subtle, regularities. For instance, the effect may be more pro-
nounced for no-stop trials preceded by two or more stop trials
rather than by just one (Emeric et al., 2007), or the magnitude of
the increase may be different depending on whether the preced-
ing stop-trial was correct (cancelled) or incorrect (noncancelled)
(Cabel et al., 2000; Nelson et al., 2010).

The results in the previous section (Fig. 8) suggest that the distri-
bution of initial buildup rates can change quite dramatically over
blocks of multiple trials. In contrast, these history-dependent varia-
tions in performance may reflect much smaller but still reliable ad-
justments in the same initial motor plans taking place on a much
faster time scale of a single trial. Such sequential adaptation can be
readily reproduced by the model by varying either the mean buildup
rate or the afferent delay of the go signal as a function of trial history.
For instance, suppose that after a no-stop trial the delay decreases
toward a low value and that after a stop trial it increases toward a
higher value. These low and high values may be adjusted to replicate
a given experiment or subject.

Indeed, a neural correlate of precisely this sequential effect was
recently reported in recordings from the FEF and superior col-
liculus (Pouget et al., 2011). Differences of 17 and 5 ms in the RTs
of two monkeys were fully accounted for by differences of 18 and
5 ms in neuronal latency, respectively. That is, the onset of the
buildup in oculomotor activity before a saccade depended sys-

a b

Figure 8. The dependence of performance on the overall fraction of stop trials is reproduced
by variations in the buildup rate of the preparatory saccadic activity. Four experiments with
different overall fractions of stop trials were simulated. Only two parameters changed; the
mean and the SD of the initial buildup rate distribution (Table 1). a, Psychometric curves. b,
Cumulative RT distributions for no-stop trials. Blue dots and lines represent experimental data
redrawn from Emeric et al. (2007). Black lines are from model simulations.
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tematically on the outcome of the previ-
ous trial, and notably, other response
features, saccade threshold, mean buildup
rate, and baseline activity, did not change
significantly.

So, sequential effects can be explained
by variations in motor preparation; no
changes in inhibition or in the detection
of the stop signal need to be invoked. This
suggests that the oculomotor plans them-
selves must be quite flexible and that the
outcome of each trial may have a slight but
reproducible effect on the preparation for
the next one, in agreement with observa-
tions in other tasks (Barraclough et al.,
2004; Sugrue et al., 2004; Busse et al.,
2011).

Demystifying a paradoxical result
about stop-signal modality
Various studies have shown that the mo-
dality of the stop signal is another impor-
tant factor determining performance in
the countermanding task (e.g., Akerfelt et
al., 2006; Stevenson et al., 2009). Manipu-
lations of the stop signal itself are interest-
ing, and potentially quite informative,
because they probe events that happen af-
ter the motor plan starts developing. Therefore, in contrast to the
experimental data in the two previous sections, any observed
effects must be independent of the afferent delay of the go/target
stimulus and of the distribution of initial buildup rates.

In an experiment by Cabel et al. (2000), two types of stop
signals were interleaved and presented with equal probability: (1)
a red visual stimulus displayed at the location of the previous
fixation point, the standard condition in most studies; and (2) a
broadband noise burst emitted from a speaker 2 m above the
subject’s head. In both cases, the stop signal was meant to convey
the same standard instruction, to inhibit a saccade to a previously
presented target. When trials were sorted according to the two
conditions, two major differences were observed. First, many
fewer saccades were cancelled with the auditory stop signal than
with the visual one (Fig. 9a, blue points). Most notably, the frac-
tion of noncancelled trials was close to 0.5 for auditory stop-
signal delays between 0 and 100 ms. And second, SSRTs were �90
ms longer with auditory than with visual stimuli (Fig. 9c, blue
points). Both results are puzzling because, in separate runs, the
subjects’ RTs to the same stimuli were measured in a simple
button-press task, and the mean auditory RT was found to be 51
ms shorter than the mean visual RT. Therefore, although the
subjects should have detected the auditory stop signal sooner
than the visual, the stopping process seemed to occur later, ac-
cording to the SSRT, and the probability of a successful cancella-
tion was paradoxically low.

We tried to replicate these data with the cancellable rise-to-
threshold model and concluded that the most natural parameter
manipulations, including changing the magnitude and time con-
stant of the deceleration, failed miserably. We found, instead, that
two mechanistically plausible adjustments were sufficient to fully
account for the experimental results. First, when the stop signal is
auditory, the probability that it initiates the cancellation process
at all must be �1. That is, in contrast to the visual signal, which
always engages the stopping process, whether it is ultimately suc-

cessful or not, in a fraction pe of the auditory trials the stop signal
must be simply ignored. This type of lapse may be the result of
attentional load, perhaps because in this case the subject needs to
attend simultaneously to two stimuli of different modalities, the
target on the screen and the sound from the speaker, but the
actual origin makes no difference to the model. The second re-
quirement of the model is that the afferent delay of the auditory
stop signal must be lower than that of the visual signal by �50 ms.

With these two conditions, the model replicates the experi-
mental results of Cabel et al. (2000); extremely accurately (Fig.
9a– c). It accounts for both the higher rate of noncancelled trials
(Fig. 9a) and the much longer SSRT (Fig. 9c) obtained in auditory
trials, and at the same time it is fully consistent with the shorter
latency of auditory versus visual responses found in the button-
press task. This contrasts sharply with the conclusions drawn
from the original study, in which the effects were attributed to the
existence of multiple modality-specific, and possibly location-
specific, stop processes. Our interpretation of the task as a motor
plan that is modulated by a perceptual judgment is more parsi-
monious: it resolves the apparent paradox in the data without
requiring multiple cancellation circuits or different deceleration
dynamics across modalities. Rather, it is the perceptual detection
step that is different in the visual and auditory conditions; it
varies in effectiveness and in onset.

These conclusions can be tested because the model makes
various specific predictions. First, behaviorally, the RTs for non-
cancelled auditory trials at relatively short SSDs (�200 ms)
should be very similar to those in no-stop trials (Fig. 9d). This is
because, in contrast to the visual case, in which noncancelled
saccades are significantly faster than average (Fig. 5b), noncan-
celled saccades in auditory trials in that SSD range are not accel-
erated or decelerated at all; according to the model, the stop signal
is simply missed, so it should have no effect.

Second, neurophysiologically, the oculomotor activity associ-
ated with cancelled and noncancelled saccades should reflect the
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Figure 9. The effect of stop-signal modality is reproduced by the cancellable rise-to-threshold model. The model was run with
two sets of parameters replicating the behavior observed with either visual (black lines) or auditory (red lines) stop signals (Table
1). a, Psychometric curves. b, Mean RT in no-stop trials. c, SSRTs for visual and auditory stop trials. d, Cumulative distributions of RTs
for no stop trials (gray) and stop trials with visual (black) or auditory (red) stop signals. For this plot, stop trials with SSD �200 ms
were considered. e, Predicted oculomotor activity in noncancelled trials. Traces are average model responses aligned on the stop
signal. f, Same as in e, but for cancelled trials. Arrows indicate a difference of 46 ms between the peaks of the curves. a– c, Blue
points indicate experimental values averaged across subjects, as reported by Cabel et al. (2000).
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underlying assumptions of the model. When aligned on the stop
signal, the mean activity produced during noncancelled saccades
should be relatively localized in time (i.e., peaked) in the visual
condition, as reported previously (Hanes et al., 1998; Boucher et
al., 2007), because most noncancelled trials in this case have high
buildup rates (Fig. 9e, black trace). In contrast, in the auditory
condition, the average activity profile should be more spread out
over time because it includes many trials, all those with auditory
signals that were not processed, sampled from the full RT distri-
bution (Fig. 9e, red trace). The third and crucial test, however, lies
in the responses generated during cancelled trials: the activity
should peak earlier in the auditory than in the visual condition, to
reflect the shorter latency of the auditory stop signal (Fig. 9f). For
these data, this is the key prediction of the model.

The empirical tachometric curve
We suggest that it is better to compute the tachometric curve
than the SSRT; the curve is more informative and is based on a
principled approach that can be easily related to the essential
neurophysiological features of preparatory motor activity.
Unfortunately, in the countermanding task, processing times
(just like SSRTs) cannot be measured for individual cancelled
trials. In practice, there are two ways around this limitation. One
is to fit the cancellable rise-to-threshold model to the data and
then generate the ideal tachometric curve based on simulated
trials, as was done in Figure 5d. This is a viable approach if there
are enough data to adequately constrain the model parameters.
There is, however, an alternative that is better, in the sense that it
requires no model fitting and can be implemented using just the
psychophysical data. It produces a tachometric curve that is
somewhat broader than the ideal one but otherwise has essen-
tially the same properties and even some advantages. The proce-
dure goes as follows.

The RTs in no-stop trials (Fig. 4d, gray areas) are, to an excel-
lent approximation, a subset of the RTs in noncancelled trials
(Fig. 4d, black traces) because the saccadic plans that develop
quickly are precisely those that cannot be cancelled when the stop
signal is presented (Fig. 3a). Conversely, the RTs that are left over
in the no-stop distribution (Fig. 4d, red traces) correspond to the
saccadic plans that started developing slowly enough, such that
the system was able to cancel them when the stop signal was
shown. The key insight here is that these can be considered as the
unobserved RTs, or uRTs, of the successfully cancelled trials. As
schematized in Figure 4a, each cancelled trial can be associated
with a uRT, which is the RT that would have been observed had
the stop signal not been presented. Although for any given can-
celled trial it is impossible to say what that uRT was, because there
is no overt action to measure, the distribution of uRTs for any
SSD can be estimated by “subtracting” the noncancelled RTs
from the full RT distribution obtained in no-stop trials (see Ma-
terials and Methods). The uRT can be thought of as determining
the maximum processing time potentially available in a trial.

The empirical tachometric curve obtained in this way (Fig. 4f,
red trace; see Materials and Methods) starts later and is somewhat
broader than the ideal curve (Fig. 4f, purple trace), so it underes-
timates the speed of the detection/deceleration process. However,
it has two advantages: (1) it has no tail, so once it reaches its
maximum value it tends to stay flat; and (2) it is independent of
the set of SSD values used to generate it (the ideal curve shows a
slight dependence at the tail). Indeed, the empirical curve and the
RT distribution in no-stop trials together provide a full charac-
terization of a subject’s behavioral performance in the task (next
section). In any case, the two tachometric curves behave very

similarly, and the empirical curve is just as sensitive to task ma-
nipulations (Fig. 10).

When there is a difference across conditions in the mean af-
ferent delay with which the stop signal is detected, as in the case of
the gap effect studied by Stevenson et al. (2009) (Fig. 7), the curve
shifts horizontally by an amount that reflects the latency change
quite closely (Fig. 10a). In contrast, when the only changes in the
circuit across experimental conditions occur in the distribution
of initial buildup rates, as was the case in Figure 8, which repli-
cated data reported by Emeric et al. (2007), the tachometric curve
stays essentially constant (Fig. 10b). Variations in the initial mo-
tor preparation have little effect on it. Also, the asymptotic level of
the curve (i.e., its maximum value) is indicative of the proportion
of errors, captured by parameter pe, that cannot be attributed to
limited viewing times (Fig. 10c), and perhaps involve lapses in
attention, noise-limited integration, or other cognitive mecha-
nisms (Shankar et al., 2011). This corresponds to the model rec-
reation of the experiment by Cabel et al. (2000) (Fig. 9), in which
stop signals of different modalities were used. The curve in this
case also shifts to the left, again reflecting the decrease in afferent
delay specific to the stop signal.

To explore other possible outcomes of behavioral manipula-
tions, empirical tachometric curves were computed for simula-
tions in which other model parameters were varied individually.
The effect, if there was one, was almost always a shift of the curve,
with little or no change in slope. This was true even for the time
constant of deceleration � (Fig. 10d) and is in agreement with the
simulation results discussed earlier in which thousands of param-
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Figure 10. Empirical tachometric curves corresponding to various task manipulations. a,
No-gap versus yes-gap conditions. Parameters as in Figure 7. b, Low versus high fraction of stop
trials. Parameters as in Figure 8. c, Visual versus auditory stop signals. Parameters as in Figure 9.
d, Slow versus fast deceleration. e, Low versus high variability in the afferent delay of the go
signal. f, Low versus high variability in the afferent delay of the stop signal. d–f, Parameters are
as in Figure 5, except as indicated in each panel.
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eter combinations were generated randomly (Fig. 6a). The only
parameter that had an appreciable effect on the slope of the curve
was �S, which determines the variability of the afferent delay of
the stop signal (Fig. 10f). In contrast, neither the mean nor the
variability of the afferent delay of the go signal had any impact on
the curve (Fig. 10e), as mentioned earlier. All these effects were
qualitatively the same with the ideal and empirical tachometric
curves.

Finally, calculating the empirical curve from experimental
data requires statistical manipulations (see Materials and Meth-
ods) that may introduce additional variability. We evaluated this
variability by running simulations with different numbers of tri-
als and found that such computations inject a relatively small
amount of uncertainty into the tachometric curve. Across multi-
ple runs with a fixed set of parameters (those used in Fig. 5), we
compared the rPTs at which the curves reached 50% correct and
found that the error in this midpoint value was quite reasonable
even for a few hundred trials per run (Table 2). For example, with
1000 total trials, the midpoint of the tachometric curve can be
determined within �5 ms (SD) of the actual value; of these 5 ms
of total error margin, 2 ms is simply the result of the limited
numbers of trials available, whereas 3 ms can be attributed to the
computations required to process the experimental data. These
results suggest that, in practice, shifts of the empirical tachomet-
ric curve can be resolved with relatively high precision.

Two curves characterize psychophysical performance
In this section, we demonstrate that two curves, the distribution
of RTs in no-stop trials and the empirical tachometric curve,
suffice to fully characterize a subject’s performance in the coun-
termanding task. This means that knowledge of these two funda-
mental curves is enough to derive any other psychophysical
measures.

To see why this is indeed the case, suppose that the two curves
are known and note that a subject’s performance can be recreated
(in a statistical sense) based those two curves alone. This is as
follows (Fig. 11). Consider multiple stop trials of the task. In each
trial, an RT is drawn randomly using the subject’s cumulative RT
distribution from no-stop trials and a uniform random number
generator (Fig. 11a). Next, the corresponding rPT for that trial is
obtained by subtracting the SSD (Fig. 11, blue arrow). This is
regardless of whether the RT ends up being observed or not be-
cause that is how the rPT is defined for the empirical tachometric
curve. Next, the probability of a correct cancellation is read off
from the tachometric curve at the given rPT (Fig. 11b). Then, as a
final step, a coin is flipped, biased according to that probability, to
determine whether the saccade is actually cancelled or not. If not,
then the RT is indeed observed and goes into the distribution for
noncancelled trials for the given SSD; if yes, then the RT goes
unobserved. In this way, RTs and outcomes are produced exactly
as in a real experiment (or very nearly so; the match to the ob-
served RT distribution for noncancelled trials is not perfect be-
cause of partial deceleration in some of those trials, but the

discrepancy is minuscule). Thus, by iterating this process, one
can calculate the fraction of cancelled trials at any SSD, or the RT
distributions for noncancelled trials, or any other statistic based
on the subject’s responses.

This analysis is interesting for two reasons: (1) it demonstrates
that performance can be divided almost perfectly into a purely
motor process that determines the distribution of RTs, and a
second process that reflects perceptual capacity (for stimulus de-
tection) and other cognitive elements (interpreting the stimulus
as a stop command; inhibitory action); and (2) this functional
characterization is independent of the cancellable rise-to-
threshold model, but the two are consistent, in that four param-
eters of the model (�B, �B, �T, �T) determine the resulting
distribution of RTs and the other four (�S, �S, �, pe) determine
the empirical tachometric curve. Thus, regardless of the mecha-
nistic interpretations of their parameters, simpler or more com-
plex models would be those that use either fewer or more
parameters to describe the two fundamental curves.

Distinguishing alternative models
By means of the cancellable rise-to-threshold model, we have
argued that perceptual mechanisms are key for interpreting nu-
merous experimental results obtained with the countermanding
task and that the tachometric curve provides a more robust as-
sessment of performance than does the SSRT. These observa-
tions, however, do not directly speak to the validity of the original
go/stop race model (Logan and Cowan, 1984; Boucher et al.,
2007; Verbruggen and Logan, 2009). In the race framework, stop-
related activity rises to threshold just like saccade-related activity;
the eye movement is executed if the motor plan reaches threshold
first, or it is cancelled if the stopping plan reaches threshold first.
Inhibition acts fully or not at all, and the two competing processes
do not interact until the winner is determined. This is indeed
quite different from the gradual deceleration proposed here. So,
beyond the existence of a threshold-sensitive trigger for inhibi-
tion, can the two models be distinguished based on their respec-

Table 2. Error in the midpoint of the empirical tachometric curve for various
numbers of trials

Midpoint error

Total number of trials

250 500 1000 2000 4000

Total SD (ms) 10 7 5 4 3
Sampling SD (ms) 4 3 2 1 1

The sampling error is due to numbers of trials only; the total error includes, in addition, the contribution from
computations used to infer the uRTs of cancelled trials.

b

a

Figure 11. Performance in the countermanding task is completely specified by two psycho-
physical curves. a, Cumulative RT distribution from no-stop trials. b, Empirical tachometric
curve. Red and blue arrows indicate how a randomly drawn RT (278 ms) determines, after
subtracting the SSD (162 ms), a specific rPT (116), which in turn determines the probability of a
correct cancellation (0.45).
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tive saccade-related responses? In this section, we discuss a
potential experiment that leads to contrasting behavioral and
neurophysiological predictions, and thus serves to highlight the
main mechanistic differences between the two models.

The proposed experiment is a simple variant of the counter-
manding task in which, on some trials, the stop signal appears just
briefly and is then itself countermanded (Fig. 12a). In these
transient-stop trials, a saccade is always produced, and so the
resulting RT distributions can be compared with those of no-stop
trials. Crucially, the transient stop signal has very different con-
sequences for the two models.

In the cancellable rise-to-threshold model, the developing
motor plan is decelerated for the duration of the stop command,
but the motor activity continues to rise once the influence of the
stop signal ceases (Fig. 12b). How exactly and how much the
firing rate drops during the transient stop (gray shade) is rela-
tively unimportant; the key is that the trajectory toward threshold
resumes with the same buildup rate as before, so the effect of the
transient stop signal is essentially to interrupt momentarily the
ongoing motor plan. As a consequence of this interruption, all
the saccades that are not initiated before the stop command
reaches the model circuit are delayed, and this manifests as a
characteristic, SSD-dependent shift in the distribution of RTs
(Fig. 12e). When the SSD is short (Fig. 12e, 40 ms), nearly all RTs
are lengthened and the full distribution shifts to the right; and
when the SSD is long (Fig. 12e, 160 ms), a large fraction of the
saccades are initiated before the transient stop has had an effect;
thus, only the longer RTs are shifted, which results in a conspic-
uous dip in the RT distribution.

By contrast, in the classic race model (see Materials and Meth-
ods) (Logan and Cowan, 1984), the motor and stopping plans
remain independent up until the moment when the stop-related

activity crosses threshold; hence, the transient stop command has
an all-or-none effect. In trials in which the stopping plan builds
up relatively slowly, it never reaches threshold, so the motor plan
proceeds undisturbed (Fig. 12c). In contrast, when the stopping
plan builds up rapidly, it reaches threshold and cancels the motor
plan; then, after the stop command ends, the motor plan has to be
restarted (Fig. 12d). Here it does not matter much whether the
renewed motor plan proceeds with the same or with a new, inde-
pendent buildup rate, or how fast the saccade-related activity
drops once the cancellation is issued; what is key is that, for just a
fraction of the trials, the progress made before the stopping plan
crosses threshold is completely erased and therefore has no im-
pact on what happens subsequently. The effect of these dynamics
on the resulting RT distributions (Fig. 12f) is subtle because for
brief stop signals the fraction of inhibited trials is always small.
Clearly, however, in this case, there is no shift at short SSDs and
no dip at long SSDs.

These differential effects on the RT distributions have corre-
sponding neural correlates in the expected oculomotor activity
leading to a saccade. To see this, simulated motor plans were
separated into short-, intermediate-, and long-RT groups and
were then averaged within each group (Fig. 12g,h). According to
the cancellable rise-to-threshold model, a kink in the average
motor plans should be evident in all RT groups when comparing
transient-stop versus no-stop trials, and the timing of the kink
should depend systematically on the SSD (Fig. 12g). In contrast,
the race model predicts either no effect or a very weak effect in all
cases, except when both the RT and the SSD are relatively long
(Fig. 12h). These differences between models are quite robust to
parameter variations.

There are two important considerations about these compar-
isons. First, the results apply to the standard race model, in which
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Figure 12. Contrasting predictions of two alternative models. a, A transient-stop trial. The stop signal is shown briefly, and the go instruction resumes after it. The correct response is a saccade.
b, A transient-stop trial of the cancellable rise-to-threshold model. The gray shadow represents the period (after the SSD and the afferent delay) during which the stop signal is known to the model
circuit and the motor plan may decelerate. c, A transient-stop trial of the go/stop race model in which the stopping plan (black trace) does not reach threshold. The motor plan (blue trace) follows
its original trajectory unperturbed. d, A trial of the race model in which the stopping plan reaches threshold. The initial motor plan is cancelled, and a new one is issued after the stop command ends.
e, Distributions of RTs in transient-stop (red traces) and no-stop (black traces) trials predicted by the cancellable rise-to-threshold model. Corresponding SSDs, in milliseconds, are indicated (upper
left). f, Same as in e, but for the race model. g, Mean neural responses predicted by the cancellable rise-to-threshold model. Data are aligned on the initial go signal. In each plot, the three curves of
each color are from three groups of trials sorted by RT, short (RT � 200 ms), intermediate (RT 200 –300 ms), and long (RT 	 300 ms), going from left to right. For clarity, only the rising segments
of the responses are shown. Corresponding SSDs are indicated. h, Same as in g, but for the race model.
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the motor and stopping plans develop independently of each
other and the SSRT is clearly defined (it is the time interval be-
tween the onset of the stop signal and the moment when the
stopping plan crosses threshold). The model can be modified to
include a continuous interaction between the two processes, for
instance, through mutual inhibition (Boucher et al., 2007). When
this is done, however, the model changes quite drastically: the
motor plan is suppressed without the stopping plan ever having
to reach a threshold, so the interaction no longer corresponds to
that of a race; furthermore, the event that defines the SSRT is
gone. Indeed, the result is a gradual deceleration of the motor
plan, much as in our case, except with a different parameteriza-
tion that corresponds to a specific form of inhibitory neural ac-
tivity. Thus, the threshold-sensitive inhibitory trigger is the key
dynamic element to test.

Second, the psychophysical predictions based on the brief de-
celeration or interruption of an ongoing motor plan (Fig. 12e) are
quite distinct and very likely to be correct. It is known that a
saccade to a visual target can be delayed by a nearly simultaneous
distracter or transient change in the visual scene. This phenom-
enon, known as “saccadic inhibition” (or the “remote distracter
effect”), produces shifts and dips in the saccadic RT distributions
precisely like those in Figure 12e and occurs over a wide range of
experimental conditions (Reingold and Stampe, 2002;
Buonocore and McIntosh, 2008, 2012; Bompas and Sumner,
2011). This supports the idea that perceptual information in-
forms oculomotor plans as they develop, as proposed by the can-
cellable rise-to-threshold model; and if the model predictions are
correct, it would suggest that, with respect to imminent saccades,
distracters may act as transient stop signals.

Discussion
In the cancellable rise-to-threshold model, the outcome of each
trial of the countermanding task depends fundamentally on three
factors: the initial buildup rate of the saccadic plan, the SSD, and
the perceptual speed of the subject. Their interplay determines
when and how fast a developing oculomotor plan can be stopped.
Rather than making mechanistic assumptions about inhibitory
activity, this model only takes into account its ultimate conse-
quence, the deceleration of the ongoing motor plan. We do not
preclude the possibility that task manipulations may cause direct
changes to inhibitory processes; we simply argue that the results
of most previous manipulations can be explained parsimoniously
by changes in distinct premotor and perceptual mechanisms that
must act first.

The tachometric curve gives the average amount of stimulus
viewing time necessary to achieve a given success rate. Strictly
speaking, the curve is not a pure measure of perceptual capacity
because success implies not only detecting a stimulus, but also
interpreting it as a command to stop and activating the appropri-
ate inhibitory circuitry. Thus, true changes in inhibition would
indeed have an impact on the curve. Still, this curve is crucial
because, in contrast to the RT, it is insensitive to motor execution;
and in contrast to the SSRT, it provides a more complete, model-
free characterization of performance.

Generality of the modeling framework
The model developed here is essentially a simplified version of a
race-to-threshold model that matches psychophysical and neu-
rophysiologial data in the compelled-saccade task, a choice task
that simulates an urgent decision (Salinas et al., 2010; Stanford et
al., 2010; Shankar et al., 2011). Thus, the phenomenological de-
scription presented here is consistent with a wider set of experi-

ments. The current analyses can also be adapted to other tasks
designed to elucidate various issues in visuomotor control, in
which (1) the instruction to execute an action precedes the sen-
sory cue that determines whether that action is the correct one
and (2) the relevant variable is processing time (e.g., Becker and
Jürgens, 1979; Camalier et al., 2007; Farooqui et al., 2011;
Noorani et al., 2011).

We inferred that performance in the countermanding task is
based on a stimulus-detection process that starts �50 –100 ms
after the stop signal is given and develops over the course of �20
ms. This reinforces earlier findings indicating that perceptual
processes effectively develop very quickly and may affect motor
plans that are already ongoing (Cisek, 2006; Cisek and Kalaska,
2010; Stanford et al., 2010; Shankar et al., 2011).

Interplay between neural mechanisms
The majority of the experimental results reproduced by our
model were based on two distinct neural mechanisms: (1) varia-
tions in the average buildup rate of the motor plan, and (2) vari-
ations in response latency associated with detection of the target
and stop signals. The former may be adjusted across blocks of
trials (Fig. 8) or from one trial to the next (Fig. 7), and provide a
straightforward handle for regulating the timing of motor signals.
Perhaps more surprisingly, the latter also play a key role; they
depend both on modality (Fig. 9) and on task conditions (Fig. 7),
and as explained earlier, may represent another common strategy
for controlling the timing of actions.

Thus, performance in the countermanding task depends on
the level of commitment of the saccadic plans and on the speed of
the perceptual detection and subsequent deceleration. This also
explains the results of Leotti and Wager (2010), who manipulated
the monetary rewards and penalties associated with correct and
incorrect responses to precisely control each subject’s speed-
accuracy trade-off. They found that a higher priority for stops
versus fast saccades produced more cancellations in stop trials,
higher RTs in no-stop trials, and a decrease in SSRT. According to
our model, these findings require both types of neural mecha-
nism: (1) a decrease in the average buildup rates, to account for
the higher RTs; and (2) either a decrease in the latency of the stop
signal, or an increase in the maximum value of the tachometric
curve, or both, to account for the decrease in SSRT. This combi-
nation of effects may seem contradictory because it simultane-
ously involves slower responses (higher RTs) and faster
detection/deceleration (lower SSRTs), but indeed it makes sense be-
cause all three changes (i.e., lower buildup rates, faster detection, and
fewer lapses) increase the probability of a successful cancellation.

Interestingly, manipulations of motivation in the compelled-
saccade task led to very similar results: compared with a condi-
tion in which a small reward was at stake, when monkey subjects
had the opportunity to earn a large reward—and presumably
were highly motivated—they slowed down their responses
(higher RTs), initiated the color discrimination sooner (lefward
shift of the tachometric curve), and made fewer errors at long
viewing times (increased asymptotic value of the tachometric
curve), and each of these changes tended to improve perfor-
mance (Shankar et al., 2011). This suggests that the neural mech-
anisms engaged during performance of these two tasks are rather
similar, and perhaps are generally the same for other tasks
involving fast responses.

Limitations of the SSRT
The countermanding task is often used to characterize or diag-
nose anomalies in the mechanisms underlying the capacity to
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inhibit a response (Armstrong and Munoz, 2003; Nouraei et al.,
2003; DeHaan et al., 2007; Lipszyc and Schachar, 2010; Eagle et
al., 2011; Farooqui et al., 2011; Thakkar et al., 2011; Ashare and
Hawk, 2012). In this context, the SSRT is the key quantity being
monitored, and it is interpreted as a direct indication of the
amount of time required by the corresponding inhibitory process
to act. Instead, we found that the SSRT correlates closely with the
timing of the perceptual detection process, as revealed by the
tachometric curve (Fig. 6c). The correspondence is not perfect,
though. It is possible, for instance, to observe a large increase in
SSRT, suggesting a delayed stopping process, when the true effect
is exactly the opposite and the saccade cancellation is, indeed,
initiated substantially earlier (Fig. 9f).

Although this particular problem can be ameliorated by tak-
ing into account the possibility of cognitive lapses in the calcula-
tion of the SSRT (Tannock et al., 1989), in general the empirical
tachometric curve is a much better benchmark of performance
than the SSRT, for three reasons: (1) the tachometric curve is
explicitly based on processing time, the variable that primarily
determines the probability of success in each stop trial; (2) the
curve reveals the onset and the speed of the perceptual process, as
well as the rate of cognitive/attentional errors; it simply provides
more information than a single number; and (3) the numerical
value of the SSRT depends on the method chosen to compute it
(e.g., Hanes et al., 1998; Kornylo et al., 2003; Stevenson et al.,
2009; Verbruggen and Logan, 2009). Different methods produce
different results, and there simply is no principled way to resolve
the ambiguity.

Evidence of inhibitory action
One may wonder whether the SSRT truly has a specific behavioral
or neural manifestation (Walton and Gandhi, 2006; Goonetilleke
et al., 2011). This, however, is not essential to the current results.
As far as we know, all previous models of the countermanding
task propose specific neural interactions for cancelling the devel-
oping motor plan (Logan and Cowan, 1984; Boucher et al., 2007;
Lo et al., 2009; Verbruggen and Logan, 2009; Noorani et al.,
2011), the most common element being a threshold-sensitive
trigger for inhibition. But experimental evidence of such a trigger
is lacking, and in many cases detailed mechanistic assumptions
may be unnecessary. Our results show that, to obtain an accurate
phenomenological description of countermanding performance,
it is enough to specify that the turnaround in activity occurs with
a particular magnitude and time constant. The deceleration of the
preparatory activity may be the result of complex underlying
neural dynamics, but the biophysical details are not needed to
describe it parametrically. The fact is that the suppression of the
impending motor plan requires at least two prior steps: the per-
ceptual detection of the stop stimulus and the interpretation of
such stimulus as a stop command—and then inhibition may kick
in. Further, numerous experimental manipulations can indeed
be explained by the interplay between perceptual and motor-
planning processes that must be engaged during task perfor-
mance. Therefore, any inference about inhibitory control in
the countermanding task is potentially confounded by effects
on perception.

A recent imaging study explicitly attempted to avoid such a
confound (Sharp et al., 2010). Using a manual version of the
countermanding task, the idea was to compare activity during
cancelled trials not to activity in no-stop trials, which have differ-
ent sensory and attentional demands, but to activity in trials in
which a sensory cue similar to the stop is detected but does not
instruct the subject to stop (e.g., stop if the reappearing fixation

spot is red but not if it is green). Under these conditions, only one
area, the presupplementary motor area, displayed significantly
higher activation that could be interpreted as related to inhibitory
control, consistent with other results (Stuphorn and Schall, 2006;
Aron, 2011; Boehler et al., 2011). Such comparisons, as well as
different task designs (Ross et al., 1994; Narayanan and Laubach,
2006; Narayanan et al., 2006; Hayton et al., 2010; Aron, 2011),
may be necessary to effectively disambiguate inhibitory and per-
ceptual signals in future studies.
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